Pressure forms on purely imaginary directions

A. Sambarino

$j/w\ M.$ Bridgeman, B. Pozzetti and A. Wienhard

Yves's 60th Birthday

A. Sambarino

Pressure forms on purely imaginary directions

May 2019 1 / 20

< ∃ ►

 $\mathsf{G}_{\mathbb{K}} = \mathsf{PSL}_d(\mathbb{K}), \, \mathbb{K} = \mathbb{R} \text{ or } \mathbb{C},$

 $\tau = \text{inner} (\text{Hermitian}) \text{ product on } \mathbb{K}^d$

The singular values of $g \in \mathsf{PSL}_d(\mathbb{K})$ are the lengths of the axis of the ellipse $g\{v : ||v|| = 1\}$ in decreasing order, denoted by

$$e^{\nu_1(g)} \geq \cdots \geq e^{\nu_d(g)},$$

< □ > < □ > < □ > < □ > < □ > < □ > = □

$$E = \{(a_1, \dots, a_d) \in \mathbb{R}^d : a_1 + \dots + a_d = 0\}$$

$$\nu : G_{\mathbb{K}} \to E^+ \text{ is the Cartan projection.}$$

$$\sigma_i \in E^*, \qquad \sigma_i(a_1, \dots, a_d) = a_i - a_{i+1}.$$

$$\Pi = \{\sigma_i : i \in \{1, \dots, d\}\}.$$

Anosov representations

Arbitrary rank convex-co-compactness

Introduced by Labourie in '06. Approach from '14-'15 by Kapovich-Leeb-Porti, Guéritaud-Guichard-Kassel-Wienhard and Bochi-Potrie-S.

 Γ = discrete group equipped with its word length $||. \theta \subset \Pi$.

A "far from walls of elements in θ " quasi-isometric embedding: $\rho: \Gamma \to G_{\mathbb{K}}$ is θ -Anosov if there exist $\mu > 0, c \ge 0$ such that $\forall \sigma \in \theta$ and all $\gamma \in \Gamma$ one has

$$\sigma\Big(
uig(
ho(\gamma)ig)\ge \mu|\gamma|-{\sf c}.$$

Open condition in hom(Γ , $G_{\mathbb{K}}$); stable class of quasi-isometric embeddings.

In '14 Kapovich-Leeb-Porti prove the following¹:

Theorem (Kapovich-Leeb-Porti)

Let ρ be θ -Anosov, then Γ is Gromov-hyperbolic and there exist continuous equivariant maps

$$\xi^{ heta}_{
ho}:\partial\Gamma o \mathfrak{F}_{ heta}$$
 and $\xi^{\mathrm{i}\, heta}_{
ho}:\partial\Gamma o \mathfrak{F}_{\mathrm{i}\, heta}$

such that the product map $(\xi^{\theta}, \xi^{i\theta})$ sends $\partial^{(2)}\Gamma$ to $\mathcal{F}_{\theta}^{\uparrow}$.

$$\mathcal{F}_{\theta} = \mathsf{partial} \ \mathsf{flag} \ \mathsf{of} \ \mathsf{type} \ \theta.$$

$$\mathsf{i}:\mathsf{E} o\mathsf{E}$$
 is the opposition involution.

$$\partial^{(2)}\Gamma$$
 = pairs of distinct points of $\partial\Gamma$.

 $\mathcal{F}_{\theta}^{\uparrow}$ = pairs of transverse partial flags of type θ and $i\theta$.

¹different proof by Bochi-Potrie-S. in '16

Higher rank phenomenon

Regularity of limit sets does not necessarily decrease after deformation

Yves's work on strictly convex divisible sets \Rightarrow these groups are σ_1 -Anosov and have $\mathsf{C}^{1+\alpha}$ limit set.

(日) (四) (코) (코) (코) (코)

Character variety:

$$\mathfrak{X}(\Gamma, \mathsf{G}_{\mathbb{K}}) = \mathsf{hom}(\Gamma, \mathsf{G}_{\mathbb{K}})/\mathsf{G}_{\mathbb{K}}$$

Anosov characters form an open subspace

$$\mathfrak{X}_{ heta}(\Gamma,\mathsf{G}_{\mathbb{K}}) = \{
ho \in \mathfrak{X}(\Gamma,\mathsf{G}_{\mathbb{K}}) :
ho ext{ is } heta ext{-Anosov}\}$$

naturally equipped with "geometric structures."

Fix
$$\rho \in \mathfrak{X}(\Gamma, G_{\mathbb{K}})$$
.
 $\lambda : G_{\mathbb{K}} \to E^+$ the Jordan projection.
 $\mathcal{L}_{\rho} =$ *Yves's limit cone* = closure of $\mathbb{R}_+\lambda(\rho(\Gamma))$ and
 $(\mathcal{L}_{\rho})^* = \{\varphi \in E^* : \varphi | \mathcal{L}_{\rho} - \{0\} > 0\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Pressure forms

The moduli space of Anosov representations is canonically equipped with semi-definite symmetric bilinear forms

For $\sigma_p \in \Pi$, denote by $\omega_{\sigma_p} : \mathsf{E} \to \mathbb{R}$ its fundamental weight: $(a_1, \dots, a_d) \mapsto a_1 + \dots + a_p.$ The Anosov-Levi space of ρ : $\mathsf{AL}_{\rho} = \langle \{\omega_{\sigma} : \rho \text{ is } \sigma\text{-Anosov}\} \rangle \subset \mathsf{E}^*.$

Bridgeman-Canary-Labourie-S. '13

Every linear form $\varphi \in AL_{\rho} \cap (\mathcal{L}_{\rho})^*$ defines a positive semi-definite symmetric bilinear form P_{ρ}^{φ} on

 $\mathsf{T}_{\rho}\mathfrak{X}(\mathsf{\Gamma},\mathsf{G}_{\mathbb{K}}).$

Inspired by Thurston, Bonahon '88, Burger '93, Knieper '95, Bridgeman '08 and McMullen '08.

For $\gamma \in \Gamma$ and $\varphi \in AL_{\rho}$ denote by $\varphi^{\gamma}(\rho) = \varphi(\lambda(\rho(\gamma)))$. $R_{t}^{\varphi}(\rho) = \{[\gamma] \in [\Gamma] : \varphi^{\gamma}(\rho) \leq t\}$

Entropy: exponential growth rate of $t \mapsto R_t^{\varphi}(\rho)$

$$h^{arphi}(
ho) = \lim_{t o \infty} rac{\log \# R_t^{arphi}(
ho)}{t}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Dynamical Intersection: $I^{\varphi}(\rho, \eta) = \lim_{t \to \infty} \frac{1}{\# R_t^{\varphi}(\rho)} \sum_{\gamma \in R_t^{\varphi}(\rho)} \frac{\varphi^{\gamma}(\eta)}{\varphi^{\gamma}(\rho)}$

Both quantities vary analytically.

$$h^{\varphi}(\rho) = \lim_{t \to \infty} \frac{\log \# R_t^{\varphi}(\rho)}{t}, \qquad \mathsf{I}^{\varphi}(\rho, \eta) = \lim_{t \to \infty} \frac{1}{\# R_t^{\varphi}(\rho)} \sum_{\gamma \in R_t^{\varphi}(\rho)} \frac{\varphi^{\gamma}(\eta)}{\varphi^{\gamma}(\rho)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つへの

Proposition (Bridgeman-Canary-Labourie-S. '13)

$$\mathsf{J}^{arphi}(
ho,\eta)=rac{h^{arphi}(\eta)}{h^{arphi}(
ho)}\mathsf{I}^{arphi}(
ho,\eta)\geq 1.$$

In particular $\operatorname{Hess}_{\rho} \mathsf{J}^{\varphi}(\rho, \cdot) \geq 0.$

Uses heavily the Thermodynamic Formalism of hyperbolic systems developed by Bowen, Ruelle, Ledrappier, Parry, Pollicott among others.

<ロト <四ト <注入 <注下 <注下 <

The pressure form of φ is $\mathsf{P}^{\varphi}_{\rho} = \operatorname{Hess}_{\rho} \mathsf{J}^{\varphi}(\rho, \cdot)$.

Livšic-cohomological independence of ρ and $\dot{\rho}$?

 $\mathsf{P}^{\varphi}_{\rho}(\dot{
ho}) = 0 \Leftrightarrow \exists K \text{ such that}$

$$\forall \gamma \in \mathsf{\Gamma} \left. rac{\partial}{\partial t} \right|_{t=0} \varphi^{\gamma}(\rho_t) = K \varphi^{\gamma}(\rho).$$

 $(K = ext{derivative of } \log h^{arphi}(
ho_t))$

Questions

Is $\mathsf{P}^{\varphi}_{\rho}$ positive definite?

Does the set $\{d_{\rho}\varphi^{\gamma}: \gamma \in \Gamma\}$ span $\mathsf{T}_{\rho}^{*}\mathfrak{X}(\Gamma, \mathsf{G}_{\mathbb{K}})$?

Does Yves's infinitesimal cone has non-empty interior?

How do different pressure forms relate to each other?

The Hitchin component

and small complex deformations

S = closed connected oriented surface of genus $g \ge 2$.

 $\iota_d : SL_2(\mathbb{R}) \to SL_d(\mathbb{R})$ unique (up to conjugation) *d*-dimensional irreducible representation of $SL_2(\mathbb{R})$.

A Fuchsian representation of $\pi_1 S$ is a representation that factors as

$$\pi_1 S \to \mathsf{PSL}_2(\mathbb{R}) \stackrel{\iota_d}{\longrightarrow} \mathsf{PSL}_d(\mathbb{R})$$

where the first arrow is discrete and faithful.

 $\mathfrak{H}_d(S)$ = The *Hitchin component* of $\mathsf{PSL}_d(\mathbb{R})$ = the connected component of $\mathfrak{X}(\pi_1 S, \mathsf{PSL}_d(\mathbb{R}))$ of a(ny) Fuchsian representation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (Hitchin '96)

 $\mathfrak{H}_d(S)$ is diffeomorphic to a real vector space of dimension $(2g-2) \dim \mathsf{PSL}_d(\mathbb{R}).$

Theorem (Labourie '06)

Every Hitchin representation is Π -Anosov and has $C^{1+\alpha}$ limit curve in projective space $\mathbb{P}(\mathbb{R}^d)$.

Also from Labourie's work (but not directly): for every $\sigma \in \Pi$ the limit set in $\mathcal{F}_{\sigma}(\mathbb{R}^d)$ is a $C^{1+\alpha}$ curve.

<ロト <四ト <注入 <注下 <注下 <

Study deformations of

$$\pi_{\mathcal{S}} \stackrel{\rho}{\longrightarrow} \mathsf{PSL}_d(\mathbb{R}) \to \mathsf{PSL}_d(\mathbb{C})$$

where $\rho \in \mathcal{H}_d(S)$.

Given $\sigma \in \Pi$ let $Hff_{\sigma} : \mathfrak{X}_{\Pi}(\pi_1 S, \mathsf{PSL}_d(\mathbb{K})) \to \mathbb{R}_+$ be

$$\mathsf{Hff}_{\sigma}(\rho) = \mathsf{dim}_{\mathsf{Hff}}\left(\xi_{\rho}^{\sigma}(\partial \pi_1 S)\right)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

for a metric on $\mathcal{F}_{\sigma}(\mathbb{K}^d)$ induced by an inner/Hermitian product on \mathbb{K}^d .

Non conformality

 ρ does <u>not</u> act conformally for such a metric.

 $J^2 = -1$; tensor on $\mathfrak{X}(\pi_1 S, \mathsf{PSL}_d(\mathbb{C}))$ induced by its natural complex structure coming from complex structure of $\mathsf{PSL}_d(\mathbb{C})$.

Theorem (Bridgeman-Pozzetti-S.-Wienhard) $\rho \in \mathfrak{H}_d(S) \text{ and } v \in \mathsf{T}_{\rho}\mathfrak{H}_d(S) \text{ then}$ $\operatorname{Hess}_{\rho}\operatorname{Hff}_{\sigma}(Jv) = \mathsf{P}_{\rho}^{\sigma}(v).$

When d = 2 proved by Bridgeman-Taylor '10 and McMullen '08.

$$\operatorname{Hess}_{\rho}\operatorname{Hff}_{\sigma}(Jv) = \mathsf{P}_{\rho}^{\sigma}(v).$$

Theorem (Bridgeman-Canary-Labourie-S. '18)

 P^{σ_1} is a Riemannian metric on $\mathfrak{H}_d(S)$.

Remark: in $\mathcal{H}_{2n}(S)$ the middle root pressure form P^{σ_n} is *degenerate*.

(日) (四) (문) (문) (문)

Hints on proof

Key step: Describe Hff_{σ} as a dynamical quantity; Anosov representations with extra transversality are useful.

Consider
$$p, q, r \in \{1, \ldots, d\}$$
 with $p + q \leq r$.

Definition

$$\rho: \Gamma \to \mathsf{PGL}_d \mathbb{K}$$
 is (p, q, r) -hyperconvex if

- it is
$$\{\sigma_p, \sigma_q, \sigma_r\}$$
-Anosov,

- for
$$x, y, z \in \partial \Gamma$$
 pairwise distinct one has

$$\left(\xi_{\rho}^{\sigma_p}(x)\oplus\xi_{\rho}^{\sigma_q}(y)
ight)\cap\xi_{\rho}^{\sigma_{d-r}}(z)=\{0\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A $\{\sigma_1\}$ -Anosov group preserving a convex set is (1, 1, d - 1)-hyperconvex.

A (1, 1, 2)-hyperconvex representation of a surface group:

notation: $x_{\rho}^{k} = \xi_{\rho}^{\sigma_{k}}(x).$

Theorem (Pozzetti-S.-Wienhard) $\rho: \Gamma \to \mathsf{PGL}_d(\mathbb{K}) \ (p, q, r)$ -hyperconvex then $\lim_{v \to x} \measuredangle(x^p_\rho \oplus y^q_\rho, x^r_\rho) = 0.$

Theorem (Pozzetti-S.-Wienhard)

 $\rho: \Gamma \to \mathsf{PGL}_d(\mathbb{K})$ (p, q, r)-hyperconvex then $\lim_{y\to x} \measuredangle (x^p_\rho \oplus y^q_\rho, x^r_\rho) = 0.$

The convergence property can be used to show that, even though the action of $\rho(\Gamma)$ on $\mathbb{P}(\mathbb{K}^d)$ is not conformal, the action $\rho(\Gamma) \sim \xi_{\rho}^{\sigma_1}(\partial\Gamma)$ is.

Theorem (Pozzetti-S.-Wienhard) Let $\rho : \Gamma \to \mathsf{PSL}_d(\mathbb{K})$ be (1, 1, 2)-hyperconvex then $\mathsf{Hff}_{\sigma_1}(\rho) = h^{\sigma_1}(\rho)$.

Techniques from Bridgeman-Taylor extend once these results have been stablished.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Thanks and Joyeux Anniversaire Yves!!!!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで