EXERCISES FOR THE MINI-COURSE 'ANOSOV REPRESENTATIONS: SOME GENERAL ASPECTS'

ANDRÉS SAMBARINO

Notation.

-. Let Γ be a hyperbolic group and $\rho: \Gamma \to \operatorname{PGL}(d, \mathbb{R})$ be a representation. Consider the associated flat bundle $\mathbb{R}^d \to V_\rho \to \mathsf{U}\Gamma$, defined by $V_\rho = \tilde{\mathsf{U}}\Gamma \times \mathbb{R}^d/\Gamma$, where $\gamma \cdot (p, v) = (\gamma p, \rho(\gamma)v)$. This bundle is equipped with the automorphism $\psi^\rho = (\psi_t^\rho : V_\rho \to V_\rho)_{t \in \mathbb{R}}$, defined as the quotient of

$$(x,v) \mapsto (\tilde{\phi}_t x, v)$$

on $\tilde{\mathsf{U}}\Gamma \times \mathbb{R}^d$, where $\tilde{\phi} = (\tilde{\phi}_t : \tilde{\mathsf{U}}\Gamma \to \tilde{\mathsf{U}}\Gamma)_{t\in\mathbb{R}}$ is the geodesic flow. We will call ψ^{ρ} the canonical flat bundle automorphism of ρ .

-. Given $g \in \text{PGL}(d, \mathbb{R})$ and an inner product in \mathbb{R}^d , denote by $\sigma_1(g) \ge \cdots \ge \sigma_d(g)$ the singular values of g (i.e. the length (in decreasing order) of the ellipse $g\{v : \|v\| = 1\}$). If $\sigma_p(g) > \sigma_{p+1}(g)$ then we say that g has a gap of index p. If this is the case, then $U_p(g)$, the unstable direction of g (defined by the vector space spanned by the greatest p axis of the ellipse $g\{v : \|v\| = 1\}$), has dimension p.

Exercise 1. Let $V \to X$ be a vector bundle over a compact base equipped with a bundle automorphism $\psi = (\psi^t : V \to V)_{t \in \mathbb{T}}$ (here $\mathbb{T} = \mathbb{Z}$ or \mathbb{R}).

- $Decay \Rightarrow exponential decay$. Assume there exists a ψ -invariant continuous splitting $V = E \oplus F$ such that for every $v \in E$ and $w \in F$ one has

$$\frac{\|\psi^t v\|}{\|\psi^t w\|} \to 0$$

as $t \to +\infty$. Show that $E \oplus F$ is a dominated splitting, i.e. there exist $C, \mu > 0$ such that for all $t \ge 0, v \in E$ and $w \in F$ one has

$$\frac{\|\psi^t v\|}{|\psi^t w\|} \le C e^{-\mu t} \frac{\|v\|}{\|w\|}.$$

- Coherence of domination. Assume $E \oplus F$ and $E' \oplus F'$ are dominated splittings for ψ , if dim $F \leq \dim F'$ show that $F \subset F'$ (and $E' \subset E$).

Exercise 2.

- Let $A \in \text{PGL}(d, \mathbb{R})$ have a gap of index p. Show that for all $v \in \mathbb{R}^d$ one has

$$||Av|| \ge \sigma_p(A) \sin \measuredangle (v, U_{d-p}(A^{-1})),$$

conclude that for every subspace Q of dimension d - p one has

$$||A|_Q|| \ge \sigma_p(A) d(Q, U_{d-p}(A^{-1})).$$

- Assume $B \in PGL(d, \mathbb{R})$ is such that AB has a gap of index p, show that

$$d(U_p(A), U_p(AB)) \le ||B|| ||B^{-1}|| \frac{\sigma_{p+1}(A)}{\sigma_p(A)}$$

- Using the path shown in Figure 1, show that \mathbb{Z}^2 does not admit a dominated representation.

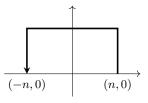


FIGURE 1. A path in \mathbb{Z}^2 .

Exercise 3.

- Let $\ell \oplus V = \mathbb{R}^d$ be a decomposition of \mathbb{R}^d where dim $\ell = 1$, show that the tangent space $\mathsf{T}_{\ell}\mathbb{P}(\mathbb{R}^d)$ can be canonically identified with hom (ℓ, V) .
- Show that the map $\mathbb{P}(\mathbb{R}^2) \to \mathbb{R} \cup \{\infty\} = \partial \mathbb{H}^2$ given by $(x, y) \mapsto x/y$ is $\mathrm{PSL}(2, \mathbb{R})$ -equivariant.
- Let S be a closed surface of genus $g \ge 2$ and let $\rho : \pi_1 S \to \text{PSL}(2, \mathbb{R})$ be induced by the choice of a hyperbolic metric on S. Show that the canonical flat bundle automorphism of ρ has a dominated splitting.

Exercise 4. Guichard-Wienhard. Let G be a real rank-1 simple Lie group and consider $\Lambda : G \to \text{PGL}(V)$ a non-trivial representation. Let $\rho : \Gamma \to G$ be an Anosov representation, show that $\Lambda \rho$ is Anosov.

Exercise 5. Morse Lemma. Let $(x_n)_{n \in \mathbb{Z}}$ be a bi-infinite (C, μ) -quasi-geodesic on the hyperbolic plane, i.e. for all $n, m \in \mathbb{Z}$ one has

$$\frac{1}{\mu}|n-m| - C \leq d_{\mathbb{H}^2}(x_n, x_m) \leq \mu|n-m| + C.$$

Use Bochi-Gourmelon's result to show the following weak version of the Morse Lemma: there exists a unique geodesic at bounded Hausdorff distance of $\{x_n : n \in \mathbb{Z}\}$ and the bound only depends on C and μ .

(Hint: It might be convenient to interpret \mathbb{H}^2 as the space of inner products on \mathbb{R}^2 (up to homothety); bearing this in mind, if $o \in \mathbb{H}^2$ and $g \in \mathrm{PSL}(2, \mathbb{R})$ then:

- Show that

$$d_{\mathbb{H}^2}(o, g \cdot o) = \log \|g\|_o,$$

where $\| \|_{o}$ is the operator norm associated to o,

- Consider the geodesic ray starting at o going through $g \cdot o$, show that its endpoint in $\partial \mathbb{H}^2 = \mathbb{P}(\mathbb{R}^2)$ is the unstable direction $U_1^o(g)$ of g (recall that in general $U_i^o(g)$ is the vector space spanned by the i greatest axis of the ellipse $g \cdot \{v : \|v\|_o = 1\}$).
- Consider $x, y \in \partial \mathbb{H}^2 = \mathbb{P}(\mathbb{R}^2)$ distinct and let σ_{xy} be the geodesic with endpoints x and y, show that the distance

$$d_{\mathbb{H}^2}(o, \sigma_{xy})$$

is coarsely

$$-\log\sin\measuredangle_o(x,y),$$

where $\measuredangle_o(x, y)$ denotes the angle between the lines x and y for the inner product o.)

 $\mathbf{2}$

Exercise 6. Dominated splitting of $\psi^{\rho} \Rightarrow \rho$ Anosov. Let Γ be the fundamental group of a closed negatively curved manifold¹ and $\rho : \Gamma \to \text{PSL}(d, \mathbb{R})$ be a representation.

- Show that if the canonical flat bundle automorphism ψ^{ρ} admits a dominated splitting $E \oplus F$ with dim F = p then ρ is *p*-dominated, i.e. there exist $C, \mu > 0$ such that for all $\gamma \in \Gamma - \{id\}$ one has

$$\frac{\sigma_{p+1}(\gamma)}{\sigma_p(\gamma)} \leqslant C e^{-\mu|\gamma|}.$$

Here $|\gamma|$ denotes the word-length of γ w.r.t some generating set and $\sigma_i(g)$ denotes the *i*-th singular value of the matrix g.

- Show that if $x \in \tilde{\mathsf{U}}\Gamma$ then the vector space \tilde{E}_x only depends on the past of x, i.e. on $\phi_{-\infty}x \in \partial\Gamma$, and that F_x only depends on the future of x, i.e. on $\tilde{\phi}_{+\infty}x \in \partial\Gamma$.
- Conclude that if ψ^{ρ} admits a dominated splitting then ρ is Anosov.

Exercise 7.

- Benoist-Guivarc'h's limit set. Let $\Lambda \subset \operatorname{PGL}(d, \mathbb{R})$ be an irreducible subgroup and assume there exists a proximal g (i.e. there is a g-invariant decomposition $\mathbb{R}^d = g_+ \oplus V_g$, where dim $g_+ = 1$ and the spectral radius of $g|V_g$ is strictly smaller than the eigenvalue of g_+ in Λ . Show that the set

$$\mathbb{L}_{\Lambda} = \{h_+ : h \in \Lambda \text{ proximal}\}\$$

is contained in any closed Λ -invariant subset of $\mathbb{P}(\mathbb{R}^d)$.

- Let $\rho : \Gamma \to \operatorname{PGL}(d, \mathbb{R})$ be a representation equipped with a continuous equivariant map $\xi : \partial \Gamma \to \mathbb{P}(\mathbb{R}^d)$. Show that the restriction of ρ to the vector space spanned by $\xi(\partial \Gamma)$ is irreducible.

Exercise 8. Quint's indicator function, basic facts.² Let G be a semi-simple Lie group and $\Lambda \subset G$ be a discrete subgroup. Let $\Omega_{\Lambda} : \mathfrak{a}^+ \to \mathbb{R}_+ \cup \{-\infty\}$ be Quint's growth indicator function, i.e. given a norm $\|\|\|$ on \mathfrak{a} and an open cone $\mathscr{C} \subset \mathfrak{a}^+$ let

$$h_{\mathscr{C}}^{\parallel\parallel} = \limsup_{T \to \infty} \frac{1}{T} \log \# \{ g \in \Lambda : a(g) \in \mathscr{C} \text{ and } \|a(g)\| \leq T \},$$

finally define

$$Q_{\Lambda}(v) = \|v\| \inf_{v \in \mathscr{C}} h_{\mathscr{C}}^{\|\,\|}.$$

- Show that the function Q_{Λ} does not depend on the chosen norm $\| \|$.

Let $\theta : \mathfrak{a}^+ \to \mathbb{R}$ be positively homogeneous (i.e. $\theta(tv) = t\theta(v)$ for all $t \ge 0$) and continuous (such as a norm on \mathfrak{a} or an element of \mathfrak{a}^*).

- Show that if for all $v \in \mathfrak{a}^+ - \{0\}$ one has $\theta(v) > \mathfrak{Q}_{\Lambda}(v)$ then

$$\sum_{g\in\Lambda}e^{-\theta(a(g))}<\infty$$

$$h = \limsup_{T \to \infty} \frac{1}{T} \log \# \{ n \in \mathbb{N} : \lambda_n \leqslant T \};$$

if s > h then L(s) is convergent and if s < h then $L(s) = \infty$.

 $^{^1\}mathrm{The}$ statements in this exercise hold true for any hyperbolic group but this would require a technical detour.

²Recall that if $(\lambda_n)_{n\in\mathbb{N}}$ is a sequence of positive numbers then the Dirichlet series $L(s) = \sum_{n\in\mathbb{N}} e^{-s\lambda_n}$ has critical exponent defined by

A. SAMBARINO

- Show that if there exists v such that $\theta(v) < \Omega(v)$ then

$$\sum_{g \in \Lambda} e^{-\theta(a(g))} = \infty$$

- Conclude that

$$h^{\theta}(\Lambda) = \limsup_{T \to \infty} \frac{1}{T} \log \# \{ g \in \Lambda : \theta(a(g)) \leqslant T \} = \sup \frac{\mathcal{Q}(v)}{\theta(v)}$$

Exercise 9. Growth for linear forms. Let G be a semi-simple Lie group, $\Lambda \subset G$ be a discrete subgroup and $Q_{\Lambda} : \mathfrak{a}^+ \to \mathbb{R}_+ \cup \{-\infty\}$ be Quint's growth indicator function. Consider the set of \mathfrak{a}^* defined by

$$\mathcal{D}_{\Lambda} = \{ \varphi \in \mathfrak{a}^* : \varphi \ge Q \}.$$

- Show that \mathcal{D}_{Λ} is convex. Let $\| \|$ be a norm on \mathfrak{a} and denote by $\| \|^*$ the associated norm on \mathfrak{a}^* . Show that

$$h^{\|\|}(\Lambda) = \inf_{\varphi \in \mathcal{D}_{\Lambda}} \|\varphi\|^*.$$

4