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Conformality for a robust class of
non-conformal attractors

By Maria Beatrice Pozzetti at Heidelberg, Andrés Sambarino at Paris and
Anna Wienhard at Heidelberg

Abstract. In this paper we investigate the Hausdorff dimension of limit sets of Anosov
representations. In this context we revisit and extend the framework of hyperconvex represen-
tations and establish a convergence property for them, analogue to a differentiability property.
As an application of this convergence, we prove that the Hausdorff dimension of the limit set
of a hyperconvex representation is equal to a suitably chosen critical exponent.
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1. Introduction

In his seminal paper, Sullivan [42] describes the Hausdorff dimension of the limit set L� ,
of a discrete group � acting on the real hyperbolic n-space, in terms of the Dirichlet series

s 7!
X

2�

e�sd.o;
o/:

More precisely, the critical exponent of such a series is

h� D inf
²
s W
X

2�

e�sd.o;
o/ <1

³
D sup

²
s W
X

2�

e�sd.o;
o/ D1

³
and Sullivan shows:

Theorem (Sullivan). If � is a convex co-compact subgroup of PSO.1; n/, then the
Hausdorff dimension of L� is h� :

This is related to understanding the Hausdorff dimension of a hyperbolic set in dynamical
terms. Indeed, the non-wandering set of the geodesic flow of � nHn is, by definition, a maxi-
mal isolated compact hyperbolic set, h� is its topological entropy and Sullivan’s result can be
interpreted in terms of the Ledrappier–Young formula [32].

Describing the Hausdorff dimension of a hyperbolic repeller as a dynamical quantity
is today well understood in the conformal setting, i.e. when the derivative of the dynamics,
restricted to the stable distribution, acts as a conformal map (see the survey [10] and references
therein). Analogously, Sullivan’s result has been generalized to convex-cocompact groups of
a CAT.�1/-space X (see for example Bourdon [5] and Yue [44]). The metric on the visual
boundary àX used to compute the Hausdorff dimension is the visual metric, for which the
action of IsomX is conformal (i.e. sends balls to balls).

However, other natural metrics on àX appear in very common situations: if X is a rank 1
symmetric space of non-compact type, then its visual boundary carries the structure of a differ-
entiable manifold and thus one would also like to understand the Hausdorff dimension of limit
sets for a (any) Riemannian metric on àX:UnlessX is the real hyperbolic n-dimensional space,
the Riemannian structure behaves differently from the visual structure: the action of IsomX is
no longer conformal.

The dynamical characterization of Hausdorff dimension in a non-conformal setting is
still not completely understood. We refer the reader again to Chen and Pesin’s survey [10]. Let
us also note that only very recently Bárány, Hochman and Rapaport [1] provided a complete
answer for Iterated-Function-Systems on the plane. On the discrete groups side, Dufloux [16]
has studied a class of Schottky subgroups of isometries of the complex hyperbolic n-space,
that he calls well positioned, and proves the analogue of Sullivan’s result for the Hausdorff
dimension of the limit set with respect to any Riemannian metric.

1.1. This paper. In this paper we are interested in describing the Hausdorff dimension
of the limit set of discrete subgroups of a semi-simple Lie group G, for a Riemannian structure
on the flag spaces (or boundaries) of G: The groups we will consider, called Anosov represen-
tations, are in many ways similar to convex cocompact subgroups of SO.1; n/, but do not act
conformally on the boundaries of G:
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Anosov representations were introduced by Labourie [31] for fundamental groups of neg-
atively curved closed manifolds and the definition was extended by Guichard and Wienhard [23]
to any hyperbolic group. Such representations provide the appropriate generalization of the
class of convex co-compact subgroups in the context of Lie groups of higher rank [23, 27, 28].

We will not use the original definition but follow a more recent approach, developed by
Kapovich, Leeb and Porti [28], Géritaud, Guichard, Kassel and Wienhard [20] and in partic-
ular Bochi, Potrie and Sambarino [4], that provides a simplified definition and gives better
quantitative control of Anosov representations.

Let K D R or C, consider an inner (or Hermitian if K D C) product in Kd and, for
g 2 GLd .K/, denote by g 7! g� the corresponding adjoint operator. The singular values of g,
i.e. the square root of the modulus of the eigenvalues of gg�, are denoted by

�1.g/ � � � � � �d .g/:

Let � be a finitely generated discrete group, consider a finite symmetric generating set S
and denote by j � j the associated word metric on �:Given p 2 J1; d � 1K denote by Gp.Kd / the
Grassmannian of p-dimensional subspaces of Kd : For a homomorphism � W � ! PGLd .K/,
the following are equivalent:

(i) There exist positive constants c; � such that for all 
 2 � one has

�pC1

�p
.�.
// � ce��j
 j:

(ii) The group � is word-hyperbolic and there exist �-equivariant maps

.�p; �d�p/ W à� ! Gp.K
d / � Gd�p.K

d /

such that for every x ¤ y 2 à� one has

�p.x/˚ �d�p.y/ D Kd ;

and a suitable associated flow is contracting.

If either condition is satisfied we will say that � is an ¹apº-Anosov representation.1) For
such a representation, the critical exponent hap

� of the Dirichlet series

(1.1) ˆ
ap
� .s/ D

X

2�

�
�pC1

�p
.�.
//

�s
is well defined. By definition, the series is convergent for every s > hap

� and divergent for every
0 < s < h

ap
� :

If � is furthermore ¹apC1º-Anosov, then hap
� is analytic with respect to �, and agrees

with the entropy of a suitably defined flow (see for example Bridgeman, Canary, Labourie and
Sambarino [6] and Potrie and Sambarino [35, Corollary 4.9]). But in general little is known
about hap

� without this extra assumption.

1) The implication (ii)) (i) comes from Labourie [31] and Guichard and Wienhard [23]. The implication
(i)) (ii) is more recent and due to Kapovich-Leeb-Porti [28], see also Guéritaud, Guichard, Kassel and Wien-
hard [20] and Bochi, Potrie and Sambarino [4] for different approaches. In the language of Bochi, Potrie and
Sambarino [4, Section 3.1] a representation verifying condition (i) is called p-dominated.
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We will mainly focus on ¹a1º-Anosov representations. The chosen inner product on Kd

induces a metric on P .Kd /, we will denote by Hff.A/ the Hausdorff dimension of a subset
A � P .Kd / for this metric. As a first result we obtain the following, independently obtained
by Glorieux, Monclair and Tholozan [19].

Proposition (Proposition 4.1). Let � W � ! PGLd .K/ be ¹a1º-Anosov. Then

Hff.�1.à�// � ha1
� :

In order to discuss situations in which equality holds, we introduce the notion of locally
conformal points of � (Definition 5.5), these are points of à� designed to detect some asymp-
totic conformality of the non-conformal action of �.�/ when restricted to the limit set �1.à�/:
Using Patterson’s construction we then obtain a (not necessarily quasi-invariant) measure �a1

�

on à� . Following Sullivan, we then prove the following.

Theorem (Theorem 5.14). Assume that the set of locally conformal points of � has
positive �a1

� -measure. Then
Hff.�1.à�// D ha1

� :

Interestingly, for a rich class of Anosov representations, a 3-point transversality condi-
tion, inspired by Labourie [31], forces asymptotic conformality:

Definition. Consider p; q; r 2 J1; d � 1K such that p C q � r: A ¹ap; aq; arº-Anosov
representation � W � ! PGLd .K/ is called .p; q; r/-hyperconvex if for every triple of pairwise
distinct points x; y; z 2 à� one has�

�p.x/˚ �q.y/
�
\ �d�r.z/ D ¹0º:

(Note that p and q are not required to be distinct.)

The main result of this paper is the following.

Theorem A (Corollary 6.9 and Corollary 7.3). Let � be .1; 1; 2/-hyperconvex. Then

ha1
� D Hff.�1.à�// � Hff.P .K2//:

The aforementioned analyticity result for hap
� , together with Theorem A, has the follow-

ing consequence:

Corollary 1.1. Let ¹�u W � ! PGLd .K/ºu2D be an analytic family of .1; 1; 2/-hyper-
convex representations, then u 7! Hff.�1u.à�// is analytic.

In fact, Theorem A holds in greater generality. We can replace 2’s by any p 2 J2; d � 1K
if we additionally require that for every 
 2 � one has

�2.�.
// D �p.�.
//;

see Corollary 6.10 and Corollary 7.3. This extra condition on the singular values should be
interpreted as a restriction on the Zariski closure of the representation (see Section 8.1 for
situations such as PSp.1; n/ and PU.1; n/, and Section 8.2 for the group PSO.p; q/).
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A key ingredient for the proof of Theorem A is the following convergence property for
hyperconvex representations, from the inequality readily follows.

Theorem B (Theorem 7.1). If � is .p; q; r/-hyperconvex, then for every .w; y/ 2 à.2/�
one has

lim
.w;y/!.x;x/

d
�
�p.w/˚ �q.y/; �r.x/

�
D 0:

We further investigate how vast the class of hyperconvex representations is. On the one
hand one has the following remarks that provide many examples by the represent and deform
method (see Section 7.2):
� if � W � ! PGLd .R/ is hyperconvex, then, by complexifying, one obtains a hyperconvex

representation over C: this is direct from the definition;
� the space of .p; q; r/-hyperconvex representations is open in hom.�;PGLd .K// (Propo-

sition 6.2).

On the other hand there are some ‘verifiable’ restrictions imposed by the hyperconvexity
condition. For example, a .1; 1; p/-hyperconvex representation of � induces a continuous injec-
tive map

à� � ¹pointº ! P .Kp/;

(see Corollary 6.6), and there might be topological obstructions for the existence of such a map.
More interesting restrictions arise when K D R and à� is a manifold:

Corollary (Proposition 7.4). Let � be such that à� is homeomorphic to a .p�1/-dimen-
sional sphere. If � W � ! PGLd .R/ is .1; 1; p/-hyperconvex, then �1.à�/ is a C1-sphere.

Using openness of hyperconvexity, we find new explicit examples of Zariski dense groups
with C1 limit set.

Corollary (Corollary 7.7). There exist Zariski dense subgroups � < PGLd.dC1/.R/
whose limit set is a C1-sphere of dimension d � 1.

Sharper results of similar nature were obtained by Zhang and Zimmer [45].
We now turn to the special situation when à� is a circle. Then Theorem A gives the

following computation of ha1
� :

Corollary. Assume that à� is homeomorphic to a circle and let � W � ! PGLd .R/ be
.1; 1; 2/-hyperconvex. Then ha1

� D 1:

This implies [35, Theorem B] and further generalizes it to the Hitchin component of
PSO.p; p/: The proof of [35, Theorem A] applies then verbatim also to the Hitchin component
of PSO.p; p/ and we thus obtain a rigid inequality for the critical exponent in the symmetric
space of PSO.p; p/. We refer the reader to Sections 9.2 and 9.3 for more details on Hitchin
representations.

While the property of having constant ha1
� was expected to be a rare phenomenon, pecu-

liar to Hitchin components, or possibly higher rank Teichmüller theories, we provide, in Sec-
tion 6.3, many more examples of representations of fundamental groups of surfaces for which
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Theorem A applies. Interestingly enough, when à� is a circle (and K D R), .1; 1; 2/-hypercon-
vexity is not only a local condition, but it can be pushed far away. We say that an ¹a1º-Anosov
representation is weakly irreducible if �1.à�/ is not contained in a proper subspace of P .Rd /.

Proposition (Proposition 9.3). Assume that à� is homeomorphic to a circle. Then the
space of real weakly irreducible .1; 1; 2/-hyperconvex representations of � is closed among
real weakly irreducible ¹a1; a2º-Anosov representations.

Throughout the paper we allow K to be a local field (not necessarily Archimedean,
as we required in this introduction). Originally Anosov representations were only defined
over Archimedean fields as it is possible to show that if � admits a Anosov representation
� W � ! PSLd .K/ for non-Archimedean K, then � is virtually free. The main result of our
paper, however, associates to such an action an interesting geometric quantity, the Hausdorff
dimension of the limit set, which we are able to relate to a dynamical data, the orbit growth
rate. We find this very interesting, and this justifies the extra work needed to develop the theory
in this more general setting.

The main results go through in this generality, except the analyticity of Hausdorff dimen-
sion: the key step is to show that for an ¹a1º-Anosov representation its entropy, defined by

lim sup
t!1

1

t
log #¹
 2 � W log �1.�.
// � tº

is analytic with �: We do not know if this is true, but one can use the thermodynamical formal-
ism to prove that the Hausdorff dimension depends continuously on the representation (and is
actually as regular as the map � 7! �� is).

Outline of the paper. The preliminaries of the paper, collected in Section 2, come
from three different areas: quantitative linear algebra, dynamics and geometric group theory.
In Section 2.1 we recall relations between the singular values of an element in PGLd .K/ and
metric properties of its action on Grassmannian manifolds, in the general context of a local
field K: In Section 2.2 we discuss the dynamical backgrounds and indicate how to extend
Bochi–Gourmelon’s theorem as well as the theory of dominated splittings to general local
fields. Section 2.3 collects the facts about hyperbolic groups and cone types that we will need
in the paper.

Section 3 concerns Anosov representations: we extend to the non-Archimedean setup
the definition and the results we will need, particularly concerning the definition and proper-
ties of the equivariant boundary maps. Our discussion follows the lines of Bochi, Potrie and
Sambarino [4].

In Section 4 we prove that for any Anosov representation the Hausdorff dimension of
the limit curve provides a lower bound for the critical exponent for the first root. In Section 5
we give a condition guaranteeing that such bound is optimal, namely the abundance of locally
conformal points with respect to a suitable measure.

Section 6 concerns the notion of .p; q; r/-hyperconvexity, an open condition (Proposi-
tion 6.2) that guarantees abundance of locally conformal points: this is the content of Propo-
sition 6.7, the main technical result of the paper. Using the theory of SL2 representations, we
provide in Section 6.3 many examples of hyperconvex representations of fundamental groups
of surfaces and hyperbolic three manifolds.



Pozzetti, Sambarino and Wienhard, Conformality for a class of non-conformal attractors 7

In Section 7 we discuss another interesting consequence of hyperconvexity: such property
guarantees a weak differentiability property for the limit set (Theorem 7.1) which allows us,
on the one hand, to obtain good bounds on the Hausdorff dimension (Proposition 7.3), and
on the other to provide examples of Zariski dense subgroups whose limit set in the projective
space is a C1 manifold: we obtain these through the represent and deform method explained,
in a concrete example, in Proposition 7.5.

In Section 8 we discuss in detail two families of representations for which all our results
apply: on the one hand we detail the geometric meaning of our notions in the case of convex
cocompact subgroups of rank-one groups, rediscovering and generalizing results of Dufloux
(Section 8.1), on the other we give a concrete criterion that guarantees hyperconvexity for
subgroups of SO.p; q/ and provide examples of groups that satisfy it (Section 8.2).

The last section of the paper (Section 9) concerns representations of fundamental groups
of hyperbolic surfaces (or more generally compact hyperbolic orbifolds). For these we show
that hyperconvexity is also a closed condition (Proposition 9.3), and discuss a new proof and
generalization of a result of Potrie and Sambarino [35].

2. Preliminaries

In the paper we will need preliminaries from three different sources: quantitative linear
algebra, dynamics and particularly the work of Bochi and Gourmelon [3] and Bochi, Potrie
and Sambarino [4] on dominated sequences, and algebraic and metric properties of hyperbolic
groups. We recall the results we need here.

2.1. Quantitative linear algebra. As anticipated at the end of the introduction, in the
paper we will be dealing with representations of finitely generated groups on finite-dimensional
vector spaces over local fields. We recall here some quantitative results we will need. More
details on algebraic groups over local fields can be found in Quint [38].

2.1.1. Angles and distances on Grassmannians. We denote by K a local field, and
by j � j W K! RC its absolute value. Recall that if K is R or C, then j � j is the usual modulus
if, instead, K is non-Archimedean, we require that j!j D 1

q
, where ! denotes the uniformiz-

ing element, namely a generator of the maximal ideal of the valuation ring O, and q is the
cardinality of the residue field O=!O (this is finite because K is, by assumption, local).

Given a finite-dimensional vector space V over K, we denote by k � k W V ! RC a good
norm: for an Archimedean field K this means that k � k is induced from an Hermitian product,
if K is non-Archimedean, this means that there exists a basis ¹e1; : : : ; enº such that


X aiei




 D max¹jai jº:

In this second case we say that a decomposition V D V1 ˚ V2 is orthogonal if

kv1 C v2k D max¹kv1k; kv2kº

for all v1 2 V1 and v2 2 V2. In general, since K is locally compact, any two norms on V are
equivalent.

The choice of a good norm k � k on V induces a good norm on every exterior power
of V (this is discussed in Quint [38]). This allows to generalize the notion of angle to the non-
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Archimedean setting: for v;w 2 V , we define ].v; w/ to be the unique number in Œ0; �� such
that

sin ].v; w/ D
kv ^ wk

kvkkwk
:

Observe that the angle crucially depends on the choice of the norm. Following Bochi, Potrie
and Sambarino [4], we define the angle of two subspaces P;Q < Kd as

].P;Q/ D min
v2P�

min
w2Q�

].v; w/;

where P� D P n ¹0º, Q� D Q n ¹0º.
The sine of the angle gives a distance, that we sometimes denote by d , on the projective

space P .V /, and more generally on every Grassmannian Gk.V /: we set for P;Q 2 Gk.V /,

d.P;Q/ WD max
v2P�

min
w2Q�

sin ].v; w/ D min
v2P�

max
w2Q�

sin ].v; w/;

this corresponds to the Hausdorff distance of P .P /;P .Q/ regarded as subsets of P .V / with
the aforementioned distance. Observe that

d.P;Q/ � sin ].P;Q/

and the latter inequality is, apart from very special cases, strict.
More generally we extend the distance to subspaces of possibly different dimension: for

P 2 Gk.V /, Q 2 Gl.V /, k � l we set

d.P;Q/ WD max
v2P�

min
w2Q�

sin ].v; w/ D min
W 2Gk.Q/

d.P;W /:

Such a distance vanishes if and only if P � Q.

2.1.2. Singular values. Assume now that K is commutative. Given a K-norm on V , we
say that g 2 GL.V;K/ is a semi-homothecy if there exists a g-invariant K-orthogonal decom-
position V D V1 ˚ � � � ˚ Vk and �1; : : : ; �k 2 RC such that for every i 2 J1; kK and every
vi 2 Vi one has

kgvik D �ikvik:

The numbers �i are called the ratios of the semi-homothecy g:
Consider a maximal abelian subgroup of diagonalizable matrices A � GL.V;K/ and let

K � GL.V;K/ be a compact subgroup such that ifNGL.A/ is the normalizer of A in GL.V;K/,
then NGL.A/ D .NGL.A/ \K/A: Following Quint [37, Théorème 6.1] there exists a K-norm
k � k on V such that

� k � k is preserved by K,
� A acts on .V; k � k/ by semi-homothecies with respect to a common K-orthogonal decom-

position of V in one-dimensional subspaces.

Whenever such a norm is fixed, for every g 2 GL.V / we denote the norm and its co-norm by

kgk WD max
v2V �

kgvk

kvk
; m.g/ D inf

v2V �

kgvk

kvk
:

Let d D dimV . Keeping notation from Quint [37], we denote by E WD Rd a real vector
space with a restricted root system of GL.V /, and by

EC D ¹x D .x1; : : : ; xd / 2 Rd W x1 � � � � � xd º
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a Weyl chamber of E: We will denote by ai 2 E� the simple roots of E, so that

ai .x/ D xi � xiC1 2 R:

The choice of an ordering .e1; : : : ; ed / of the joint eigenlines of A (the eigenlines are uniquely
determined Quint [38, Lemma II.1.3]) induces a map � W A! E given by

�.a/ WD .log �1.a/; : : : ; log �d .a//;

where �1.a/; : : : ; �d .a/ are the semi-homothecy ratios in the basis ¹e1; : : : ; ed º. We set

AC WD ��1.EC/;

so that AC consists of those elements a 2 A whose corresponding semi-homothecy ratios sat-
isfy �1.a/ � � � � � �d .a/.

With respect to the basis ¹e1; : : : ; ed º, when K is non-Archimedean, it holds that

K D GL.d;O/;

and the map � extends to the Cartan projection, still denoted � from the whole GL.V;K/:
indeed, GL.V;K/ D KACK, and, given a1; a2 2 AC, the element a1 belongs toKa2K if and
only if �.a1/ D �.a2/. In particular, we can set �.g/ D �.ag/ for any element ag 2 A such
that there exist kg ; lg 2 K with g D kgag lg (Bruhat and Tits [8, Section 3.3]).

For every g 2 GL.V;K/, we choose a Cartan decomposition g D kgag lg as above and
define, for p 2 J1; d � 1K,

up.g/ D kg � ep 2 V:

If K is Archimedean, the set ¹up.g/ W p 2 J1; d � 1Kº is an arbitrary orthogonal choice of axes
(ordered in decreasing length) of the ellipsoid ¹Av W kvk D 1º: Note that for every v that lies
in the span of g�1up.g/ one has kgvk D �p.g/kvk: With a slight abuse of notation we will
often also denote by up.g/ the corresponding point in PV .

We furthermore denote by Up.g/ the Cartan attractor of g:

Up.g/ D u1.g/˚ � � � ˚ up.g/ D kg � .e1 ˚ � � � ˚ ep/:

Definition 2.1. An element g 2 GL.V;K/ is said to have a gap of index p if

�p.g/ > �pC1.g/:

In that case, if K is Archimedean, the p-dimensional space Up.g/ is independent of the Cartan
decomposition of g:

Note that if g has a gap of index p, then the decomposition

Ud�p.g
�1/˚ g�1.Up.g//

is orthogonal: this is clear when K is Archimedean (see Remark 2.4 for the general case)

Remark 2.2. If K is not Archimedean, the components kg ; lg in the Cartan decompo-
sition are not uniquely determined even if g has gaps of every index; in particular the spaces
Up.g/ always depend on the choice of the Cartan decomposition. For example take d D 2;
if jaj > jbj, we have  

a 0

0 b

!
D

 
1 0

b=a 1

! 
a 0

0 b

! 
1 0

�1 1

!
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and both
�
1 0
b=a 1

�
and

�
1 0
�1 1

�
belong to K D GL.2;O/. In this example it is easy to verify that

the set of possible Cartan attractors U1.g/ coincides with the ball of center e1 and radius jb=aj.
Note that, since K is non-Archimedean, any point in this ball is a center.

2.1.3. Quantitative results. Many of the auxiliary technical results in [4] rely on the
min-max characterization of singular values of linear maps from Rd to Rd . This characteri-
zation in fact generalizes to any local field if one replaces the singular values with the semi-
homothecy ratios:

�p.A/ D max
P2Gp.V /

m.AjP /; �pC1.A/ D min
Q2Gd�p.V /

kAjQk:

Therefore the quantitative linear algebraic facts collected in [4, Appendix 3] carry through. We
now state the ones that we will use in the following.

Lemma 2.3 ([4, Lemma A.4]). Let g; h 2 GL.V;K/ have a gap of index p. Then, for
any possible choice of Cartan attractor Up.g/ (resp. Up.gh/),

d.Up.gh/; Up.g// � khkkh
�1
k
�pC1

�p
.g/;(2.1)

d.Up.gh/; gUp.h// � kgkkg
�1
k
�pC1

�p
.h/:(2.2)

Remark 2.4. If K is non-Archimedean, the Cartan attractors Up.g/ are not uniquely
defined (cf. Remark 2.2). However, it follows from Lemma 2.3 that, given two different Cartan
decompositions for g, g D kgag lg D k0ga

0
g l
0
g , and denoting Vp D he1; : : : ; epi, we have

d.kgVp; k
0
gVp/ �

�pC1

�p
.g/;

namely all possible different choices for Up.g/ are contained in a ball of radius �pC1
�p

.g/. As
the distance d is, in this case, non-Archimedean, we deduce, also in this case, that any choice
of Up.g/ is orthogonal to gUd�p.g�1/ for any other choice of Ud�p.g�1/.

Lemma 2.5 ([4, Lemma A.6]). Let g 2 GL.V;K/ have a gap of index p. Then, for all
P 2 Gp.V / transverse to Ud�p.g�1/, we have

d.g.P /; Up.g// �
�pC1

�p
.g/

1

sin ].P; Ud�p.g�1//
:

Lemma 2.6 ([4, Lemma A.7]). Let g, h 2 GL.V;K/. Suppose that g and gh have gaps
of index p. Let ˛ WD ].Up.h/; Ud�p.g�1//. Then:

�p.gh/ � .sin˛/�p.g/�p.h/;

�pC1.gh/ � .sin˛/�1�pC1.g/�pC1.h/:

Given a subspace P 2 Gp.V /, we denote by P? a chosen orthogonal complement of P ;
this always exists, but is not unique if K is non-Archimedean. Suppose that P , W 2 Gp.V /

satisfy d.P;W / < 1. Then W \ P? D ¹0º, and so there exists a unique linear map

(2.3) LW;P W P ! P? such that W D ¹v C LW;P .v/ W v 2 P º:
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The association LW;P 7! W provides an affine chart for Gp.V /. The next lemma states that
this chart is 1-Lipschitz, and it is 4-biLipschitz on a sufficiently small neighborhood of P :

Lemma 2.7 ([4, Lemma A.11]). Let P , P1, P2 2 Gp.V /, with d.Pi ; P / < 1. Then

d.P1; P2/ � kLP1;P � LP2;P k

for all choices of P?. If moreover d.Pi ; P / < 1p
2

, then kLP1;P � LP2;P k � 4d.P1; P2/.

Proof. The proof of [4, Lemma A.11] smartly combines the triangular inequality for the
distance d and the characterization

d.P1; P2/ D max
w2P�1

min
v2P�2

kv � wk

kwk
:

Since both hold when V is a vector space over a local field K, the proof generalizes with-
out modifications. In case K is non-Archimedean, one could also deduce the better estimate
kLP1;P � LP2;P k � 2d.P1; P2/.

The next lemma is a variation of [4, Lemma A.10]. In [4] there is an assumption on
d.Pi ; P / depending on g that we replace here with the contraction assumption

d.gPi ; gP / <
1
p
2
:

Despite the proof is very similar to [4, Lemma A.10], we include it for completeness:

Lemma 2.8. Let V be a d -dimensional K-vector space, and let g 2 GL.V /. Choose
P 2 Gp.V / andQ 2 Gd�p.V / such that the pairs .P;Q/ and .gP; gQ/ are orthogonal. Then
for every Pi 2 Gp.V /, i D 1; 2, with Pi \Q D ¹0º and d.gPi ; gP / < 1p

2
, it holds

d.gP1; gP2/ �
m.gjQ/
4kgjP k

d.P1; P2/:

Proof. Using the same notation as in (2.3), for each i D 1; 2, we consider the linear
maps Li D LPi ;P W P ! P? and Mi D LgPi ;gP W gP ! gP?; these are well defined since
Pi \Q D ¹0º. Clearly the two maps are related by Li D .g�1jgQ/ ıMi ı .gjP /. As a conse-
quence,

kL1 � L2k D k.g
�1
jgQ/ ı .M1 �M2/ ı .gjP /k �

kgjP k

m.gjQ/
kM1 �M2k:

Lemma 2.7 gives
kL1 � L2k � d.P1; P2/:

Since by assumption d.gPi ; gP / < 1p
2

, Lemma 2.7 implies

kM1 �M2k � 4d.gP1; gP2/:

Putting these three estimates together, we get

d.gP1; gP2/ �
1

4
kM1 �M2k �

1

4

m.gjQ/
kgjP k

kL1 � L2k �
1

4

m.gjQ/
kgjP k

d.P1; P2/:
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The following corollary of Lemma 2.8 will be useful in Section 5.2:

Corollary 2.9. Let V be a K-vector space, W < V a subspace of dimension 2, and
g 2 GL.V /. Denote by �i .gjW / the semi-homothecy ratios of g W W ! gW , where the norm
onW (resp. gW ) is induced by the norm on V . For everyPi 2PW withPi\Ud�1.g�1/D¹0º
and d.gPi ; u1.gjW // < 1p

2
it holds

d.gP1; gP2/ �
�2.gjW /

4kgjW k
d.P1; P2/:

Proof. This follows directly from Lemma 2.8 once we choose P D u2.g�1jgL/ and
Q D u1.g

�1jgL/.

Another useful corollary of Lemma 2.8 is the following.

Corollary 2.10. Given ˛ > 0, there exist positive ı and b with the following properties.
Let V be a d -dimensional K-vector space, and g 2 GL.V /. Suppose that P 2 Gp.V / and
Q 2 Gd�p.V / satisfy

min¹].P;Q/;].gP; gQ/º � ˛:

Then for every Pi 2 Gp.V /, (i D 1; 2) with Pi \Q D ¹0º such that d.gPi ; gP / < ı one has

d.gP1; gP2/ � b
m.gjQ/
kgjP k

d.P1; P2/:

Proof. Since all good norms are equivalent, the general case follows from Lemma 2.8
by considering two norms, one for which P andQ orthogonal and one that makes gP and gQ
orthogonal, the operator norm and m are to be computed using both these norms.

Along the same lines we get a bound on how elements g 2 GL.V / contract on open sets
in Grassmannians:

Corollary 2.11. Let g 2 GL.V;K/ have a gap of index p. Then, for every ˛ > 0, there
is b such that for all P1; P2 2 Gp.V / with ].Pi ; g�1Ud�p.g�1// > ˛ we have

d.g.P1/; g.P2// � b
�pC1

�p
.g/d.P1; P2/:

Proof. If we assume that d.Pi ; Up.g//� 1p
2

, the result follows readily from Lemma 2.7
by considering the linear maps Li WD LPi ;Up.g/ and Mi WD LgPi ;gUp.g/. As above

Li D .g
�1
jUd�p.g�1/

/ ıMi ı .gjUp.g//:

In this case the result follows as m.gjUp.g// D �p.g/, and m.g�1jUd�p.g�1// D 1=�pC1.g/.
The general statement follows by comparison of different norms.

2.2. Dynamical background. We now turn to the dynamical preliminaries. The goal
of this section is to extend the results of Bochi and Gurmelon [3] and Bochi, Potrie and Sam-
barino [4] to the non-Archimedean setting.
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2.2.1. Dominated splittings and Bochi–Gurmelon’s theorem. In this subsection we
recall the definition of dominated splittings and review its connection with cone fields.

Let X be a compact metric space equipped with a continuous homeomorphism

# W X ! X:

Let V be a finite-dimensional K-vector space and let  0 W X ! GL.V;K/ be continuous. We
will denote by  W X � V ! X � V the induced cocycle defined by

 x.v/ D  .x; v/ D .#.x/;  0.x/v/:

Definition 2.12. Consider a good norm k � k on V: Let ƒ � X be a #-invariant subset.
Then we say that  jƒ has a dominated splitting if the trivial bundleƒ � V splits as a Whitney
sum of two -invariant sub-bundles V D E ˚ F with the following extra condition: there exist
positive � and c such that for every n positive, x 2 ƒ, u 2 Ex and w 2 Fx one has

k nxuk

k nxwk
� ce��n

kuk

kwk
:

In this situation we say moreover that F (resp. E) is the unstable (resp. stable) bundle and
that F dominates E:

Note that this condition is independent of the chosen norm. The dominated splitting
of  jƒ is unique provided its index, i.e. dimK F , is fixed and it extends to the closure ƒ of ƒ
(see [12, Proposition 2.2 and 2.5] whose proof works verbatim in our setting). Furthermore:

Proposition 2.13 ([12]). Suppose a linear flow  has dominated splittings E1 ˚ F 1

and E2 ˚ F 2 of index p1 � p2. Then E2 � E1 and F 1 � F 2.

In the case when K D R, Bochi and Gourmelon [3, Theorem A] gave the following
criterion for dominated splittings to exist; their the proof generalizes to every local field K, as
Oseledets theorem holds in this generality:

Theorem 2.14 (Bochi–Gourmelon [3]). Let X be a compact metric space, let V be
a K-vector space and let  W X � V ! X � V be a linear cocycle. Then the linear flow  has
a dominated splitting E ˚ F with dimF D p if and only if there exist c > 0, � > 0 such that
for every x 2 X and n � 0 we have

�pC1

�p
. nx / < ce

��n:

Moreover, the bundles2) are given by

Fx D lim
n!C1

Up. 
n
#�n.x// and Ex D lim

n!C1
Ud�p. 

�n
#n.x//;

and these limits are uniform.
2) For completeness, let us note that the space Up associated to an operator from a vector space equipped

with a good norm to itself, can be defined for an operator between two vector spaces both equipped with good
norms.
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Proof. Bochi–Gourmelon’s proof is based on the one hand on some angle estimates
building upon the min-max characterization of singular values of matrices in GLd .R/, and on
the other hand on the multiplicative ergodic theorem (Oseledets theorem). The former hold
verbatim in the general local field setting once the singular values are replaced by the semi-
homothecy ratios as defined in Section 2.1.2, the required multiplicative ergodic theorem was
established (following Oseledets original proof) by Margulis [34, Theorem V.2.1], the integra-
bility of  follows from its continuity and the compactness of the base X . With these ingredi-
ents at hand, the sketch of the proof explained in [4, Section A.4] applies verbatim.

The existence of a dominated splitting can be furthermore characterized in terms of cone
fields; this will be crucial to prove openness of Anosov representations in Section 3.1 (note that
the non-Archimedean case has not yet been established). Given a decomposition V D V1 ˚ V2
and a positive a, then the subset defined by

¹v 2 V W akv1k � kv2kº

is called a a-cone (of dimension dimV1) on V:
A cone field onƒ � X is a continuous choice x 7! Ca.x/;x of a a.x/-cone on V (of fixed

dimension) for each x 2 ƒ: Cone fields can be used to characterize dominated splittings.

Proposition 2.15 (see Sambarino [40, Proposition 2.2]). Let ƒ � X be #-invariant.
Then the cocycle  jƒ has a dominated splitting of index i if and only if there exists a map
a W ƒ! RC bounded away from 0 and1, a cone field Ca.x/;x onƒ of dimension i , a number
0 < � < 1 and a positive integer n0 such that for every x 2 ƒ the closure of  n0x .Ca.x/;x/ is
contained in C�a.#n.x//;#n.x/:

2.2.2. Dominated sequences. Bochi, Potrie and Sambarino [4, Section 2] have applied
Bochi–Gourmelon’s Theorem 2.14 to the compact space of dominated sequences of matrices,
and got useful implications on the relative position of the axes of the ellipsoid associated to the
products of such sequences: we recall now the relevant definitions and results from [4] where
these were first established.

Given C > 1, define the following compact set:

D.C / WD ¹g 2 GL.V;K/ W kgk � C; kg�1k � C º:

If I is a (possibly infinite) interval in Z, the set D.C /I is endowed with the product topology,
turning it into a compact metric space.

Let p 2 J1; d�1K, � > 0, c > 0. For each interval I � Z, we denote by D.C; p; c; �; I /

the set of sequences of matrices .gn/ 2 D.C /I such that for all m; n 2 I with m � n we have

�pC1

�p
.gm � � �gnC1gn/ � ce

��.m�nC1/:

Definition 2.16. An element of GL.V;K/I is a dominated sequence if it belongs to
D.C; p; c; �; I / for some C; p; c, and �:

Consider the map shift W D.C /Z ! D.C /Z defined by

shift..gn/1�1/ D .gnC1/
1
�1
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and let  0 W D.C /Z ! GL.V;K/ be given by  0..gn// D g0: The subsets D.C; p; c; �;Z/
are shift-invariant and automatically verify the hypothesis of Theorem 2.14.

Proposition 2.17 (Bochi–Potrie–Sambarino [4, Proposition 2.4]). For each sequence
x D .gn/ 2 D.C; p; �; c;Z/, the limits

Fx WD lim
n!C1

Up.g�1g�2 � � �g�n/;

Ex WD lim
n!C1

Ud�p.g
�1
0 � � �g

�1
n�2g

�1
n�1/

exist and are uniform over D.C; p; �; c;Z/. Moreover, F dominates E and E ˚ F is a domi-
nated splitting for the linear cocycle over the shift defined above.

By a compactness argument, the proposition above ensures transversality for Cartan at-
tractors and repellers computed in finite, but sufficiently long, sequences of matrices:

Lemma 2.18 (Bochi–Potrie–Sambarino [4, Lemma 2.5]). Given C > 1, � > 0, and
c > 0, there exist L 2 N and ı > 0 with the following properties. Suppose that I � Z is an
interval and ¹giºi2I is an element of D.C; p; c; �; I /. If n < k < m all belong to I and
min¹k � n;m � kº > L, then

].Up.gk�1 � � �gnC1gn/; Ud�p.g�1k g�1kC1 � � �g
�1
m�1/ > ı:

2.3. Hyperbolic groups. The last source of preliminaries comes from geometric group
theory. Here we recall basic facts about hyperbolic groups and cone types.

Let � be a finitely generated group. We fix a finite symmetric generating set S and
denote by j � j the associated word length: for 
 2 � � ¹eº we denote by j
 j the least num-
ber of elements of S needed to write 
 as a word on S , and define the induced distance
d�.
; �/ D j


�1�j: A geodesic segment on � is a sequence ¹˛iºk0 of elements in � such that
d�.˛i ; j̨ / D ji � j j:

In the paper we will be only interested in word-hyperbolic groups, namely such that the
metric space .�; j � j/ is Gromov hyperbolic. Following the footprints of [4], our analysis will
be based on the study of cone types, and natural objects associated to them.

2.3.1. Cone types. In the paper we follow Cannon’s original definition of cone types,
which is more convenient for our geometric purposes, but the reader should be warned that the
definition used in [4] is slightly different

Definition 2.19. The cone type of 
 2 � is defined by

C.
/ D ¹� 2 � W j
�j D j�j C j
 jº:

See Figure 1.

Notice that if � 2 C.
/, then

d�.

�1; �/ D j
�j D j�j C j
 j D j�j C j
�1j D d�.e; �/C d�.e; 


�1/;

i.e. there exists a geodesic segment through e with endpoints 
�1 and �: Reciprocally, the end-
point of a geodesic segment starting at 
�1 and passing through e necessarily belongs to C.
/:
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e


�1 �

C.
/

Figure 1. The cone type of 
 2 � .

A fundamental result of Cannon is that, provided � is hyperbolic, there are only finitely
many cone types (see for example Bridson and Haefliger [7, p. 455] or Coornaert, Delzant and
Papadopoulos [11, p. 145]).

2.3.2. The geodesic automaton. See Bridson and Haefliger [7, p. 456].
Given a cone type C and a 2 S\C , one easily checks that for every 
 2� with C.
/DC

one gets
aC.
a/ � C.
/:

Furthermore, it is easy to verify that in such case the cone type C.
a/ does not depend on 

(see for example [11, Lemma 4.3]), and, with a slight abuse of notation we will denote such a
cone type a � C .

The geodesic automaton of � (this also depends on S ) is the labelled graph G defined as
follows:

� the vertices are the cone types of � ,
� there is an edge C1

a
�! C2 from vertex C1 to vertex C2, labelled by a generator a 2 S , if

and only if a 2 C1 and C2 D a � C1.

Since � is hyperbolic there are only finitely many cone types and thus the geodesic
automaton has a finite number of vertices.

Let us explain the relation with geodesics. Consider a geodesic segment .
0; 
1; : : : ; 
`/,
that is, a sequence of elements of � such that d.
n; 
m/ D jn �mj, and assume that 
0 D id.
Then there are a0, . . .a`�1 in a generating set S such that 
n D a0a1 � � � an�1. Note that for
each n, the following is an edge of the geodesic automaton graph G :

C.
n/
an
�! C.
nC1/:

Thus we obtain a (finite) walk on G starting from the vertex C.id/. Conversely, for each such
walk we may associate a geodesic segment starting at the identity.

Let us define the recurrent geodesic automaton as the maximal recurrent subgraph G �

of G ; its vertices are called recurrent cone types.
Let ƒ� be the subset of all bi-infinite labelled sequences of G �: It is a closed shift-

invariant subset of .G �/Z and the induced dynamical system shift W ƒ� ! ƒ� is a sofic shift
(as in [33]).

The following concept will be useful in Section 5.

Definition 2.20. Given an integer k we say that two cone types C1;C2 are k-nested if
there is a path of length k in the geodesic automaton from C1 to C2. In this case there is an
element ˇ 2 � with jˇj D k and such that ˇC2 � C1:
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e

�

Figure 2. The set 
 � C1.
/.

Since � is hyperbolic, there are only finitely many cone types, therefore, for every k, there
are only finitely many k-nested pairs of elements (however, as soon as � is non-elementary,
the number of k-nested pairs grows exponentially with k). The following is clear from the
definitions:

Lemma 2.21. If ¹˛iº � � is a geodesic, then the pair .C.˛i /;C.˛iCk// is k-nested.

2.3.3. Coverings of the Gromov boundary. Recall that, as � is Gromov hyperbolic,
its boundary à� , consisting of equivalence classes of geodesic rays, is well defined up to home-
omorphism. We associate to every cone type C which is not the cone type of the identity a sub-
set of à� , the cone type at infinity, by considering limit points of geodesic rays starting on e
and totally contained in C :

C1 D ¹Œ.˛i /� W .˛i / geodesic ray; ˛0 D e; ˛i 2 Cº:

It follows from the discussion in the previous paragraph that every point in à� is contained
in at least one of the sets C1. As there are only finitely many cone types, we obtain a finite
covering of à� by considering U D ¹C1.
/º. Starting from this covering we will construct
new coverings that will serve as our Sullivan shadows:

Lemma 2.22. Given T > 0, the family of open sets

UT ´ ¹
C1.
/ W j
 j � T º

defines an open covering of à�:

Proof. We have to check that every point x 2 à� is covered, but this is evident since
considering a geodesic ray .˛i /10 in � starting from e converging to x, one has that for all i ,
x 2 ˛iC1.˛i /, see Figure 2.

3. Anosov representations

Anosov representations from fundamental groups of negatively curved closed manifolds
to PGL.d;R/ were introduced by Labourie [31] and generalized by Guichard and Wienhard
[23] to any hyperbolic group. In this section we will generalize to non-Archimedean local fields
the work of [4], which provides a simplified definition.3)

3) Morse actions on Euclidean buildings (and thus in particular Anosov subgroups of PGLd .K/ when K
is non-Archimedean) were already defined by Kapovich, Leeb and Porti [27, Definition 5.35], the interest of such
concept was also suggested in [20, Remark 1.6 (a)].
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3.1. Anosov representations and dominated splittings. Let � be a discrete group of
finite type, fix a finite symmetric generating set S� and denote by j � j the associated word
length.

Definition 3.1. Consider p 2 J1; d � 1K: A representation � W � ! PGLd .K/ is called
¹apº-Anosov4) if there exist positive constants c; � such that for all 
 2 � one has

(3.1)
�pC1

�p
.�.
// � ce��j
 j:

A ¹a1º-Anosov representations will be called projective Anosov.

One has the following direct remark.

Remark 3.2 (Bochi–Potrie–Sambarino). Let � W�! PGLd .K/ be ¹apº-Anosov. Given
a geodesic ¹˛iºi2Z, let us denote by ˛i D ˛�1iC1˛i 2 S� . Then we have

.�.˛i //i2Z 2 D.C; p; c; �;Z/;

where c; � come from equation (3.1) and C D max¹k�.a/k W a 2 S�º: Note also that

.�.˛i //i2Z 2 D.C; d � p; c; �;Z/;

and thus Theorem 2.14 provides the following splittings of Kd :

E
p

.�.˛i //
˚ F

d�p

.�.˛i //
and E

d�p

.�.˛i //
˚ F

p

.�.˛i //
;

with the obvious inclusions according to dimension. By domination, these four bundles vary
continuously5) in D.C; p; c; �;Z/ \D.C; d � p; c; �;Z/: Finally, Proposition 2.17 yields,
for k 2 ¹p; d � pº and m � 0,

Uk.�.˛m// D Uk.˛
�1
0 � � �˛

�1
m /! Ek.�.˛i //

and
Uk.�.˛�m// D Uk.˛�1 � � �˛�m/! F k.�.˛i //

as m!1:

Using dominated splittings, it is possible to deduce strong angle estimates between Cartan
attractors along geodesic rays through the origin; for example the next result is a direct conse-
quence of Lemma 2.18.

Proposition 3.3 (Bochi–Potrie–Sambarino). Let � W � ! PGLd .K/ be an ¹apº-Anosov
representation. Then there exist ı > 0 and L 2 N such that for every geodesic segment .˛i /k0
in � through e with j˛0j; j˛kj � L one has

]
�
Up.�.˛k//; Ud�p.�.˛0//

�
> ı:

4) In the language of Bochi, Potrie and Sambarino [4, Section 3.1] an ¹apº-Anosov representation is called
p-dominated.

5) This follows from Proposition 2.15, see also, for example, [4, Theorem A.15].
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Bochi, Potrie and Sambarino [4] applied the theory of dominated splittings to the sofic
shiftƒ� ! ƒ� induced by the recurrent geodesic automaton (see Section 2.3.2), to get an easy
proof of openness of Anosov representations. Their proof easily extends to every local field:

Proposition 3.4. The set of ¹apº-Anosov representations is open in hom.�;PGLd .K//:

Proof. A representation � W � ! PGLd .K/ induces a linear cocycleA� overƒ� , which
admits a dominated splitting if and only if the representation � is ¹apº-Anosov. Observe that
the cocycle A� varies continuously with the representation, since it only depends on the value
of � on a generating set of �: Since, by Proposition 2.15, having a dominated splitting is an
open condition on the space of cocycles, the result follows.

3.2. Boundary maps. From now on we will assume that � is a word hyperbolic group.
This is not a restriction: Kapovich, Leeb and Porti proved that the only groups admitting
Anosov representations are hyperbolic [27, Theorem 6.15] (cf. also [4] for a different proof
in the Archimedean case). We can thus talk freely about the Gromov boundary à�:

An important property of ¹apº-Anosov representations is that they admit equivariant
boundary maps:

Proposition 3.5 (Bochi–Potrie–Sambarino [4, Proposition 4.9]). If � W � ! PGLd .K/
is ¹apº-Anosov, then for any geodesic ray ¹
nº with endpoint x, the limits

�p� .x/ WD lim
n!1

Up.�.
n//;

�d�p� .x/ WD lim
n!1

Ud�p.�.
n//

exist and do not depend on the ray; they define continuous �-equivariant transverse maps
�p W à� ! Gp.Kd /, �d�p W à� ! Gd�p.K

d /.

Proof. The proof in [4, Proposition 4.9] works without modification in our context:
despite Up.�.
n// is not uniquely defined, Lemma 2.3 (2.1) guarantees that, for every choice of
Up.�.
n//, the sequence ¹Up.�.
n//º is Cauchy, and therefore has a limit; furthermore, since
any pair of geodesic rays defining x is at bounded distance, Lemma 2.3 (2.1) shows that the
limit does not depend on the chosen sequence, and the maps are continuous. The equivariance
follows from Lemma 2.3 (2.2).

The uniformity of the limits in Proposition 3.5 can be quantified explicitly (cf. [4, Lemma
4.7]). This will be useful in the proof of Theorem 7.1:

Lemma 3.6. Let � W � ! PGLd .K/ be ¹apº-Anosov. Then there exist constants C;�
such that, for every ˛ 2 � and every x 2 ˛C1.˛/,

d.�p.x/; Up.�.˛/// � Ce
��j˛j:

In particular, given " > 0, there exists L 2 N such that[

 W j
 j�L

Up.�.
// � N".�
p
� .à�//:
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Proof. If x 2 ˛C1.˛/, there exists a geodesic ray .˛i /i2N through ˛ with endpoint x.
In particular, we get

d
�
Up.�.˛//; �

p
� .x/

�
�

X
i�j˛j

d
�
Up.�.˛i //; Up.�.˛iC1//

�
� c

X
i�j˛j

e��i :

Here the first inequality is a consequence of the triangular inequality, the second follows from
Lemma 2.3 (2.1).

The second statement follows since, as � is word hyperbolic, there is a constant D
such that, for every 
 2 � , we can choose a geodesic ray .˛i /i2N , and k 2 N such that
d.
; ˛k/ � D. This implies that 
 D ˛kh with jhj � D. Let x be the endpoint of the geodesic
.˛i /i2N . Then

d
�
Up.�.
//; �

p
� .x/

�
� d

�
Up.�.˛kh//; Up.�.˛k//

�
C d

�
Up.�.˛i //; �

p.x/
�
:

Bochi, Potrie and Sambarino [4] observed that the boundary map has an explicit charac-
terization in term of the linear cocycle A� over the sofic shift ƒ� (described in the proof of
Proposition 3.4). Recall from Definition 2.12 that whenever a cocycleA� Wƒ��Kd !ƒ��Kd

has a dominated splitting, we denote by E (resp. F ) the stable (resp. unstable) bundle.

Proposition 3.7 ([4, Proposition 5.2]). Let � W � ! PGLd .K/ be ¹apº-Anosov, and let
x; y 2 à� and .˛i /1�1 2 ƒ� be a geodesic from y to x. Then one has

�p.x/ D E
p

.�.˛i //
and �d�p.y/ D F

d�p

.�.˛i //
:

As a corollary we can follow [4] and generalize to the non-Archimedean case the follow-
ing important fact originally proved by Labourie [31] and Guichard and Wienhard [23].

Corollary 3.8. Let � W � ! PGLd .K/ be ¹apº-Anosov. The boundary maps

�p W à� ! Gp.K
d /; �d�p W à� ! Gd�p.K

d /

vary continuously with the representation.

Proof. This follows at once from the arguments in the proof of Propositions 3.4 and 3.7,
as splittings vary continuously with the cocycles by Proposition 2.15 (this is a standard argu-
ment, see [4, Theorem A.15] for a proof).

The boundary map, which is unique, gives a realization of the boundary à� in Gp.Kd /,
a space where the dynamics is governed by ratios of semi-homothecy ratios of elements in
the projective linear group. To stress this fact and the dependence on � we introduce the fol-
lowing notation, which will be heavily used in the rest of the paper: if � W � ! GLd .K/ is an
¹apº-Anosov representation with equivariant boundary map �p, and x 2 à� , we will write

xp� WD �
p.x/:

We noticed that this notation improves readability of many formulas and conveniently stresses
the dependence of � on �.
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3.3. Geometric estimates. We conclude the section on Anosov representations by col-
lecting a number of geometric lemmas that will be useful later on. The first result provides
the quantification we will need of the following geometric principle: endpoints of a geodesics
through the origin are uniformly far in the visual boundary, the same holds for their image
under the boundary map associated to an Anosov representation.

Lemma 3.9. Let � W � ! PGLd .K/ be ¹apº-Anosov representation. Then there exists
� > 0, depending only on � such that: if ¹˛iºi2Z � � is a geodesic through id with endpoints
x; z 2 à� , then for all i 2 Z one has

]
�
�.˛�1i /xp� ; �.˛

�1
i /zd�p�

�
> �:

Proof. Recall that we denote by D.C; d � p; c; �;Z/ the compact, shift invariant space
of dominated sequences (cf. Definition 2.16). The bundle D.C; d � p; c; �;Z/ �Kd admits
a dominated splitting Ep ˚ F d�p and, by compactness, we get

� D inf
¹gi º2D.C;d�p;c;�;Z/

].Ep
.gi /

; F
d�p

.gi /
/ > 0:

Remark 3.2 implies that, since � is ¹apº-Anosov, .�.˛�1iC1˛i //i2Z 2 D.C; d � p; c; �;Z/, fur-
thermore one directly computes that

 n
�
.�.˛�1iC1˛i //i2Z; v

�
D
�
.�.˛�1iC1˛i //i�n2Z; �.˛

�1
n /v

�
:

As we know from Proposition 2.17 that

xp� D lim
i!1

Up.�.˛i // D E
p

.�.˛/i /

and
zd�p� D lim

i!1
Ud�p.�.˛�i // D F

d�p

.�.˛/i /
;

we deduce that for all i 2 Z one has

]
�
�.˛�1i

�
xp� ; �.˛

�1
i /zd�p�

�
> �:

The next lemma will be crucial in Section 6. It quantifies how the inverse of elements in
a geodesic expand the distances exponentially in neighborhoods of their Cartan attractors; this
should be compared with [4, Corollary A.14]:

Lemma 3.10. Let � W � ! PGLd .K/ be ¹apº-Anosov. There exist positive constants
c; �; ı depending only on �, and L 2 N such that, for every geodesic ray ¹˛iºi2N � � , with
˛0 D id and endpoint x, every i � L, and every z; w 2 à� satisfying zp� ; w

p
� 2 Bı.x

p
� /, and

�.˛�1i /¹z
p
� ; w

p
� º � Bı.�.˛

�1
i /x

p
� /, we have

d
�
�.˛�1i /wp� ; �.˛

�1
i /zp�

�
� ce�id.wp� ; z

p
� /:

Proof. We complete the ray ¹˛iºi2N to a biinfinite geodesic ¹˛iºi2Z with second end-
point y. The sequence sD¹�.˛�1iC1˛i /ºi2Z belongs to D.C; p; c; �;Z/. It follows from Propo-
sitions 2.17 and 3.5 that the sequence s has the dominated splittingE ˚ F where Fs D x

p
� and

Es D y
d�p
� . So there exist constants �; c1 such that

m.�.˛�1i /j
y
d�p
�

/

k�.˛�1i /jxp� k
� c1e

�i :
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Since, by Lemma 3.9, the angles ].xp� ; y
d�p
� / and ].�.˛�1i /x

p
� ; �.˛

�1
i /y

d�p
� / are bounded

below by a uniform constant �, we can apply Corollary 2.10 with P D xp� , Q D yd�p� and
g D �.˛i /

�1 and get

d.�.˛�1i /wp� ; �.˛
�1
i /zp� / � b

m.�.˛�1i /j
y
d�p
�

/

k�.˛�1i /jxp� k
d.wp� ; z

p
� /:

4. An upper bound on the Hausdorff dimension of the limit set

In this section we will prove the following upper bound, this result is independently
obtained by Glorieux, Monclair and Tholozan [19] for Archimedean K: Recall from the intro-
duction that if � W � ! PGLd .K/ is projective Anosov, then ha1

� is the critical exponent of the
Dirichlet series

s 7!
X

2�

�
�2

�1
.�.
//

�s
:

We denote by Hff.A/ the Hausdorff dimension of a subset A � P .Kd / for the metric induced
by a good norm on Kd .

Proposition 4.1. Let � W � ! PGLd .K/ be ¹a1º-Anosov. Then Hff.�1.à�// � ha1
� :

Recall that for a metric space .ƒ; d/ and for s > 0 its s-capacity is defined as

(4.1) H s.ƒ/ D inf
"

²X
U2U

diamU s W U is a covering of ƒ with sup
U2U

diamU < "

³
and that

Hff.ƒ/ D inf¹s W H s.ƒ/ D 0º D sup¹s W H s.ƒ/ D1º:

In order to prove Proposition 4.1 we will analyze the image, under the boundary map �1

of the covering UT described in Section 2.3.3, whose elements consist of images of cone types
at infinity under sufficiently big group elements. The following crucial lemma will allow us
to show that the images of the boundaries of cone types transform as expected under group
elements:

Lemma 4.2. Let � W � ! PGLd .K/ be a projective Anosov representation. Then there
exist ı > 0, L 2 N such that for all 
 2 � with j
 j > L and every x 2 C1.
/ one has

].x1� ; Ud�1.�.

�1/// > ı:

Proof. By the definition of C.
/, for all x 2 C1.
/ there exists a geodesic ray ¹˛iº10 in
� with ˛0 D 
�1 and ˛i ! x as i !1: The lemma then follows combining Proposition 3.3
and Proposition 3.5.

4.1. Proof of Proposition 4.1. For each T > 0 consider the covering UT of à� given
by Lemma 2.22. By definition, U D U
 2 UT is of the form 
C1.
/ for some 
 2 � with
j
 j � T:
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Lemma 4.2 implies that there exists ı such that for every x 2 C1.
/ one has

d
�
x1� ; Ud�1.�.


�1//
�
� ı

and thus Lemma 2.5 applied to �.
/ implies that

d
�
�.
/x1� ; U1.�.
//

�
�
1

ı

�2

�1
.�.
//

which implies that

diam �.U
 / �
2

ı

�2

�1
.�.
// � Ce��T :

In particular, supU2UT
diamU is arbitrarily small as T !1: Hence,

H s.�1.à�// � inf
T

X
U2UT

.diam �1.U //s �

�
2

ı

�s
inf
T

X

 W j
 j�T

�
�2

�1
.�.
//

�s
:

By definition, if s > ha1
� , then the Dirichlet seriesˆa1

� .s/ is convergent (recall e.g. (1.1)).
Hence, for every s > ha1

� one has

lim
T!1

X

 Wj
 j�T

�
�2

�1
.�.
//

�s
D 0;

which implies that the s-capacity H s.�1.à�// vanishes and thus Hff.�1.à�// � ha1
� :

5. Local conformality and Hausdorff dimension

The goal of this section is to find a class of representations for which the equality in
Proposition 4.1 holds. This happens in three steps.

� In Section 5.1 we study the thickened cone typesX1.˛/, these are a thickening, in P .Kd /,
of the image by �1 of C1.˛/ for a given ˛, and define the locally conformal points.

� In Section 5.2 we prove that if x is a locally conformal point, then there is a geodesic ray
˛i ! x such that the sets �.˛i /X1.˛i / behave coarsely like balls around xI the harder
inequality is the lower containment, which is achieved in Corollary 5.10.

� In Section 5.3 we define a measure that behaves like an Ahlfors regular measure for the
sets ˛X1.˛/: Putting this together with the previous section, arguments coming from
Sullivan’s original paper allow us to conclude the desired equality, provided we can guar-
antee existence of many locally conformal points, this is the purpose of Section 5.4.

5.1. Thickened cone types at infinity and locally conformal points. Let

� W � ! PGLd .K/

be projective Anosov, it follows from Proposition 3.3 that there is a positive lower bound on the
distance of Cartan attractors and repellers of geodesic rays through the origin. Such a number
will play an important role in our study.
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Definition 5.1. Let � W � ! PGLd .K/ be projective Anosov, and let L be fixed and big
enough. The least angle ı� is

ı� D inf sin
�
]
�
U1.�.˛k//; Ud�1.�.˛�m//

��
where .˛i /i2Z ranges among biinfinite geodesics through the origin, and k;m > L.

We consider coverings of �.à�/ obtained by translating thickened cone types at infinity:

X1.˛/ WD Nı�=2.�
1.C1.˛/// \ �

1.à�/:

By construction the sets X1.˛/ are coarsely balls of �1.à�/ centered at points in �1.C1.˛//:

Remark 5.2. For every ˛ in � , and every x 2 C1.˛/, the thickened cone type at infinity
X1.˛/ contains a ball centered at the point x1� of uniform radius:

B.x1� ;
ı�
2
/ \ �1.à�/ � X1.˛/:

Thanks to Proposition 3.3 we can control how thickened cone types shrink under the
action of group elements:

Lemma 5.3. Let � W � ! PGLd .K/ be projective Anosov. Then there exist K;L such
that, for every geodesic ray .˛i /1iD0, for every i > L, and every z1� ; w

1
� 2 X1.˛i /,

d.˛iz
1
� ; ˛iw

1
�/ � K

�2

�1
.�.˛i // d.z

1
� ; w

1
�/:

Proof. As � is projective Anosov, we have d.z1� ; Ud�1.�.˛i /
�1// >

ı�
2

(Lemma 4.2).
The result is then a direct consequence of Corollary 2.11.

Corollary 5.4. If � W � ! PGLd .K/ is projective Anosov, and x 2 ˛iC1.˛i /, then

�.˛i /X1.˛i / � B

�
x1� ; K

�2

�1
.�.˛i //

�
\ �.à�/:

In particular, if ¹˛iº11 is a geodesic ray with endpoint x, the sets �.˛/X1.˛/ form a fun-
damental system of open neighborhoods of x in �.à�/ (cf. Figure 3).

Definition 5.5 gives conditions guaranteeing that the sets �.˛/X1.˛/ are coarsely balls
whose sizes we can precisely estimate. Given g 2 GLd .K/ we denote by

1 � p1.g/ < � � � < pk.g/.g/ < d

the indices of the gaps of g (as in Definition 2.1).

x1�
�1.à�/

Figure 3. The sets of the form �.˛i /X1.˛i / for a geodesic ray ¹˛i º with endpoint x are the inter-
sections of thinner and thinner ellipses with the limit curve.
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Ud�p2.�.˛
�1
i //

z1��.˛�1i /x1�

�.à�/

Figure 4. The second condition in Definition 5.5.

Definition 5.5. Let � W � ! PGLd .K/ be projective Anosov. We say that x 2 à� is an
."; L/-locally conformal point for � if there exists a geodesic ray ¹˛iº10 in � based at the
identity and with endpoint x such that the following conditions hold:

(i) for all big enough i one has p2.˛i / D p2 does not depend on i ,

(ii) for every i > L, and for every z 2 .�1� /
�1
�
X1.˛i /

�
one has

sin
�
]
�
z1� ˚ �.˛

�1
i /x1� ; Ud�p2

�
�.˛�1i /

���
> ":

Note that, in general, the index p2 might depend on the point x and we do not require
that the representation � is ¹ap2º-Anosov. In the special case when � is ¹a1; a2º-Anosov, con-
dition (i) is automatically satisfied with p2 D 2, but (ii) can only hold if the dimension of à�
is very small (cf. Corollary 6.6).

Remark 5.6. A generic element g 2 PGL.V / has p2.g/ D 2. Nevertheless, there are
many interesting geometric situations in which condition (i) holds for p2 > 2. For example if
g is a generic element in SO.m; n/, we have that ƒmg 2 SL.V / has p2.ƒmg/ D n �mC 1,
so one can enforce p2 > 2 by considering representations in smaller subgroups. In Section 8.1
we will describe another interesting class of examples.

5.2. Neighborhoods of locally conformal points that are coarsely balls. We will now
show that if x is a locally conformal point for �, and ˛i ! x is a geodesic ray, then the sets
�.˛i /X1.˛i / are coarsely balls centered at x1� of radius �2=�1.�.˛i // for the distance on
�1� .à�/ induced by d , this will be achieved in Corollary 5.10, and motivated the terminology
locally conformal.

Proposition 5.7. Let � W � ! PGLd .K/ be projective Anosov. There exist L such that,
for every ."; L/-locally conformal point x, there exists a geodesic ray ¹˛iº10 from the identity
with endpoint x such that for every i > L and every z 2 X1.˛i / it holds

"

4

�2

�1
.�.˛i // � d.z

1
� ; .˛

�1
i x/1�/ � d..˛iz/

1
�; x

1
�/:

Proof. Let Wi WD z1� ˚ .˛
�1
i x/1�. As x is ."; L/-locally conformal, for every i > L, we

have d.Wi ; Ud�p2.�.˛
�1
i /// > ": From Lemma 2.5 one concludes that

]
�
�.˛i /Wi ; Up2.�.˛i //

�
! 0
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as i !1 at a speed only depending on " and the Anosov constants of �, and thus, possibly
increasing L, one concludes that for every i > L it holds

�2

�1
.�.˛i /jWi / � "

�p2
�1
.�.˛i // D "

�2

�1
.�.˛i //:

Here the last equality is due to the fact that p2 is the first gap for �.˛i / and thus

�p2.�.˛i // D �2.�.˛i //:

Furthermore, �.˛�1i /u2.�.˛i /jWi / 2 Wi \ Ud�1.�.˛
�1
i //, and then, since � is projective

Anosov and z1� 2 X1.˛/, we have d.z1� ; �.˛
�1
i /u2.�.˛i /jWi // >

ı�
2

, where ı� is the constant
from Definition 5.1. This implies that we can find L depending on � and " only such that for
every i > L,

d
�
�.˛i /z

1
� ; U1.�.˛i /jWi /

�
< d

�
�.˛i /z

1
� ; U1.�.˛i //

�
C d

�
U1.�.˛i //; U1.�.˛i /jWi /

�
<

1
p
2
;

since both quantities converge to 0 as i !1 at a speed only depending on the Anosov con-
stants of �: The proposition then follows from Corollary 2.9.

Recall from Definition 2.20 that we say that a pair of cone types .C.˛1/;C.˛2// of � are
k-nested if there exists a path in the geodesic automaton of length k between C.˛1/ and C.˛2/.
In this case we say that ˇ 2 � is a nesting word if ˇ labels one such path.

Lemma 5.8. For every L big enough (depending only on �) there exists a constant c
(depending on � and L) such that for every L-nested pair .C.˛1/;C.˛2// and any nesting
word ˇ it holds

(i) �.ˇ/X1.˛2/ � X1.˛1/,

(ii) for every z1� 2 �.ˇC1.˛2// and every w1� 2 X1.˛1/ n �.ˇ/X1.˛2/, it holds

d.z1� ; w
1
�/ > c:

Proof. (i) By the definition of ı� and X1.˛2/, whenever jˇj � L and ˇ is a nesting
word, then d.x; Ud�1.�.ˇ�1/// �

ı�
2

for every point x in X1.˛2/. Here L is as in Defini-
tion 5.1. Up to possibly enlarging L we can assume, by Corollary 2.11, that �.ˇ/ contracts
distances on X1.˛2/ so that

�.ˇ/X1.˛2/ � Nı�=2.�.ˇ/�
1
� .C1.˛2/// \ �.à�/ � X1.˛1/:

(ii) Since, by construction,X1.˛2/ contains the intersection of �1� .à�/with a ball around
any point z1� 2 �

1
� .C1.˛2// of radius ı�

2
, it follows that the set �.ˇ/X1.˛2/ contains the inter-

section of �1� .à�/ with the ball around any point z1� 2 �.ˇ/�
1
� .C1.˛2// of radius ı�

2
�d
�1
.�.ˇ//:

�d
�1
.g/ is the smallest contraction for the action of g 2 SL.d;K/ on P .Kd /. Recall that only

finitely many ˇ can occur, as, by construction, jˇj D L. The result follows taking

c D min
jˇ jDL

ı�

2

�d

�1
.�.ˇ//:

Combining Proposition 5.7 and Lemma 5.8, we obtain the following.
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Proposition 5.9. There exists a constant c1 depending only on � such that, if L is
as in Lemma 5.8 and ¹˛iº � � is a geodesic ray with endpoint x, for every point y with
y1� 2 �.˛n/X1.˛n/ n �.˛nCL/X1.˛nCL/, it holds

d.y1� ; x
1
�/ � c1

�2

�1
.�.˛nCL//:

Proof. It follows from Lemma 2.21 that for every n;L the pair .C1.˛n/;C1.˛nCL//
is L-nested. Furthermore, up to choosing L large enough, we can apply Lemma 5.8 to the pair
.C1.˛n/;C1.˛nCL//. If we denote z WD ˛�1n x and w WD ˛�1n y, we deduce that

d.z1� ; w
1
�/ > c:

Proposition 5.7 implies then that

d.y1� ; x
1
�/ �

c"

4

�2

�1
.˛n/ � c1

�2

�1
.˛nCL/;

where in the last inequality we used that, as L is fixed, the homothecy ratio gap of ˛n is
uniformly comparable to the one of ˛nCL.

As a corollary of Proposition 5.7 we can finally get the main result of the section (cf.
Figure 3):

Corollary 5.10. Let � W � ! PGLd .K/ be a projective Anosov. Then for every locally
conformal point x 2 à� there exists a geodesic ray ˛i ! x with

B

�
x1� ; c1

�2

�1
.�.˛i //

�
\ �.à�/ � �.˛i /X1.˛i /:

Proof. This follows from the above proposition by observing that the sets �.˛i /X1.˛i /
form a fundamental system of neighborhoods of x1� in �.à�/.

5.3. A regular measure for conformal points. The goal of this subsection is to con-
struct, following Patterson’s original idea, a measure, supported on �1� .à�/, for which we can
get good estimates on the measure of the cone types. This will be used in Section 5.4 to obtain
the desired lower bound on the Hausdorff dimension of the limit set.6)

Let � W � ! PGLd .K/ be a projective Anosov representation. Recall from the introduc-
tion that we have defined

ˆa1
� .s/ D

X

2�

�
�2

�1
.�.
//

�s
:

We can assume that ˆa1
� .h

a1
� / D1: otherwise, as it is standard in Patterson–Sullivan theory,

we would carry out the same construction with the aid of the modified Poincaré series

ˆa1
� .s/ D

X

2�

f
�
a1.�.
//

���2
�1
.�.
//

�ha1
�

;

where f .s/ is the function constructed (for example) in Quint [39, Lemma 8.5].
6) See Remark 5.15 for a comparison with the work of Quint [39].



28 Pozzetti, Sambarino and Wienhard, Conformality for a class of non-conformal attractors

We will therefore assume from now on that the Poincaré series diverges at its critical
exponent; for every s > ha1

� , we define

�s� D
1

ˆ
a1
� .s/

X

2�

�
�2

�1

�
�.
/

��s
ıU1.�.
//:

Recall from Section 2.1 that, for every element 
 2 � , we chose a Cartan decomposition of
�.
/ and therefore a one-dimensional subspace U1.�.
//:

One easily checks that for every s > ha1
� the functional f 7!

R
f d�s� is continuous on

C.P .Kd /;R/ with the uniform topology and hence one can take a weak* accumulation point
of �s�, as s ! h

a1
� , in the space of Radon probability measures on P .Kd /:We will denote such

Radon measure by�a1
� (note that we do not show, nor require, that�a1

� is the only accumulation
point of �s�).

Lemma 5.11. For any � 2 � the (signed) measure

".�; s/ WD ���
s
� �

1

ˆ
a1
� .s/

X

2�

�
�2

�1
.�.
//

�s
ıU1.�.�
//

weakly* converges to zero as s ! h
a1
� :

Proof. Indeed, by definition,

���
s
� D

1

ˆ
a1
� .s/

X

2�

�
�2

�1
.�.
//

�s
ı�.�/U1.�.
//:

Furthermore, Lemma 2.3 (2.2) implies that

d
�
�.�/U1.�.
//; U1.�.�
//

�
� k�kk��1k

�2

�1
�.
/:

In order to show that ".�; s/ converges to zero, it is enough to show that for every continu-
ous function f W P .V /! R the integral of f on ".�; s/ tends to zero as s converges to ha1

� .
However, every such function f is uniformly continuous, and therefore for every " we can find
ı such that jf .x/ � f .y/j < "

2
if d.x; y/ < ı. It is then enough to choose s close enough

to ha1
� so that the mass of �s� of the elements 
 such that �1

�2.
/
< 1
ı
k�kk��1k is smaller

than "
2kf k

.

One has the following proposition (compare with Sullivan’s shadow Lemma [42]).

Proposition 5.12. Let � W � ! PGLd .K/ be a projective Anosov representation. Then
for all � 2 � one has�

�d

�1
.�.�//

�ha1
�

�
�

a1
� .�.�/X1.�//

�
a1
� .X1.�//

�
4

ı2�

�
�2

�1
.�.�//

�ha1
�

:

Recall that there are finitely many cone types, so the number �a1
� .X1.�// is an irrelevant

constant.
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Proof. Consider s > h�� , � 2 � and a continuous function f W P .Kd /! R: One has

�s�.f ı �.�/
�1/ D

1

ˆ
a1
� .s/

X

2�

�
�2

�1
.�.
//

�s
f
�
�.��1/U1.�.
//

�
(5.1)

D ".��1; s/.f /C
1

ˆ�a1.s/

X

2�

�
�2

�1
.�.�
//

�s
f .U1.�.
///

D ".��1; s/.f /

C
1

ˆ
a1
� .s/

X

2�

�
�2

�1
.�.�
//

�1

�2
.�.
//

�s
�

�
�2

�1
.�.
//

�s
f .U1.�.
///;

where ".��1; s/ is the term estimated in Lemma 5.11, so that ".��1; s/.f / converges to zero
when s ! h

a1
� :

Assume that the support of f contains X1.�/ in its interior and s is close enough to ha1
�

so that ˆa1
� .s/ is arbitrary large. Then only the tail of the sum involved in �s�.f ı �.�/

�1/ is
relevant, this is to say:

� only 
 ’s for which j
 j is large matter,

� since we are integrating f , U1.�.
// has to be near to X1.�/, so that there is a geodesic
segment from ��1 to 
 passing through the identity.

This, together with Proposition 3.3, implies that for such 
 ’s one has

sin
�
].U1.�.
//; Ud�1.�.�///

�
> "f ;

for some "f depending on the support of f: Note that "f approaches ı�
2

(recall Definition 5.1)
as suppf ! X1.�/: Choosing a sequence sk ! h

a1
� such that �sk� ! �

a1
� one has, using

Lemma 2.6 and equation (5.1), that, for any such f ,

�a1
� .f ı �.�/

�1/ D lim
sk!h

�
�

�sk� .f ı �.�/
�1/ �

4

ı2�

�
�2

�1
.�.�//

�ha1
�

�a1
� .f /:

By the continuity of f 7! �
a1
� .f /, one concludes the desired upper bound. The lower bound

follows similarly.

Since cone types shrink to any given point of à� , one has the following consequences of
Proposition 5.12.

Corollary 5.13. The measure �a1
� has total support and no atoms.

Proof. If ˛i is a geodesic ray converging to x, then �.˛i /X1.˛i / is a family of open
neighborhoods decreasing to x, and since � is projective Anosov one has .�2=�1/.�.˛i //! 0

as i !1: As �a1
� is a Radon measure, we have on the one hand

�a1
� .¹xº/ D inf¹�a1

� .�.˛i /X1.˛i //º �
4

ı2�

�
�2

�1
.�.�//

�ha1
�

;
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on the other hand for every open setA intersecting �.à�/we can find ˛ such that �.˛i /X1.˛i /
is contained in A, and thus

�a1
� .A/ � �

a1
� .�.˛i /X1.˛i /// �

�
�d

�1
.�.�//

�ha1
�

:

5.4. When conformal points are abundant. Denote by

LC.�/ D ¹x 2 à� W x is locally conformal for �º:

We can now prove the following.

Theorem 5.14. Let � W � ! PGLd .K/ be a projective Anosov representation. If we
have �a1

� .LC.�// > 0, then
Hff.�1� .à�// D h

a1
� :

Proof. As we already established in Proposition 4.1, Hff.�1� .à�// � h
a1
� , so we only

need to show the reverse inequality. The proof will follow the main ideas in Sullivan’s original
work [42], using Corollary 5.10 and Proposition 5.12 as key replacement for the conformality
of a Kleinian group action on its boundary, and Sullivan’s shadow lemma.

Given x 2 LC.�/ and a geodesic ray ¹˛iº on � converging to x, Corollary 5.10 implies
that for all i � N0.x/ the set �.˛i /X1.˛i / is coarsely (with constants independent of x) a ball
of radius

ri .x/ D
�2

�1
.�.˛i //

about x1� (for the induced metric on �1� .à�/).
Proposition 5.12 then states that for all i � N0.x/,

(5.2) �a1
� .B.x; ri .x/// � cri .x/

h
a1
� :

Observe that we can extend equation (5.2) for any 0 < r � rN0.x/, up to possibly wors-
ening the constant c: Since � is projective Anosov, the word length of 
 2 � is coarsely
log �2=�1.�.
//, thus

ri .x/

riC1.x/
� K�

for some constantK� only depending on �I given r , it suffices to consider riC1.x/ � r � ri .x/
and thus

�a1
� .B.x; r// � c

�
ri .x/

riC1.x/

�ha1
�

riC1.x/
h

a1
� � L�r

h
a1
� :

Furthermore, there exists " such that the setX" D ¹x 2 LC.�/ W rN0.x/ � "º has positive
�

a1
� -mass: this follows from the general fact that countable union of sets with measure 0 has

measure 0, since we assumed �a1
� .LC.�// > 0,

The remainder arguments are verbatim as in Haïssinsky [24, Théorème F.4]. We include
them for completeness: asX" is a subset of �.à�/, it is enough to verify that Hff.�.X"// � h

a1
� ;

we will show that, denoting by � WD ha1
� , we have H� .X"/ > 0. Indeed, let us denote by

d WD
�

a1
� .X"/

2L�
:
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By the definition of � -capacity we can find an open covering B D ¹B.xi ; ri /º ofX" consisting
of balls of radius ri < " and such thatX

r�i � H� .X"/C d:

Recall from (4.1) at the beginning of Section 4 that we denote by H� .X"/ the � -capacity of
the set X". On the other hand we have

�a1
� .X"/ � �

a1
�

�[
i

B.xi ; ri /

�
�

X
i

�a1
� .B.xi ; ri // �

X
i

L�r
�
i :

This shows that H s.X"/ is positive, and concludes the proof.

Remark 5.15. Patterson–Sullivan measures in a setup close to ours were extensively
studied by Quint [39]. For our geometric applications it is crucial to have an Ahlfors regular
measure of exponent ha1

� . Let us denote by G the Zariski closure of �.�/, assume that G is
reductive (despite this is not always the case in the examples we have in mind), and let FG
denote the full flag space associated to G. Quint [39, Theorem 8.4] provides a quasi-invariant
measure � on FG called a .�.�/; ha1

� a1/-Patterson–Sullivan, with the desired transformation
rule, as long as a technical condition is satisfied, namely that the form h

a1
� a1 is tangent to

the growth indicator function  �.�/. In order to guarantee that this is the case we would have
to further assume that the representation � is ¹apº-Anosov, and that p2.�.
// D p for every

 2 �: The measure � could then be pushed forward via the projection FG ! P .Kd / and
the fact that � is ¹a1; apº-Anosov would imply that the new measure on P .Kd / would still
be quasi-invariant. However deducing the analogue of Proposition 5.12 in that setting would
require some work as our representations are, in most interesting cases, not Zariski dense.

6. .p; q; r/-hyperconvexity

In this section we introduce .p; q; r/-hyperconvex representations, establish geometric
properties and provide the link with local conformality.

6.1. Hyperconvex representations. The following definition is inspired from Labourie
[31] for surface groups. Let � be a word-hyperbolic group and denote by

à.3/� D ¹.x; y; z/ 2 .à�/3 W pairwise distinctº:

Definition 6.1. Consider p; q; r 2 J1; d � 1K such that p C q � d:We say that a repre-
sentation � W � ! PGLd .K/ is .p; q; r/-hyperconvex if it is ¹ap; aq; arº-Anosov and for every
triple .x; y; z/ 2 à.3/� one has

.xp� ˚ y
q
� / \ z

d�r
� D ¹0º:

Note that, since p C q < d and the representation is ¹ap; aqº-Anosov, the sum x
p
� C y

q
�

is necessarily direct. Hence, hyperconvexity implies that p C q � r:We will observe in Corol-
lary 6.6 that � can only be .p; q; r/-hyperconvex if r � p � q � dim.à�/ � 1. Note that we do
not require p and q to be different.
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Proposition 6.2. The space of .p; q; r/-hyperconvex representations is open in

hom.�;PGLd .K//:

Proof. The proof follows the same lines as Labourie [31, Proposition 8.2]. Since the
action of � on à.3/� is properly discontinuous and co-compact, given a triple .x; y; z/ 2 à.3/�
there exists 
 2 � such that the points 
x; 
y and 
z are pairwise far apart. Considering
a .p; q; r/-hyperconvex representation �, one concludes that the angles between any pair of
the spaces .
x/p� ; .
y/

q
� and .
z/d�r� are bounded away from zero. Corollary 3.8 states that

the Anosov condition is open and that equivariant maps vary continuously with the represen-
tation, hence, since the map à.2/� ! GpCq.Kd /, .a; b/ 7! a

p
� ˚ b

q
� is continuous away from

the diagonal the result follows.

Since hyperconvexity is an open property, one can provide interesting examples of hyper-
convex representations by looking at representations of the form � ! G ! GLd .K/, where
the first arrow is convex co-compact (see Section 7.2) furthermore hyperconvexity behaves well
with field extensions:

Lemma 6.3. Let K � F be a field extension. If � W � ! PGLd .K/ is .p; q; r/-hyper-
convex, then so is � W � ! PGLd .F/:

We conclude the subsection providing obstructions to the existence of .1; 1; r/-hyper-
convex representations. A useful tool for this is the stereographic projection:

Definition 6.4. Let � W � ! PGLd .K/ be ¹a1; arº-Anosov. Given z 2 à� , the stereo-
graphic projection defined by z (and �) is the continuous map

�z;� W à� � ¹zº ! P .Kd=zd�r� /

defined as follows: since � is ¹a1º-Anosov, for every point x 2 à� different from z, the vec-
tor space x1� ˚ z

d�r
� has dimension d � r C 1 and projects to a line in the quotient space

Kd=zd�r� I we define �z;�.x/ 2 P .Kd=zd�r� / to be the projectivization of this line.

The following is immediate from the definitions:

Lemma 6.5. If the representation � is .1; 1; r/-hyperconvex then for every z 2 à� the
map �z;� is continuous and injective.

Proof. The stereographic projection �z;� is the composition of the boundary map

�1 W à� � ¹zº ! P .Kd /

with the projection
P .Kd n zd�r� /! P .Kd=zd�r� /;

which is algebraic outside the .d � r/-dimensional subspace zd�r� ; it is well defined as �
is a1-Anosov, and is therefore continuous. Injectivity follows directly from the definition of
hyperconvexity.
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Corollary 6.6. If there is no continuous injective map à� � ¹zº ! P .Kr/, then there
is no .1; 1; r/-hyperconvex representation � W � ! PGLd .K/.

6.2. From hyperconvexity to local conformality. We now find a link between hyper-
convexity and local conformality. The following statement is the main technical result of Sec-
tion 6, and will be crucial in the proof of Theorem 7.1.

Recall from Section 5.1 that we have defined, for every projective Anosov representa-
tion � W � ! PGLd .K/, the thickened cone type at infinity X1.˛/ as the intersection of the
ı�
2

-neighborhood of �1� .C1.˛// with the image of the boundary map. In a similar way, if � is
¹apº-Anosov, we set

Xp1.˛/ WD Nıp;�=2�
p
� .C1.˛// \ �

p
� .à�/;

where ıp;� is the number ı from Proposition 3.3.

Proposition 6.7. Let � W � ! PGLd .K/ be .p; q; r/-hyperconvex. Then there exist con-
stants L and " such that for every ˛ 2 � with j˛j > L, for every x 2 C1.˛/ and for every
y 2 .�

q
� /
�1X

q
1.˛/, it holds

(6.1) sin ]
�
xp� ˚ y

q
� ; Ud�r.�.˛

�1//
�
> ":

Observe that the conclusion of the proposition is the second condition required for
a locally conformal point (Definition 5.5).

Before proving the proposition, let us fix a distance d on à� inducing its topology and for
� > 0 define a triple of points x; y; z 2 à� is �-separated if all distances d.x; y/, d.y; z/ and
d.x; z/ are bounded below by �: The following lemma follows from the convergence property
of hyperbolic groups, see for example Tukia [43].

Lemma 6.8. Let .˛i /i2Z be a bi-infinite geodesic through e 2 � with ˛i ! x and
˛�i ! z say, as i !C1: Then the function y 7! d.˛�1i y; ˛�1i z/ converges to 0 uniformly
on compact sets of à� � ¹xº is i !C1: Consequently, for fixed �, the positive integers n
such that the triple ˛�1n x; ˛�1n y; ˛�1n z is �-separated is bounded above uniformly on compact
sets of à� � ¹xº: Finally, there exists �0 > 0 such that for every 0 < " < �0 and y 2 à� � ¹xº
with d.x; y/ < " there exists n 2 N such that ˛�1n x; ˛�1n y; ˛�1n z are �0-separated.

Proof. Let us give an idea of the proof in our situation, i.e. assuming that � admits a pro-
jective Anosov representation �: We focus on finding �0 and n 2 N so that the last sentence of
the statement holds.

Consider the distance d induced by our chosen distance on P .Kd / through the boundary
map �1� : The fact that there is a lower bound on the values d.˛�1n x; ˛�1n z/ for all n follows from
Lemma 3.9, and the fact that we can find a suitable n, such that both d.˛�1n z; ˛�1n y/ > �0 and
d.˛�1n x; ˛�1n y/ > �0 is a consequence of Lemma 3.10 combined with the fact that the action
of the images of the generators on P .Kd / is uniformly Lipschitz.

Proof of Proposition 6.7. Since the representation � W�! PGLd .K/ is .p; q; r/-hyper-
convex we can find "0 such that if s; w; t 2 à� are �0-separated, one has

(6.2) sin ].sp� ˚ t
q
� ; w

d�r
� / > "0I

this is guaranteed since the set of �0-separated triples is precompact as the group is hyperbolic.
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z x
˛�M

˛�1

e

y

˛N

à�

Figure 5. The first step in the proof of Proposition 6.7.

Let us first show that if y is close enough to x (depending on "0, as well as the represen-
tation �), we can find "1; L1 for which equation (6.1) holds.

In order to do so, observe that, since the group is hyperbolic, and thus the cone-type
graph is finite, there exists K smaller than the diameter of the cone-type graph such that, if
x 2 C1.˛/, there exists a bi-infinite geodesic .˛i /i2Z passing through the identity, and an
integer M such that d.˛�M ; ˛�1/ < K; of course in this case jj˛j �M j < K. We denote by
z be the second endpoint of such geodesic.

By Lemma 6.8 we can chooseN 2 N such that ˛�1N x; ˛�1N y; ˛�1N z are �0-separated. The
size of N measures how close y is to x. Using the triangular inequality we get

sin ]
�
xp� ˚ y

q
� ; Ud�r.�.˛

�1//
�
� sin ]

�
Ur.�.˛N //; Ud�r.�.˛�M //

�
� d

�
Ud�r.�.˛�M //; Ud�r.�.˛

�1//
�

� d
�
�.˛N /..˛

�1
N x/p� ˚ .˛

�1
N y/q�/; Ur.�.˛N //

�
:

The first term of the expression is bigger than ır;� provided j˛j is big enough, by Lemma 3.3.
The second term is smaller than ır;�

3
if j˛j is big enough by Lemma 2.3 (2): indeed, we have

˛�1 D ˛�Ma for some a 2 � with jaj < K. We chose L1 so that these two conditions are
satisfied. In order to prove our claim it is enough to verify that we can find N0 big enough,
depending on the representation only, such that for every N � N0, it holds

d.�.˛N /..˛
�1
N x/p ˚ .˛�1N y/q; Ur.�.˛N /// <

ı�

3
:

Since z ¤ x are fixed, it follows that the subspaces zd�r� and xr� have a positive angle and thus,
since Ur.�.˛N //! xr� as N !1 uniformly in N , the angle between zd�r� and Ur.�.˛N //
is bounded below for all positive big enough N depending only on the representation �. Using
Lemma 2.5, we deduce that

(6.3) d
�
Ud�r.�.˛

�1
N //; �.˛�1N /zd�r�

�
�
�d�rC1

�d�r
.�.˛�1N //

1

sin ].zd�r� ; Ur.�.˛N ///
:

Since the representation is ¹ad�rº-Anosov, ..�d�rC1/=.�d�r//.�.˛�1N // is smaller than "0
2

for
big enough positive N: By hyperconvexity (equation (6.2)) we know that .˛�1N x/

p
� ˚ .˛

�1
N y/

q
�

has a definite angle with .˛�1N z/d�r� , consequently, by equation (6.3) we deduce that

]
�
.˛�1N x/p� ˚ .˛

�1
N y/q�; Ud�r.�.˛

�1
N //

�
>
"0

2
:
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Thus, by Lemma 2.5

d
�
�.˛N /..˛

�1
N x/p� ˚ .˛

�1
N y/q�/; Ur.�.˛N //

�
<
�rC1

�r
.�.˛N //

2

"0
:

This concludes the first step, we can chose "1 D
ır;�
3
:

We are thus left to verify that, up to possibly shrinking "1 and enlarging L1, equation
(6.1) is also verified in the case n for which ˛�1n .x; y; z/ is �0-far and smaller than a fixed N:
Observe that, since the group � is finitely generated and N is fixed, we can find C , depending
on �, such that d.˛�1n x; ˛�1n y/ � C nd.x; y/, and therefore we can find �1 depending on N
only such that d.y; x/ > �1. Since furthermore yq� 2 X

q
� .˛/, and thus we have a lower bound

on d.y; z/, we deduce, up to further shrinking �1, that the triple .x; y; z/ is �1-far. The same
argument as above let us deduce that there exists "2 such that

sin ].xp� ˚ y
q
� ; z

d�r
� / > "2:

It is then enough to chose L2 big enough so that d.zd�r� ; Ud�r.�.˛
�1/// < "2

2
. The proposi-

tion holds with L D max¹L1; L2º and " D min¹"1; "2º.

Proposition 6.7 combined with Theorem 5.14 yields the following Hausdorff dimension
computations.

Corollary 6.9. Let � W � ! PGLd .K/ be .1; 1; 2/-hyperconvex. Then

Hff.�1.à�// D ha1
� :

Corollary 6.10. Let � W � ! PGLd .K/ be .1; 1; r/-hyperconvex. Assume moreover that
for every 
 2 � one has �2.�.
// D �r.�.
//. Then every point of à� is locally conformal
for � and thus

ha1
� D Hff.�1.à�//:

6.3. Examples: (ir)reducible SL2. The easiest examples of hyperconvex representa-
tions are induced from representations of SL2.K/ (see for example Humphreys’s book [25] for
standard basic facts on the representation theory of SL2).

Recall that for every d 2 N � ¹0; 1º there is a (unique up to conjugation) irreducible
representation �d W SL2.K/! SLd .K/: This representation is given by the action of SL2.K/
on the symmetric powers Sd�1.K2/, which can be identified with the space of homogenous
polynomials on two variables of degree d � 1 with coefficients in K: If we denote by E�SL2.K/
the weight space, the representation �d has highest weight ��d 2 E�SL2.K/

given by

��d .x/ D .d � 1/x:

Let F .Sd�1.K2// denote the full flag space associated to SL.Sd�1.K2//. The Veronese
map � W P .K2/! F .Sd�1.K2// is defined by

�.x/ D ¹�k.x/ºd�1kD1;

where �k.`/ is the k-dimensional vector subspace of Sd�1.K2/ consisting of polynomials that
have xd�k as a factor. It is easy to check that � is �d -equivariant and the image of an attractor
in P .K2/ is an attractor in F .Sd�1.K2//:
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Remark 6.11. Note that for every pair of distinct points x ¤ y in P .K2/ the flags �.x/
and �.y/ are in general position, i.e. for every k 2 J1; d � 1K, it holds �k.x/ \ �d�k.y/ D ¹0º:

Moreover, using the transitivity of the SL2.K/-action on transverse pairs, it is easy to
check the following:

Proposition 6.12. Let � D ¹�iºd�1iD1 be the Veronese embedding of P .K2/ into the space
F .Sd�1.K2//. Then for every triple p C q C r D d and pairwise distinct x; y; z 2 P .K2/
one has

�p.x/˚ �q.y/˚ �r.z/ D Kd :

Corollary 6.13. For every convex cocompact7) subgroup � < SL2.K/, the representa-
tion �d j� W � ! SLd .K/ is .p; q; r/-hyperconvex for every .p; q; r/ such that r � p C q. The
same holds for small deformations.

We can obtain many more examples of hyperconvex representations by considering direct
sums of irreducible representations. A representation � W SL2.K/! SL.V;K/ decomposes in
irreducible modules

� D

kM
iD1

�di ;

where we have ordered d1 � � � � � dk : The highest weight �� 2 E�SL2.K/
is ��.x/ D .d1�1/x:

Let us denote by
�.2/� � � � � � �

.dimV /
�

the remaining weights in decreasing order.

Definition 6.14. Given k 2 J2; dimV K, we say that � is k-coherent if �.k/� > d2 � 1,
equivalently if d1 > d2 C 2.k � 1/.

Observe that a representation � is k-coherent if and only if the representation has a gap
of index k and the top k eigenspaces are eigenlines of a diagonalizable element in �.SL2.K//
and belong to the top irreducible factor. An important example of 2-coherent representations
are exterior powers:

Example 6.15. For every p 2 J1; d � 1K the representation

^
p�d W SL2.K/! SL.^pKd /

is 2-coherent.

Proof. Considering a diagonalizable element in SL2.K/ one explicitly checks that the
top 3 weights of ^p�d are
� �^p�d D d � 1C � � � C d C 1 � 2p D p.d � p/,
� �

.2/
^p�d

D �^p�d � 2,
� �

.3/
^p�d

D �
.4/
^p�d

D �^p�d � 4:

7) For non-Archimedean fields K, in analogy with the Archimedean case, we say that a representation is
convex cocompact if it is Anosov, as in Definition 3.1.
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Definition 6.14 guarantees some hyperconvexity:

Proposition 6.16. Let � W � ! SL2.K/ be convex co-compact. If

� W SL2.K/! SL.V;K/

is k-coherent, then � ı � is .p; q; k/-hyperconvex for every p; q with p C q � k:

Proof. Since �.k/ > d2 � 1, one has

�.k/ > �.kC1/

and thus � ı � is ¹akº-Anosov. Coherence implies thus that �.l/ > �.lC1/ for every l 2 J1; kK
and thus � ı � is also ¹ap; aqº-Anosov since both p and q are smaller than k: The remainder
of the statement follows from Lemma 6.12: if N denotes the dimension of V ,

�
p

d1
W à� ! Gp.Sd�1.K2// � Gp.V /

is the �d -equivariant map induced by �, and �l� W à� ! Gl.V / denotes the boundary map asso-
ciated to � , we have, for every l � k, that �l� D �

l
d1

and

�N�l� D �
d1�l
d1

˚

kM
iD2

Sdi�1.K2/:

In particular, Proposition 6.16 can be used to construct example of representations of
Kleinian groups satisfying the assumptions of Theorem 5.14.

7. Differentiability properties

7.1. Convergence on pairs and bounds on the Hausdorff dimension. The following
result, which follows from Proposition 6.7 is inspired by Guichard [22, Proposition 21], how-
ever, Guichard’s proof relies heavily on the fact that à� is a circle, and that the representation
is .p; q; r/-hyperconvex for every triple p; q; r with p C q D r:

Theorem 7.1. Let � W�! PGLd .K/ be .p; q; r/-hyperconvex. For every .w;y/2 à.2/�
one has

lim
.w;y/!.x;x/

d.wp� ˚ y
q
� ; x

r
�/ D 0:

More precisely, there exist constants C;� such that, if ¹˛iº is a geodesic ray with endpoint x,
for every w; y 2 ˛iC1.˛i / it holds

d.wp� ˚ y
q
� ; x

r
�/ � Ce

��i :

Proof. The first claim is a direct consequence of the second, as the sets ˛iC1.˛i / form
a fundamental system of neighborhoods of the point x.

As the representation � is .p; q; r/-hyperconvex, and w; y 2 ˛iC1.˛i /, we deduce from
Proposition 6.7 that

sin ]..˛�1i w/p� ˚ .˛
�1
i y/q�; Ud�r.�.˛

�1
i /// > ":
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In particular, Lemma 2.5 implies

d.wp� ˚ y
q
� ; Ur.˛i // �

�rC1

�r
.�.˛i //

1

"
�
C1

"
e��1i ;

where C1; �1 are the constants provided by the fact that � is ¹arº-Anosov. The result now
follows, via triangular inequality, from Lemma 3.6, which guarantees that

d.xr�; Ur.˛i // � C2e
��2i :

The following easy converse is useful for applications:

Proposition 7.2. Consider p; q; r 2 J1; d � 1K with p C q � r: If � W � ! PGLd .K/
is ¹ap; aq; arº-Anosov and for every x 2 à� , one has

(7.1) lim
.w;y/!.x;x/

d.wp� ˚ y
q
� ; x

r
�/ D 0;

then � is .p; q; r/-hyperconvex.

Proof. Since � is ¹ap; aqº-Anosov and p C q � r � d � 1, for every pair of distinct
points w; y the sum w

p
� C y

q
� is direct. Since � is ¹arº-Anosov, there is a lower bound on

sin ].xr�; zd�r� / if x; z are the endpoints of a geodesic through the origin. Combining this fact
with (7.1), we can find "; ı such that

.xp� ˚ y
q
� / \ z

d�r
D ¹0º

for every triple with d.x; y/ < " and d.x; z/ > ı > ": Any triple in à.3/� can be transformed
in such a triple by an element of � and thus the claim follows.

Using the stereographic projection (see Definition 6.4) combined with Theorem 7.1, it is
possible to deduce the following estimate on Hausdorff dimension:

Proposition 7.3. Let � W � ! PGLd .K/ be .1; 1; r/-hyperconvex. Then

Hff.�1.à�// � Hff.P .Kr//:

Proof. We first claim that if � W� ! PGLd .K/ is .1; 1; r/-hyperconvex, then for every x
we can find a point z an open neighborhood Ux of x in �1.à�/ such that the stereographic
projection �z;� is Lipschitz on Ux . Indeed as � is ¹arº-Anosov, we can choose z so that
the subspaces xr� and zd�r� make a definite angle. The claim is then a consequence of Theo-
rem 7.1: Indeed, it implies we can find an open neighborhood Ux of x such that for every pair
w; y 2 Ux the angle that w1� ˚ y

1
� makes with zd�r� is bigger than a fixed constant. This is

enough to guarantee that the stereographic projection does not distort distances too much.
In particular, as Lipschitz maps preserve the Hausdorff dimension, it follows that

Hff.Ux/ � Hff.P .Kr//:

Since the Hausdorff dimension of a compact set is the maximum of the Hausdorff dimensions
of the sets in a finite open cover, the result follows.
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7.2. When à� is a manifold and K D R. A classical result of Benoist [2] states that
if a word hyperbolic group of projective transformations divides a convex set, then the bound-
ary of this set has to be C1 : These, together with Hitchin representations, have become the
paradigm of Zariski-dense projective Anosov representations whose limit set is a regular mani-
fold. The purpose of this section is to provide new examples of such phenomena. Sharper
results of similar nature have recently been obtained independently by Zhang-Zimmer [45].

We begin by observing that Theorem 7.1 has the following interesting consequence.

Proposition 7.4. Let � W � ! PGLd .R/ be a .1; 1; r/-hyperconvex representation and
assume that à� is topologically a sphere of dimension r � 1, then �1� .à�/ is a C1 manifold
with Tx1��

1
� .à�/ D Tx1�P .xr�/:

Proof. Theorem 7.1 implies that the set �1� .à�/ is differentiable at x1� with tangent space
Tx1�P .xr�/. The continuity of x 7! xr� completes the proof.

Proposition 7.4 can be applied to many different situations to produce interesting exam-
ples through the represent and deform method, we now explain how this works in a specific
situation. Denote by

Sk W PGLdC1.R/! PGL.Sk.RdC1//

the k-symmetric power.
Note that in PGLdC1.K/ a .1; 1; d/-hyperconvex representation is a projective Anosov

representation � such that for each triple .x; y; z/ 2 à.2/� the sum x1� C y
1
� C z

1
� is direct.

Proposition 7.5. Let � W � ! PGLdC1.R/ be a .1; 1; d/-hyperconvex representation
and assume that there exist c > 0; � > 1 such that, for every 
 2 � ,

(7.2)
�1.�.
//�d .�.
//

�2.�.
//2
> ce�j
 j:

Then the composition
Sk ı � W � ! PGL.Sk.RdC1//

is .1; 1; d/-hyperconvex.

Proof. We endow Sk.RdC1/ with the norm induced by our choice of norm on RdC1.
For this choice, and for every g 2 PGLdC1.R/, the semi-homothecy ratios of Skg are just the
products of k-tuples of semi-homothecy ratios of g. Assumption (7.2) then gives that for all 

apart from possibly finitely many exceptions

� a1.�.Sk�.
/// D a1.�.�.
///,
� ad .�.Sk�.
/// D min¹ad .�.�.
///; log �1.�.
//�d .�.
//

�2.�.
//2
º

Since � is ¹a1; ad º-Anosov, we deduce from Definition 3.1 that Sk� is also ¹a1; ad º-Anosov.
Observe that the map Sk is equivariant with respect to the map between the partial flags

Sk W ¹line � hyperplaneº ! ¹line � d -dimensional subspaceº

defined by
Sk.l;H/ D .lˇk; lˇk�1 ˇH i/:

Here we denote byˇ the symmetric tensors.
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It is immediate to verify that assumption (7.2) also implies that Sk ı � sends attractors to
attractors, therefore, by continuity of Sk ı �, we have, for every x 2 à� ,

Sk.x1� ; x
d
� / D .x

1
Sk�; x

d
Sk�/:

Finally, the convergence property (Theorem 7.1) for �, together with the differentiability
of S2 W P .RdC1/! P .S2.RdC1// implies that

lim
.w;y/!.x;x/

].w1S2� ˚ y
1
S2�; x

d
S2�/ D 0:

Proposition 7.2 yields the result.

As a direct corollary, we get:

Corollary 7.6. If � W � ! PSO.d; 1/ is cocompact, every small deformation

� W � ! PGL.Sk.RdC1//

of Sk� is .1; 1; d/-hyperconvex. Any such � will have a C1-sphere as limit set in P .Sk.RdC1//:

Applying Johnson–Millson’s [26] bending technique, we obtain the announced Zariski
dense subgroups whose limit set is a C1-sphere:

Corollary 7.7. There exists a Zariski dense subgroup � < PGL.S2.RdC1//whose limit
set is a C1-sphere.

Proof. Let M be a d -dimensional closed hyperbolic manifold that has a totally geo-
desic, co-dimension one, closed submanifold N . The inclusion

� D �1M � SO.d; 1/! SL.S2.RdC1//

satisfies the hypothesis of Proposition 7.5. Without loss of generality we can assume that

�1N � SO.d � 1; 1/:

Observe that the centralizer of S2.SO.d � 1; 1// � SL.S2.RdC1// is non-trivial and strictly
contains that of S2.SO.d; 1//: as an S2.SO.d; 1//-module, S2.RdC1/ splits as a direct sum
of an irreducible representation (usually denoted SŒ2�.R

d;1/) and a trivial representation, its
centralizer is thus reduced to R�. The decomposition as an S2.SO.d � 1; 1//-module splits as
the sum SŒ2�.R

d�1;1/˚Rd�1;1 ˚R2, where the action on the second factor is the standard
action, while the action on R2 is trivial. In particular, the centralizer of S2.SO.n � 1; 1// is
GL.2;R/ �R�. By bending the representation along N with a non-trivial element in GL.2;R/
which does not leave invariant the factor R, we obtain the desired representation.

8. Examples of locally conformal representations

The purpose of this section is to discuss some of the many examples in which restrict-
ing the Zariski closure of a representation to a non-split real form of SLd .K/ gives room for
.1; 1; p/ hyperconvex representations for which we can also guarantee that the second gap p2
is strictly bigger than 2.
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8.1. Hyperconvex representations in PU.1; d/ and PSp.1; d/. The first interesting
setting in which Theorem 5.14 applies for large classes of representations is given by consid-
ering representations in the rank-one groups PU.1; d/ or PSp.1; d/. To unify the treatment,
we will write POK.1; d/ for either PU.1; d/ if K D C or PSp.1; d/ if K D H and regard
POK.1; d/ as a subgroup of PGL.d C 1;K/.

Remark 8.1. Unfortunately, as H is non-commutative, we do not have the setup of
Section 2.2.1 at our disposal (as the exterior algebra over a non-commutative field is not
well defined), however the issue can be easily solved by considering SL.d C 1;H/ as a sub-
group of SL.2d C 2;C/. Given an element g 2 SL.d C 1;H/ we denote by gC the cor-
responding element in SL.2d C 2;C/; it is then immediate to verify that we can choose
a Cartan decomposition of gC so that, for every p, the subspace U2p.gC/ is a quaternionic
vector space, and we thus set Up.g/ WD U2p.gC/. Similarly we say that a sequence .˛i /i2Z

in SL.d C 1;H/ is p-dominated if .˛C
i /i2Z is 2p-dominated in SL.2d C 2;C/, and that

a representation � W � ! SL.d C 1;H/ is .p; q; r/-hyperconvex if the induced representation
� W � ! SL.2d C 2;C/ is .2p; 2q; 2r/-hyperconvex. With this at hand it is easy to verify that
Theorem 5.14 holds for representations with values in SL.d C 1;H/.

Recall that POK.1; d/ has rank one, therefore we have at our disposal a good notion of
convex co-compactness: a representation � W � ! POK.1; d/ is convex co-compact if and only
if there is a convex �.�/-invariant subspace of Hd

K whose quotient is compact. The induced
representation � W � ! PGL.d C 1;K/ is ¹a1º-Anosov if and only if � is convex co-compact,
see for example Guichard–Wienhard [23, Section 6.1].

Observe that POK.1; d/ preserves the closed codimension-1 submanifold

àHd
K � P .KdC1/;

furthermore one has the following.

Lemma 8.2. For every g 2 POK.1; d/, we have that U1.g/ 2 àHd
K � P .KdC1/ and

Ud .g/ D U1.g/
?, where the orthogonal is defined with respect to the Hermitian form defining

the group POK.1; d/.

In particular, considering for every point x 2 àHd
K the subspace x? � TxàHd

K, one
obtains a non-integrable distribution that has (real) codimension 1 if K D C and 3 if K D H. In
the complex case this is the standard contact structure on the sphere. We will refer to this distri-
bution also in the quaternionic case as the generalized contact distribution. Given a distinct pair
x; y 2 à� , we will denote by Cx;y the intersection P .hx; yi/ \ àHd

K. Of course if K is C, then
Cx;y is a circle, while if K D H it is a 3-sphere. In the complex case the sets Cx;y are often
referred to as chains, and their geometry was extensively studied by Cartan. The incidence
geometry of chains (and of suitable generalizations) played an important role in [9, 36].

With these definition at hand we can rephrase our main results in the rank-one setting:

Proposition 8.3. A convex cocompact action � W � ! POK.1; d/ is .1; 1; d/-hyper-
convex if and only if for every distinct pair x; y 2 à� , the chain Cx1�;y1� intersects �.à�/ only
in x1� ; y

1
� . In this case LC.�/ D �.à�/, and �.à�/ is tangent to the generalized contact distri-

bution.
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Proof. The first statement follows directly from the definitions: for every triple x; y; z
the sum x1� C y

1
� C z

1
� is direct if and only if z1� does not belong to Cx1�;y1� . The second state-

ment follows then from Proposition 6.7, and the last is a consequence of Theorem 7.1.

There are many interesting examples of representations satisfying the assumption of
Proposition 8.3, a natural class of examples can be obtained deforming totally real embed-
dings. The following is a direct consequence of Proposition 8.3:

Lemma 8.4. Let � < POR.1; d/ be a convex cocompact subgroup and let

� W � ! POK.1; d/

be obtained extending the coefficients. Then � is .1; 1; d/-hyperconvex.

Corollary 8.5. Every ¹a1º-Anosov representation ˇ W�! POK.1; d/ sufficiently close
to a totally real representation � is .1; 1; d/-hyperconvex. In particular, for each such repre-
sentation

dimHff.�.à�// D ha1
ˇ
� .d � 1/ dim K:

Proof. The first statement is a direct consequence of Propositions 6.2 and 8.3. Further-
more, we know that for every element g 2 POK.1; d/, we have p2.g/ D d , and hence every
point in à� is locally conformal for ˇ. Theorem 5.14 then applies and gives the second state-
ment.

Another class of examples was studied by Dufloux in his thesis [15, 16]. He says that
a Schottky subgroup � < PU.1; d/ generated by a symmetric set W is well positioned if, for
every w 2 W there is an open subsets B.w/ � àHd

C such that
� the closures B.w/ are pairwise disjoint,
� w.àHd

C n B.w
�1// � B.w/,

� no chain passes through three of these open subsets B.w/.

Similarly one can define well-positioned Schottky subgroups of PSp.1; d/ replacing chains
with quaternionic three spheres (recall that in àHd

H any pair of points uniquely determines
a 3-sphere, the boundary of a totally geodesic copy of H1

H). We will denote also these subspaces
of àHd

H chains for notational ease.
Arguments analogue to the ones presented in [16, Section 7.2] imply that well-positioned

Schottky groups are hyperconvex representations:

Proposition 8.6. Let � W � ! POK.1; d/ be a well-positioned Schottky subgroup. Then
� W � ! SLdC1.K/ is .1; 1; d/-hyperconvex. Furthermore, LC.�/ D �.à�/.

Proof. Observe that since POK.1; d/ is a rank-one group, p2.˛/ does not depend on i .
Furthermore, as soon as the sequence ¹˛iº1iD1 forms a geodesic ray, the sequence is d domi-
nated by a classical ping pong argument, and it follows from Lemma 8.2 that

E�p2.x/ D x
?
� P .KdC1/:

In order to verify that every point x 2 à� is locally conformal, we need to check that there
exists a constant c such that ].�.y/˚ �.z/; U1.�.˛�1/// > c for all y; z 2 X1.˛/. Since �
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is a well-positioned Schottky group, we can choose ı� as the smallest distance between two
sets B.w/. Let w˛ be the first letter of ˛. It follows from Lemma 3.6 that if j˛j is big enough
U1.�.˛

�1// 2 B.w�1˛ / and X1.˛/ �
S
s¤w˛

B.s/: by construction C1.˛/ �
S
s¤w˛

B.s/

and the intersection of the ı�
2

-neighborhood of
S
s¤w˛

B.s/ with the image of the boundary
map is already contained in

S
s¤w˛

B.s/.
Since the chain Cy;z through y1� and z1� is the intersection of àHd

K with P .y1� ˚ z
1
�/, and,

by assumption, Cy;z does not intersect the open subset B.w˛/ � àHd
K, the result follows. The

fact that the representation � W � ! SLdC1.K/ is .1; 1; d/-hyperconvex is a consequence of
Theorem 7.1.

Corollary 8.7 (cf. [15, Corollary 43]). Let � W � ! POK.1; d/ be a well-positioned
Schottky subgroup. Then

Hff.�1� .à�// D h
a1
� :

Proof. If K D C, this follows directly from Theorem 5.14. For K D H it is enough to
observe that in the construction of the measure �a1 performed in Section 5.3 we never used the
commutativity of the field K.

We conclude the discussion on convex cocompact subgroups of POK.1; d/ by show-
ing that the set of .1; 1; d/-hyperconvex representations is, in general, not closed within the
space of projective Anosov representations. We will prove in Proposition 9.3, that, instead,
.1; 1; 2/-hyperconvex representations of fundamental groups of surfaces are closed in the space
of Anosov representations. Denote by F2 the free group on two generators.

Proposition 8.8. There exists a continuous path of ¹a1º-Anosov representations

�t W F2 ! PU.1; d/

such that �0 is .1; 1; d/-hyperconvex and �1 is not .1; 1; d/-hyperconvex.

Proof. As PU.1; d/ has rank one, for every 4-tuple .aC; a�; bC; b�/ of pairwise dis-
tinct points in àHd

C we can find elements a; b 2 PU.1; d/ with prescribed attractive and repul-
sive fixed points and with translation length big enough so that the group generated by a; b is
free and convex cocompact on Hd

C: this follows from a classical ping pong argument. Further-
more, if .aCt ; a

�
t ; b
C
t ; b

�
t / vary continuously in t , we can also arrange for the elements at , bt

to vary continuously in t ; in this way we can define a continuous path �t W F2 ! PU.1; d/ of
¹a1º-Anosov representation.

Our claim follows if we choose a0; b0 contained in PO.1; d/ (so that the represen-
tation is .1; 1; d/-hyperconvex by Lemma 8.4), and .aC1 ; a

�
1 ; b
C
1 ; b

�
1 / so that .aC1 ; a

�
1 ; b
C
1 /

belong to a single chain, but b�1 does not. In this case the representation �1 is clearly not
.1; 1; d/-hyperconvex as the sum �.aC/C �.a�/C �.bC/ is not direct.

8.2. Locally conformal representations in SO.p; q/. We now turn our attention to the
group SO.p; q/. Every semi-simple element g 2 SO.p; q/ has jp � qj eigenvalues equal to 1.
In this subsection, considering suitable exterior representations of SO.p; q/ we will produce
examples of hyperconvex representations for which every point is locally conformal, and thus
Corollary 6.10 applies. For these representations, the Hausdorff dimension of the limit set
computes the critical exponent for the first simple root.
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The following generalization of Labourie’s property (H) [31, Section 7.1.4] guarantees
that a suitable exterior power is hyperconvex:

Proposition 8.9. Let � W � ! SO.p; q/ be ¹ap�1; apº-Anosov (here p � q). Then

^
p� W � ! PGL.^p.Rp;q//

is ¹a1; aq�pC1º-Anosov. It is .1; 1; q � p C 1/-hyperconvex if and only if for every x; y; z 2 à�
pairwise distinct, the sum

xp� C .z
p
� \ y

qC1
� /C yp�

is direct. In this case every point in à� is locally conformal.

Proof. Observe that the singular values of an element g 2 SO.p; q/ � SLpCq.R/ have
the form �1.g/ � � � � � �p.g/ � 1 D � � � D 1 � �p.g/

�1 � � � � � �1.g/
�1, where 1 has mul-

tiplicity at least q � p (higher if �p.g/ D 1). If � W � ! SO.p; q/ is ¹ap�1; apº-Anosov, then,
for every 
 with j
 j big enough, it holds �p�1.�.
// > �p.�.
// > 1, hence in particular

�1.^
p�.
// D �1.�.
// : : : �p.�.
//;

�2.^
p�.
// D �q�pC1.^

p�.
// D
�1.^

p�.
//

�p.�.
//
;

�q�pC2.^
p�.
// D max

²
�1.^

p�.
//

�p�1.�.
//
;
�1.^

p�.
//

�p.�.
//2

³
;

which implies that ^p� is ¹a1; aq�pC1º-Anosov.
Denote by Fp�1;q.Rp;q/ the partial flag manifold consisting of pairs of .p�1; q/-dimen-

sional isotropic subspaces and consider the map

L W Fp�1;p.R
p;q/! F1;q�pC1.^

pRp;q/; .P;Q/ 7! .^p.Q/;^p�1.P / ^Q?/;

where the orthogonal is considered with respect to the bilinear form defining SO.p; q/. The
map L is clearly equivariant with the homomorphism ^p W SO.p; q/! SL.^p.Rp;q//; fur-
thermore, if g 2 SO.p; q/ is Fp�1;q.Rp;q/-proximal, namely g has an attractive fixed point gC

in Fp�1;q.Rp;q/, then L.gC/ D .^pg/C. Thus if .�p�1; �p/ W à� ! Fp�1;q.Rp;q/ denote
the boundary maps associated to � W � ! SO.p; q/, the boundary maps associated to ^p�
have the form L ı .�p�1; �p/.

Let N denote the dimension of ^p.Rp;q/. In order to check if the representation ^p� is
.1; 1; q � p C 1/-hyperconvex, it is enough to verify that for every distinct triple x; y; z 2 à� ,
the subspace x1^� C z

1
^� intersects transversely yN�qCp�1^� , or, equivalently, the image of

x1^� C z
1
^� in ^pRp;q=yN�qCp�1^� is two-dimensional.

Recall that if � W � ! SO.p; q/ is ap-Anosov, then for every distinct pair .x; y/ 2 à�2

it holds xp� ˚ y
q
� D Rd , furthermore we can interpret any other point zp� as a linear map

z
p
� W x

p
� ! y

q
� . With this notation the condition that the sum x

p
� C .z

p
� \ y

qC1
� /C y

p
� is direct

is equivalent to requiring that

zp� .x
p
� \ y

qC1
� / \ yp� D ¹0º:

Let us then choose a basis ¹b1 : : : ; bpº of xp� such that ¹b1; : : : ; bp�1º forms a basis of xp�1�

and bp D x
p
� \ y

qC1
� , then we have that a basis of zp is given by ci D bi C z

p
� .bi /. Fur-

thermore, the only term of the explicit expression of c1 ^ � � � ^ cp that might not belong to
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y
N�qCp�1
^� is b1 ^ � � � ^ bp�1 ^ cp. This last vector does not belong to yN�qCp�1^� C x1^� if

and only if zp� .x
p
� \ y

qC1
� / \ y

p
� D ¹0º.

Proposition 8.10. Assume that there are convex cocompact representations

�1 W � ! SO.1; k/; �2 W � ! SO.1; l/

such that �1 strictly dominates �2, namely there exists constants c; � such that

�1.�1.
// > c�1.�2.
//
�:

Then the representation � WD �1˚ � � � ˚ �1˚ �2 W � ! SO.p; .p � 1/kC l C s/ satisfies the
hypothesis of Proposition 8.9.

Proof. The representation � is ap-Anosov as �2 is convex cocompact, and ap�1-Anosov
as �1 strictly dominates �2. Explicitly writing down the boundary map �p associated to � in
term of the boundary maps �11 W � ! àH

k
R, �12 W � ! àH

l
R associated to �1; �2, one verifies

that zp� .x
p
� \ y

qC1
� / \ y

p
� Š z

1
�2
\ y1�2 and the latter intersection is empty as the representa-

tion is Anosov.

Danciger, Gueritaud and Kassel [13, Proposition 1.8] gave an explicit construction of
convex cocompact actions �1; �2 on H8

R of the group � generated by reflections in the faces of
a 4-dimensional regular right-angled 120-cell, such that �1 strictly dominates �2 and therefore
Proposition 8.10 applies. In this case the boundary à� is a 3-sphere. It is also easy to construct
representations satisfying the assumption of Proposition 8.10 when the group � is free, and
in this case it one can deform the representation � W Fn ! SO.p; q/ to obtain a Zariski dense
representation whose image under ^p is locally conformal. We also expect that many more
convex cocompact subgroups in rank one have the same property, and it is probably possible
to give further examples of situations in which Proposition 8.9 applies for more complicated
groups, as, for example, hyperbolic Coxeter groups.

The same argument as in the proof of Proposition 8.9 gives the following:

Proposition 8.11. Let � W � ! SLd .K/ be ¹ap�1; ap; asº-Anosov. Assume that

(i) there exist constants c; � such that

�p�1.�.
//�s.�.
//

�p.�.
//�pC1.�.
//
> ce�j
 j;

(ii) for every x; y; z 2 à� pairwise distinct, the sum

xp� C .z
p
� \ y

d�pC1
� /C yd�s�

is direct.

Then ^p� is .1; 1; s � p C 1/-hyperconvex.

Observe that the first condition, which guarantees that the map

L W Fp�1;p;s.K
d /! F1;s�pC1.^

pKd /; .P;Q;R/ 7! .^p.Q/;^p�1.P / ^R/

is proximal, is automatic if s D p C 1.
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9. Fundamental groups of surfaces

Let us denote by �S a word-hyperbolic group such that8) à�S is homeomorphic to S1:
One has the following direct consequence of Proposition 7.4 and Corollary 6.9.

Corollary 9.1. Let � W �S ! PGLd .R/ be .1; 1; 2/-hyperconvex. Then ha1
� D 1:

9.1. Weak irreducibility and closedness. A projective Anosov representation

� W � ! PGLd .K/

is weakly irreducible if the image of its boundary map is not contained in a proper subspace
of P .Kd /. Clearly if � is irreducible, then � is weakly irreducible, but it is possible to construct
examples of weakly irreducible Anosov representations with non-reductive image.

The assumption of weak irreducibility can be used to study properties of the stereographic
projection �z;� defined in Definition 6.4.

Lemma 9.2. Let � W � ! PGLd .K/ be ¹a1; apº-Anosov. If the stereographic projection
�z;� W à� � ¹zº ! P .Kd / collapses an open set U � à� , then �z;� is constant. In particular,
the representation � is not weakly irreducible.

Proof. Indeed, as fixed points of attractive elements are dense in à� , we can find 
 2 �
with 
C 2 U . Up to shrinking U we can assume that 
 � U � U . Let V � Kd be the smallest
subspace containing �.t/ for every t in U . As �z;�jU is constant, the subspace V is proper,
furthermore �.
/V D V , since if �.x1/; : : : ; �.xk/ is a basis of V then �.
x1/; : : : ; �.
xk/
are also linearly independent vectors contained in V . In particular, for every n, �z;�.
�nU/ is
constant. As the union of the sets of the form 
�nU is the complement of a point in à� , the
first result follows by continuity of �z;�.

If the map �z;� is constant, then, for every x 2 à� � ¹zº, the image of the boundary
map is contained in the proper subspace x1� C z

d�r
� , hence the representation is not weakly

irreducible.

Lemma 9.2 is particularly useful to analyze properties of .1; 1; 2/-representations of
groups �S : The following argument is very similar to Labourie [31, Proposition 8.3].

Proposition 9.3. The space of real weakly irreducible ¹a1; a2º-Anosov representations
of �S that are not .1; 1; 2/-hyperconvex is open.

Proof. Let � W �S ! PGLd .R/ be ¹a1; a2º-Anosov and not .1; 1; 2/-hyperconvex. By
definition, there exists a triple of pairwise distinct points x; y; z 2 à�S such that

.x1� ˚ y
1
�/ \ z

d�2
� ¤ 0;

and thus the stereographic projection �z;� is not injective.

8) A celebrated theorem of Gabai [18] states that a hyperbolic group �S such that à�S is a circle is virtually
the fundamental group of a connected, closed genus � 2 surface. We will not use this fact.
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Note that P .Rd=zd�2� / is topologically a circle. Therefore the stereographic projection
�z;� is a map from an interval with a point removed to a circle that:

� does not collapse intervals,

� is not injective.

One can therefore, using the intermediate value theorem, find an interval I � à�S � ¹zº
and a point w 2 à�S � .¹zº [ I / such that �z;�.w/ belongs to the interior of �z;�.I /:

This last property will hold for any map close enough to �z;�, in particular for the stere-
ographic projection �z;� for some � close to �: Thus, �z;� is not injective and hence � is not
.1; 1; 2/-hyperconvex, as desired.

Recall from Definition 6.14 that a reducible representation � W SL2.K/! SLd .K/ is
k-coherent if it has a gap of index k and its highest k weights belong to the same irreducible
factor. Combining results from previous sections, one has the following.

Corollary 9.4. Let � W SL2.R/! SLd .R/ be a 2-coherent representation and let
� W �S ! PSL2.R/ be co-compact. Then any deformation � of �� among weakly irreducible
¹a1; a2º-Anosov representations into PSLd .R/ is .1; 1; 2/-hyperconvex. In particular:

� � has C1-limit set in P .Rd /,

� the exponential growth rate ha1
� D 1:

Proof. Proposition 6.16 states that �� is .1; 1; 2/-hyperconvex. Proposition 6.2 states
that hyperconvexity is an open property and, since à�S is topologically a circle, Proposition 9.3
implies .1; 1; 2/-hyperconvexity is closed among weakly irreducible ¹a1; a2º-Anosov represen-
tations. The remaining statements follow from Proposition 7.4 and Corollary 6.9 for KDR:

This result can be useful to distinguish some components of weakly irreducible Anosov
representations (similar bounds on the number of connected components of Anosov represen-
tations were obtained with different techniques by Stecker and Treib [41, Corollary 8.2]).

9.2. The Hitchin component of PSLd.R/. Let S be a closed connected oriented sur-
face of genus � 2. The Hitchin component of PSLd .R/ is a connected component of the char-
acter variety X.�1S;PSLd .R// that contains a Fuchsian representation, i.e. a representation
that factors as

�1S �! PSL2.R/
�d
�! PSLd .R/;

where the first arrow is a the choice of a hyperbolic metric on S: Such a connected component
is usually denoted by H d .S/ and an element � 2H d .S/ is called a Hitchin representation.

Recall from Labourie [31] that a map � W à� ! F .Rd / satisfies Property (H) if for every
triple of distinct points x; y; z and every integer k one has

�kC1.y/C .�kC1.z/ \ �n�k.x//C �n�k�2.x/ D Rd :

One has the following central result by Labourie [31].

Theorem 9.5 (Labourie [31]). For every triple .p; q; r/ such that p C q D r , every
Hitchin representation � W � ! PSLd .R/ is .p; q; r/-hyperconvex. The equivariant boundary
map � W à� ! F .Rd / has Property (H).
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Thus, one concludes the following for deformations of the exterior powers.

Proposition 9.6. Let � 2H d .S/ and consider any k 2 J1; d � 1K: Any weakly irre-
ducible ¹a1; a2º-Anosov representation � W �1S ! PSL.^kRd / connected by weakly irreduc-
ible ¹a1; a2º-Anosov representations to ^k� is .1; 1; 2/-hyperconvex and consequently verifies:

� has C1-limit set in P .^kRd /,

� the exponential growth rate ha1
� D 1:

Proof. For every s, the representation ^s� is ¹a1; a2º-Anosov, furthermore Proposi-
tion 8.11 ensures that ^s� is .1; 1; 2/-hyperconvex as the boundary curve satisfies Property (H)
(for k D s � 1). The result follows from Proposition 7.4, Corollary 6.9 and Corollary 9.4.

When no deformation is applied, one recovers the following result from [35, Theorem B].

Theorem 9.7 (Potrie–Sambarino [35]). For every � 2H d .S/ and every k 2 J1; d�1K
one has hak

� D 1:

9.3. Hitchin representations in other groups. More generally, let GR be a simple
real-split Lie group. These have been classified, i.e. up to finite coverings GR is a group in the
following list: PSLd .R/;PSp.2n;R/;SO.n; nC 1/SO.n; n/, or it is the split real forms of the
exceptional groups F4;split;G2;split,E6;split,E7;split and E8;split:

The work of Kostant [29] provides a subalgebra �gR W sl2.R/! gR, unique up to conju-
gation and called the principal sl2, such that the centralizer of �gR

�
0 1
0 0

�
has minimal dimen-

sion. Denote by �GR W PSL2.R/!GR the induced morphism. For example, �PSLd .R/D �d is the
(unique up to conjugation) irreducible representation of SL2.R/ in Rd defined in Section 6.3.

Let S be a closed connected genus � 2 surface. The Hitchin component of GR is the
connected component of the character variety X.�1S;GR/ that contains a Fuchsian represen-
tation, i.e. a representation that factors as

�1S ���! PSL2.R/
�GR
���! GR;

where the first arrow is a the choice of a hyperbolic metric on S:We will denote this connected
component by H .S;GR/ and an element � 2H .S;GR/ is called a Hitchin representation.

Remark 9.8 (Canonical inclusions). By construction, one sees that the irreducible rep-
resentation �d W SL2.R/! SLd .R/ factors, depending on the parity of d , as

SL2.R/
�Sp.2n;R/
�������! Sp.2n;R/ �������! SL2n.R/;

SL2.R/
�SO.n;nC1/
�������! SO.n; nC 1/ �������! SL2nC1.R/;

SL2.R/
G2;R

�������! G2;R �������! SO.3; 4/! SL7.R/;

where, in each case, the first arrows is the principal inclusion �GR . Thus

H .S;PSp.2n;R// �H 2n.S/;

H .S;PSO.n; nC 1// �H 2nC1.S/;

H .S;PG2;R/ �H .S;PSO.3; 4// �H 7.S/:
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On the other hand, if we consider the embedding SO.n � 1; n/ � SO.n; n/ as the stabilizer of
a positive definite line, the morphism �SO.n;n/ is the composition of �SO.n�1;n/ with such inclu-
sion. Hence the induced action of �SO.n;n/ on Rn;n decomposes in SL2.R/-irreducible modules
as �2n�1 ˚ �1, and in particular H .S;PSO.n; n// is not a subset of a PSL2n.R/-Hitchin com-
ponent.

It is known to experts that every Hitchin representation is Anosov with respect to the
minimal parabolic of G, see for example [17].

Recall that the simple roots of the group PSO.n; n/ are given by ¹a1; : : : ; an�1; bnº
where, as above,

ai .x/ D xi � xiC1

and bn is defined by

bn.x/ D xn�1 C xn:

Thus every representation � 2H .S;PSO.n; n//, when considered as a representation in the
group SL2n.R/ under the canonical inclusion, is ¹apº-Anosov for every p � n � 1.

Furthermore, it is easy to check that the n-th exterior power

^
n
W PSO.n; n/! PSL.^nR2n/

splits as the direct sum of two irreducible PSO.n; n/-modules, which have respectively an�1
and bn as first root (see for example Danciger and Zhang [14]). In particular, we obtain the
following result, independently announced by Labourie [30].

Theorem 9.9. For every � 2H .S;PSO.n; n// and every p � n�2 the exterior power
^p� is .1; 1; 2/-hyperconvex, and the same holds for each one of the two irreducible submod-
ules of ^n�. Thus the associated limit curve of � on the p-Grassmannian for p � n � 2, as
well as each one of the two limit curves in the n-Grassmannian, is C1 and one has ha

� D 1 for
every simple root a.

Proof. Considering a diagonalizable element in SL2.R/ as in the proof of Lemma 6.15,
we obtain that ^k.�2n�1 ˚ �1/ is 2-coherent for every k 2 J1; n � 2K. Similarly a direct com-
putation shows that the five highest weights of ^n.�2n�1 ˚ �1/ are

� �^n.�2n�1˚�1/ D �
.2/

^n.�2n�1˚�1/
D 2nC � � � C 2 D n.nC 1/,

� �
.3/

^n.�2n�1˚�1/
D �

.4/

^n.�2n�1˚�1/
D 2nC � � � C 4 D n.nC 1/ � 2,

� �
.5/

^n.�2n�1˚�1/
D 2nC � � � C 6 D n.nC 1/ � 4;

each of the first four weights appears with multiplicity one in each irreducible SO.n; n/-sub-
modules of ^nR2n. We deduce that the restriction of the representation ^n.�2n�1 ˚ �1/ to
each of the two submodules is also .1; 1; 2/-hyperconvex. The result is then a consequence of
Corollary 9.4 together with the classification of Zariski closures due to Guichard [21].

Remark 9.10. Danciger and Zhang [14] have recently proved that when a representa-
tion � 2H .S;PSO.n; n// is regarded as a representation in PSL2n.R/, it is, instead, never
¹anº-Anosov and the limit curve in the .n � 1/-Grassmannian is never C1.
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