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Abstract Given a convex representation ρ : � → PGL(d,R) of a convex cocompact
group � of Isom+ H

k, we find upper bounds for the quantity αhρ, where hρ is the
entropy of ρ and α is the Hölder exponent of the equivariant map ∂∞� → P(Rd). We
also give rigidity statements when the upper bound is attained. This provides an analog
of Thurston’s metric for convex cocompact groups of Isom+ H

k .We then prove that if
ρ : π1� → PSL(d,R) is in the Hitchin component then αhρ ≤ 2/(d − 1) (where α

is the Hölder exponent of Labourie’s equivariant flag curve) with equality if and only
if ρ is Fuchsian.
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454 A. Sambarino

1 Introduction

Consider a CAT(−1) space X. Its visual boundary ∂∞ X is equipped with a natural
metric called a visual metric. This metric depends on the choice of a point in X and
different points induce bi-Lipschitz equivalent metrics.

Consider now a convex cocompact action of a hyperbolic group � on X.An impor-
tant invariant for this action is the Hausdorff dimension h�, for a (any) visual metric,
of the limit set L� of � on the visual boundary ∂∞ X of X.

Several rigidity statements have been found concerning lower bounds on this Haus-
dorff dimension. For example, Bourdon [6] proved that if � = π1M, where M is a
closed k-dimensional manifold modeled on H

k, then h� ≥ k − 1 with equality only
if there is a totally geodesic copy of Hk on X preserved by �. We refer the reader to
Courtois [9] for a more detailed exposition on this problem in the negative curvature
setting.

Given two convex cocompact actions ρi : � → Isom Xi i = 1, 2 on CAT(−1)
spaces Xi , there is an obvious relation between the Hausdorff dimensions of their
limit sets. Let ξ : Lρ1� → Lρ2� be the Hölder-continuous equivariant map. From the
definition of Hausdorff dimension one obtains

αhρ2 ≤ hρ1 (1)

when ξ is α-Hölder, i.e. when d(ξ(x), ξ(y)) ≤ K d(x, y)α for some K > 0, and all
x, y. Denote by

α(ρ1,ρ2) = sup
{
α ∈ R

∗+ : ξ is α-Hölder
}
.

Remark that ξ is not necessarily α(ρ1,ρ2)-Hölder. Incidentally, we prove the following
proposition. For a non-torsion γ ∈ �, denote by

|γ | = inf
p∈X

dX (p, γ p),

the length of the closed geodesic of �\X determined by the conjugacy class [γ ] of γ.

Proposition 1.1 Consider two convex cocompact actions ρi : � → Isom(Xi ) on
CAT(−1)-spaces Xi , i ∈ {1, 2}, such that α(ρ1,ρ2)hρ2 = hρ1 . Then for every non-
torsion γ ∈ �, one has

|ρ2γ | = α(ρ1,ρ2)|ρ1γ |.

Deciding if an equation such as |ρ2γ | = c|ρ1γ |, for some c > 0 and all non-torsion
γ ∈ �, determines the action ρ1 is a difficult problem known as the marked length
spectrum problem (when c = 1). Besides certain situations such as negatively curved
closed surfaces (treated by Otal [18]) or if ρ1 is cocompact inHn (treated by Bourdon
[6] and Hamenstädt [13]) little is known.

The following is a corollary of Theorem B below.
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Entropy, regularity and rigidity for convex representations… 455

Corollary 1.2 Let ρ1 : � → Isom+ H
k be a Zariski-dense convex cocompact action,

and consider a convex cocompact action ρ2 : � → Isom+ H
n such that α(ρ1,ρ2)hρ2 =

hρ1, then ξ is the induced map on the boundary of an equivariant isometric embedding
H

k → H
n .

This is to say, if equality holds then ρ2� preserves a totally geodesic copy ofHk in
H

n, moreover the action of ρ2� on this geodesic copy is conjugated by an isometry
to ρ1. This provides a rigidity statement for Schottky groups, for example.

Themain purpose of this work is to extend inequality (1) for convex representations,
and give rigidity results when the equality holds. In order to do so, we will exploit the
well known fact that h� is also a dynamical invariant.

Consider the geodesic flow of �\X, φ = (φt : �\UX → �\UX)t∈R. The fact
that � is convex cocompact, is equivalent to the fact that the non-wandering set of
φ, denoted from now on U�, is compact. Moreover, φ|U� has very nice dynamical
properties coming from the negative curvature of X, namely it is a metric Anosov
flow (see Definition 4.4). The topological entropy of φ coincides with the Hausdorff
dimension h� (Sullivan [22], see also Bourdon [5]), and can be computed by counting
how many periodic orbits φ has:

h� = lim
t→∞

1

t
log #{[γ ] ∈ [�] non-torsion : |γ | ≤ t}. (2)

Definition 1.3 We will say that a representation ρ : � → PGL(d,R) is convex if
there exist a ρ-equivariant Hölder-continuous map

(ξ, ξ∗) : L� → P(Rd) × P((Rd)∗)

such that if x, y ∈ ∂∞� are distinct, then ξ(x) ⊕ ker ξ∗(y) = R
d .

Different notions of entropy can be defined for a convex representation by analogy
with Eq. (2). For g ∈ PGL(d,R) denote by λ1(g) the logarithm of the spectral radius
of g. The spectral entropy of a convex representation ρ : � → PGL(d,R) is defined
by

hρ = lim
t→∞

1

t
log # {[γ ] ∈ [�] non-torsion : λ1(ργ ) ≤ t} ,

and the Hilbert entropy of ρ is defined by

Hρ = lim
t→∞

1

t
log #

{
[γ ] ∈ [�] non-torsion : λ1(ργ ) − λd(ργ )

2
≤ t

}
,

where λd(ργ ) is the log of the modulus of the smallest eigenvalue of ργ. One has the
following proposition.

Proposition 1.4 ([20], see also [8]) The spectral entropy of an irreducible convex
representation of a (finitely generated non-elementary) hyperbolic group is finite and
positive.
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456 A. Sambarino

If V is a finite dimensional vector space, we will consider the distance dP on P(V )

induced by a Euclidean metric on V . An important remark is that the entropy of
a convex representation is not necessarily the Hausdorff dimension of ξ(∂∞�) (see
Remark 2.2 below). Our first result is the following:

Theorem A Let � be a convex cocompact group of a CAT(−1) space X and let
ρ : � → PGL(d,R) be an irreducible convex representation with d ≥ 3. Then

αhρ ≤ h� and αHρ ≤ h�,

when ξ is α-Hölder.

Observe that the dimension d of Rd does not appear in the inequality.
Consider Ad : PGL(d,R) → PGL(sl(d,R)) the Adjoint representation. If

ρ : � → PGL(d,R) is an irreducible convex representation then Ad ρ : � →
PGL(sl(d,R)) is not necessarily irreducible but there is a natural subspace Vρ ⊂
sl(d,R) such that

Aρ = Ad ρ|Vρ : � → PGL(Vρ)

is again irreducible and convex (seeLemma6.6). The representationAρ will be referred
to as the irreducible adjoint representation of ρ, and will play an important role on
understanding rigidity for Hilbert’s entropy.

A simple computation shows that the Hilbert entropy of ρ is related to the spectral
entropy of Aρ, namely Hρ = 2hAρ

. Nevertheless, applying this relation to the first
inequality in Theorem A, gives the bad upper bound αHρ ≤ 2h�.

2 Examples

There are three examples of irreducible convex representations of � of particular
interest.

Recall that the group PSO(1, k), of projective transformations preserving a bilinear
form of signature (1, k), is isomorphic to the orientation preserving isometry group
Isom+ H

k of the k-dimensional hyperbolic space. Throughout this work we will refer
to the representation φ : Isom+ H

k → PSO(1, k) (or any of its conjugates gφg−1

with g ∈ PGL(k + 1,R)) as the Klein model of Hk .

Remark 2.1 The Klein model of Hk induces an equivariant map ∂∞H
k → P(Rk+1).

This equivariant map is a bi-Lipschitz homeomorphism onto its image.

2.1 Benoist representations

If ρ : � → PGL(k + 1,R) preserves a proper open convex set �ρ of P(Rk+1) and
ρ�\�ρ is compact, then ρ is called a Benoist representation.1 Results from Benoist

1 These are also called divisible convex sets with strictly convex boundary or strictly convex projective
structures on closed manifolds.
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Entropy, regularity and rigidity for convex representations… 457

[3], imply that Benoist representations are irreducible convex representations (see [20]
for details).

The Hilbert entropy of ρ is the topological entropy of the geodesic flow of ρ�\�ρ

associated to the Hilbert metric. Crampon [10] proved that the Hilbert entropy verifies
Hρ ≤ k − 1 = dim ∂�ρ, and equality holds only when �ρ is an ellipsoid, i.e. � acts
cocompactly on Hk and ρ extends to the Klein model of Hk .

Notice that ∂�ρ = ξ(∂∞�) is topologically a k − 1 dimensional sphere, hence
when �ρ is not an ellipsoid, Hρ is not the Hausdorff dimension of ξ(∂∞�).

2.2 Convex cocompact groups in H
k

Consider a convex cocompact group φ : � → Isom+ H
k . The composition of φ with

the Klein model ofHk gives rise to a convex representation φ′ : � → PGL(k + 1,R).

In this setting, φ� is Zariski-dense in Isom+ H
k if and only if, up to finite index,

φ� does not have an invariant totally geodesic copy of Hk−1. If this is the case, the
convex representation φ′� is irreducible.

An easy computation shows that the spectral entropy of φ′ and the Hilbert entropy,
coincide with the topological entropy of the geodesic flow of φ�\Hk, which in turn
coincides with the Hausdorff dimension of the limit set Lφ� on ∂∞H

k (Sullivan [22]).
Assume now that � = π1M is the fundamental group of a closed k-dimensional

hyperbolic manifold, it is well known that h� = k − 1. Consider now a convex co-
compact action φ : π1M → Isom+ H

n with n ≥ k. As we explained before, Bourdon
states that hφ ≥ k − 1.

In light of the last examples, one sees that a deformation of

π1M → Isom+ H
k → PGL(k + 1,R)

decreases Hilbert’s entropy, but on the contrary, a deformation of

π1M → Isom+ H
k → IsomH

n

increases Hilbert’s entropy. As a conclusion, the Hilbert entropy of a convex represen-
tation of π1Mmay be greater or smaller than dimM−1, nevertheless the quantity αH
has to remain bounded by this number. Theorem A is thus optimal in this generality.

2.3 Hitchin representations and small deformations of exterior products

Consider a closed oriented hyperbolic surface � and say that a representation ρ :
π1� → PSL(d,R) is Fuchsian if it factors as

ρ = τd ◦ f,

where τd : PSL(2,R) → PSL(d,R) is the irreducible linear action (unique modulo
conjugation) of PSL(2,R) on R

d and f : π1� → PSL(2,R) is a choice of a hyper-
bolic metric on �. A Hitchin component of PSL(d,R) is a connected component of
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458 A. Sambarino

hom(π1�,PSL(d,R)) containing a Fuchsian representation. As Hitchin [14] proves,
representations in the Hitchin component are irreducible.

Recall that a (complete) flag of Rd is a collection of subspaces {Vi }d
i=0 such that

Vi ⊂ Vi+1 and dim Vi = i. The space of flags is denoted by F . Two flags {Vi } and
{Wi } are in general position if for every i one has

Vi ⊕ Wd−i = R
d .

Labourie [16] proves that if ρ : π1� → PSL(d,R) is a representation in a Hitchin
component then, there exists a ρ-equivariant Hölder-continuous map ζ : ∂∞π1� →
F such that the flags ζ(x) and ζ(y) are in general position when x, y ∈ ∂∞π1� are
distinct.

Considering thus ξ = ζ1 the first coordinate of ζ and ξ∗ = ζd the last coordinate
of ζ, one obtains an irreducible convex representation. Moreover, let �n

R
d be the nth

exterior power of Rd . An n−dimensional subspace is sent to a line on �n
R

d , hence
Labourie’s theorem implies that the composition �nρ : π1� → PSL(�n

R
d) is again

convex.
Finally, if ρ is Zariski-dense on PGL(d,R) then �nρ is irreducible. Guichard and

Wienhard [12] have shown that convex irreducible representations form an open set
on the space of representations. Hence small deformations of �nρ are still irreducible
and convex.

Remark 2.2 Labourie’s statement implies that if ρ : π1� → PGL(d,R) is a Hitchin
representation then the image ξ(∂∞π1�) is a curve of class C1 (even thought the map
ξ is only Hölder). Hence, neither entropy of ρ can be interpreted as the Hausdorff
dimension of ξ(∂∞π1�). For example, if ρ is Fuchsian, then an easy computation
shows that hρ = Hρ = 2/(d − 1), even thought the limit curve is a polynomial.

3 Rigidity statements

For a convex representation ρ : � → PGL(d,R) and a fixed action of� on aCAT(−1)
space X, denote by

αρ = sup
{
α ∈ R

∗+ : ξ : L� → P(Rd) is α-Hölder
}

the “best” Hölder exponent of the equivariant map ξ. Remark that ξ is not necessarily
αρ-Hölder.

Theorem B (Spectral entropy rigidity) Let � be a Zariski-dense convex cocompact
group of Isom+ H

k and consider a convex irreducible representation ρ : � →
PGL(d,R) with d ≥ 3 with connected Zariski closure. If

αρhρ = h�

then d = k + 1, αρ = 1 and ρ extends to ρ : Isom+ H
k → PGL(k + 1,R) as the

Klein model of Hk .
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A slight modification of the proof of Theorem B gives the following weaker state-
ment for Hilbert’s entropy.

Corollary 3.1 (Hilbert entropy rigidity) Let � be a Zariski-dense convex cocom-
pact group of Isom+ H

k and consider a convex irreducible representation ρ : � →
PGL(d,R) with d ≥ 3 with connected Zariski closure. If

αρHρ = h�

then Vρ = so(1, k) and the adjoint irreducible representation Aρ : � →
PGL(so(1, k)) extends to Aρ : Isom+ H

k → PGL(so(1, k)) as the adjoint repre-
sentation of the Klein model of Hk .

The proofs of Theorem B and Corollary 3.1 are very similar and postponed to
Sect. 10.

3.1 Statements for hyperconvex representations

The fact that equality in Theorem B can only hold for a representation ρ : π1� →
PSL(3,R), suggests that the upper bound for αρhρ is not optimal, for Hitchin repre-
sentations on PSL(d,R), say. We will now focus on improving the bound when more
information on the representation ρ is given.

Let G be a connected real-algebraic semisimple Lie group without compact factors,
P a minimal parabolic subgroup of G, and denote by F = G/P the Furstenberg
boundary of the symmetric space of G.

Let K be a maximal compact subgroup of G, let τ be the Cartan involution on g
whose fixed point set is the Lie algebra of K . Consider p = {v ∈ g : τv = −v} and
a a maximal abelian subspace contained in p. Let � be the set of (restricted) roots of
a on g. Fix a+ a closed Weyl chamber and let �+ be a system of positive roots on �

associated to a+. Denote by � the set of simple roots associated to the choice �+.

The spaceF can be embedded in a product of projective spaces
∏

θ∈� P(Vθ ) (see
Sect. 8), we will consider the metric onF induced by this embedding.

The product F × F has a unique open G-orbit denoted by F (2). For example, if
G = PGL(d,R) then F is the space of complete flags of Rd , and F (2) is the space
of flags in general position.

Definition 3.2 We say that a representation ρ : � → G is hyperconvex if there exists
a Hölder-continuous equivariant map ζ : ∂∞� → F , such that if x, y ∈ ∂∞� are
distinct, then (ζ(x), ζ(y)) belongs toF (2).

Hyperconvex representations on PGL(d,R) are, of course, convex. As explained
before, Labourie [16] proved that representations in a Hitchin component are hyper-
convex.

We will say that g ∈ G is R-regular if it is diagonalizable over R, elliptic if it is
contained in a compact subgroup of G, or unipotent if all its eigenvalues are equal to 1.

Recall that Jordan’s decomposition states that every g ∈ G can be written as a
product g = gegh gu, where ge, gh, gu ∈ G commute, ge is elliptic, gh is R-regular
and gu is unipotent.
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460 A. Sambarino

For g ∈ G denote by λ(g) ∈ a+ its Jordan projection, this is the unique ele-
ment on a+ such that exp λ(g) is conjugated to the R-regular element on the Jordan
decomposition of g.

If ρ : � → G is a hyperconvex representation and ϕ ∈ a∗ is a linear form such that
ϕ|a+ > 0, we define the entropy of ρ relative to ϕ by

hϕ = lim
s→∞

1

t
log #{[γ ] ∈ [�] non-torsion : ϕ(λ(ργ )) ≤ t}.

Proposition 3.3 [20, Section 7] Let ρ : � → G a Zariski-dense hyperconvex repre-
sentation, and consider ϕ ∈ a∗ such that ϕ|a+ − {0} > 0, then hϕ ∈ (0,∞).

The barycenter of theWeyl chamber a+ is the half line contained in a+ determined
by

bara+ = {a ∈ a+ : θ1(a) = θ2(a) for every pair θ1, θ2 ∈ �}.

Theorem C Let ρ : � → G be a Zariski-dense hyperconvex representation and
ϕ ∈ a∗ a linear form such that ϕ|a+ − {0} > 0. Then

αhϕ ≤ h�

θ(bara+)

ϕ(bara+)
,

where θ ∈ � is any simple root and ζ is α-Hölder.

Note that the direction of a+ that gives the upper bound does not depend on the
linear form ϕ.

Denote by

αρ = sup
{
α ∈ R

∗+ : ζ : L� → F is α-Hölder
}
.

Theorem D Let � be a Zariski-dense convex cocompact group of Isom+ H
k and

consider a Zariski-dense hyperconvex representation ρ : � → G. Assume there exists
(ϕ ∈ a+)∗ such that

αρhϕ = h�

θ(bara+)

ϕ(bara+)
,

where θ ∈ � is any simple root, thenρ extends as an isomorphismρ : Isom+ H
k → G.

Theorem D together with a theorem of Guichard (11.1 below) give the following
corollary whose proof is postponed to the end of this article. Recall that � is a closed
oriented hyperbolic surface.

Corollary 3.4 Let f : π1� → PSL(2,R) be a hyperbolization of � and consider a
representation in the Hitchin component ρ : π1� → PGL(d,R). Then

αρhρ ≤ 2

d − 1
and αρHρ ≤ 2

d − 1
,
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and either equality holds only if ρ = τd ◦ f, where τd : PSL(2,R) → PSL(d,R) is
the irreducible representation.

Remark that if ζ : ∂∞π1� → F is the equivariant map of a Hitchin representation
then, by definition, it is less (or equally) regular than ξ = ζ1 : ∂∞π1� → P(Rd).

Hence, even though we obtain a much better bound on αρhρ, we do not know if this
is produced by a decay of regularity of the map ζ.

4 Reparametrizations and thermodynamic formalism

Let X be a compact metric space and let φ = (φt : X → X)t∈R be a continuous flow
on X without fixed points. Consider a positive continuous function f : X → R

∗+ and
define κ : X × R → R by

κ(x, t) =
∫ t

0
f φs(x)ds. (3)

The function κ has the cocycle property κ(x, t + s) = κ(φt x, s) + κ(x, t) for every
t, s ∈ R and x ∈ X.

Since f > 0 and X is compact, f has a positive minimum and κ(x, ·) is an
increasing homeomorphism of R. We then have a map α : X × R → R such that

α(x, κ(x, t)) = κ(x, α(x, t)) = t, (4)

for every (x, t) ∈ X × R.

Definition 4.1 The reparametrization of φ by f is the flow ψ = ψ f = {ψt : X →
X}t∈R defined by ψt (x) = φα(x,t)(x). If f is Hölder-continuous we will say that ψ is
a Hölder reparametrization of φ.

A function U : X → R is C1 in the direction of the flow φ if for every p ∈ X the
function t �→ U (φt (p)) is of class C1, and the function

p �→ ∂

∂t

∣
∣
∣
∣
t=0

U (φt (p))

is continuous. Two Hölder-continuous functions f, g : X → R are Livšic-
cohomologous if there exists a continuous function U : X → R, C1 in the direction
of the flow, such that for all p ∈ X one has

f (p) − g(p) = ∂

∂t

∣
∣
∣
∣
t=0

U (φt (p)).

Remark 4.2 If f, g : X → R
∗+ are continuous and Livšic-cohomologous the repara-

metrization of φ by f is conjugated to the reparametrization by g, i.e. there exists a
homeomorphism h : X → X such that for all p ∈ X and t ∈ R
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462 A. Sambarino

h
(
ψ

f
t p

)
= ψ

g
t (hp).

Let ψ be the reparametrization of φ by f : X → R
∗+. If τ is a periodic orbit of φ

of period p(τ ), then the period of τ for ψ is

∫

τ

f =
∫ p(τ )

0
f (φs(x))ds, (5)

where x ∈ τ. If m is a φ-invariant probability measure on X, the probability measure
m# defined by

dm#

dm
(·) = f (·)

/∫
f dm,

isψ-invariant. This relation between invariant probabilitymeasures induces a bijection
and Abramov [1] relates the corresponding metric entropies:

h(ψ, m#) = h(φ, m)

/∫
f dm. (6)

Denote byMφ the set of φ-invariant probability measures. The pressure of a con-
tinuous function f : X → R is defined by

P(φ, f ) = sup
m∈Mφ

h(φ, m) +
∫

X
f dm.

A probability m such that the supremum is attained is called an equilibrium state of f.
An equilibrium state for f ≡ 0 is called a probability of maximal entropy, its entropy
is called the topological entropy of φ and is denoted by htop(φ).

Lemma 4.3 [20, Section 2] Let ψ be the reparametrization of φ by f : X → R
∗+,

and assume that htop(ψ) is finite. Then m �→ m# induces a bijection between the set
of equilibrium states of −htop(ψ) f and the set of probability measures of maximal
entropy of ψ.

4.1 Metric Anosov flows

Wewill now define metric Anosov flows, the transfer of classical results from axiom A
flows to this more general setting is provided by Pollicott’s work [19] and references
therein.

As before φ denotes a continuous flow on the compact metric space X. For ε > 0
one defines the local stable set of x by

W s
ε (x) = {y ∈ X : d(φt x, φt y) ≤ ε ∀t > 0 and d(φt x, φt y) → 0 as t → ∞}

and the local unstable set by
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W u
ε (x)={y ∈ X : d(φ−t x, φ−t y)≤ε ∀t >0 and d(φ−t x, φ−t y)→0 as t →∞}.

Definition 4.4 We will say that φ is a metric Anosov flow if the following holds:

– There exist positive constants C, λ and ε such that for every x ∈ X, every y ∈
W s

ε (x) and every t > 0 one has

d(φt (x), φt (y)) ≤ Ce−λt

and such that for every y ∈ W u
ε (x) one has

d(φ−t (x), φ−t (y)) ≤ Ce−λt .

– There exists a continuous map ν : {(x, y) ∈ X × X : d(x, y) < δ} → R such that,
ν(x, y) is the unique value such that W u

ε (φνx)∩ W s
ε (y) is non empty and consists

of exactly one point.

A flow is said to be transitive if it has a dense orbit. Anosov’s closing Lemma is a
standard dynamical tool in hyperbolic dynamics, see Sigmund [21].

Theorem 4.5 (Anosov’s closing Lemma) Let φ be transitive metric Anosov flow, then
periodic orbits are dense in Mφ.

The following is standard in the study of Ergodic Theory of Anosov flows.

Proposition 4.6 (Bowen-Ruelle [7]) Let φ be a transitive metric Anosov flow. Then
given a Hölder-continuous function f : X → R there exists a unique equilibrium
state for f. If two functions have the same equilibrium state their difference is Livšic-
cohomologous to a constant.

We will need the following immediate lemma.

Lemma 4.7 Let φ be a metric Anosov flow on X and let f : X → R
∗+ be Hölder-

continuous. Denote by

h f = lim
t→∞

1

t
log #

{
τperiodic :

∫

τ

f ≤ t

}
,

then

h(φ, m−h f f )

h f
=

∫
f dm−h f f .

Proof Let ψ be the reparametrization of φ by f. The flow ψ is still a metric Anosov
flow and hence its topological entropy is the exponential growth rate of its periodic
orbits, i.e. the metric entropy of ψ is h f (recall Eq. (5)). The proof is completed by
applying Lemma 4.3 and Abramov’s formula (6). ��
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5 CAT(−1) spaces

The standard reference for this section is Bourdon [5]. Consider a CAT(−1) space X
and ∂∞ X its visual boundary. The Busseman function of X, B : ∂∞ X × X × X → R,

is defined by

B(z, p, q) = Bz(p, q) = lim
s→∞ dX (p, σ (s)) − dX (q, σ (s)),

where σ : [0,∞) → X is any geodesic ray such that σ(∞) = z.
Denote by

∂∞(2) X = ∂∞ X × ∂∞ X − {(x, x) : x ∈ ∂∞ X}

and fix a point o ∈ X. The Gromov product of X based on o, [·, ·]o : ∂∞(2) X → R,

is defined by

[x, y]o = 1

2
(Bx (o, p) + By(o, p)),

where p is any point in the geodesic joining x and y. Remark that [x, y]o → ∞ as y
approaches x .The visual metric on ∂∞ X based on o, is defined by δo(x, y) = e−[x,y]o .

Since X is CAT(−1) this is in fact a distance on ∂∞ X.

For γ ∈ Isom X, denote by |γ | = inf p∈X dX (p, γ p) its translation length. If γ is
hyperbolic then one has

|γ | = Bγ+(γ −1o, o)

for any o ∈ X, where γ+ is the attractor of γ on ∂∞ X.

Lemma 5.1 Consider a hyperbolic element γ ∈ Isom X, then for any x ∈ ∂∞ X −
{γ−} one has

lim
n→∞

log δo(γ
n x, γ+)

n
= −|γ |.

Proof This is standard (Yue [24]). Fix two points x, z ∈ ∂∞ X, then for every γ ∈
Isom X one has

δo(γ z, γ x) = e
1
2 (Bγ z(γ o,o)+Bγ x (γ o,o))δo(z, x).

Hence, for a given ε there exists a neighborhood V of z such that, for every x ∈ V
one has

1 − ε ≤ δ0(γ z, γ x)

δo(z, x)
e−Bγ z(γ o,o) ≤ 1 + ε.
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Assume now that γ is hyperbolic, consider z = γ+ and choose V with the additional
property γ V ⊂ V . Fix ε > 0 and assume that x ∈ V, then one has

(1 − ε)n ≤ δo(γ+, γ n x)

δo(γ+, x)
e−nBγ+ (γ o,o) ≤ (1 + ε)n .

Taking logarithm and dividing by n one obtains the desired conclusion. If x /∈ V, then
a big enough power γ N x does lie in V (recall x �= γ−), and one repeats the argument.

��
For a discrete subgroup � of Isom X denote by L� its limit set on ∂∞ X. Consider

the space Ũ� defined by

{σ : (−∞,∞) → X : σ is a complete geodesic withσ(−∞), σ (∞) ∈ L�}.

The group � naturally acts on Ũ� and we denote by U� = �\Ũ� its quotient. We
will say that � is convex cocompact if the space U� is compact. The following is a
standard consequence of Morse’s lemma.

Proposition 5.2 (c.f. Bourdon [5]) Consider a hyperbolic group � and ρ : � →
Isom X a (faithful) convex cocompact action on a CAT(−1) space X. Then there
exists a Hölder-continuous equivariant map ξ : ∂∞� → Lρ�.

Remark 5.3 Throughout this work we will fix a convex cocompact action of � on X,

hence we allow ourselves to naturally identify L� to ∂∞� and to refer to the space
U� as only depending on �.

Given two convex cocompact actions of �, the regularity of the equivariant map
between their respective limit sets is directly related to the ratios of the periods:

Lemma 5.4 Consider a convex cocompact group � of X and ρ : � → Isom Y a
convex cocompact action on a CAT(−1) space Y. Then for every non torsion γ ∈ �,

one has

α ≤ |ργ |
|γ | ,

when ξ is α-Hölder.

Proof Consider a non-torsion γ ∈ �. Lemma 5.1 states that for any x ∈ ∂∞ X −{γ−},
one has

|ργ | = lim
n→∞

log d(ργ n(ξ x), (ργ )+)

n
= lim

n→∞
log d(ξ(γ n x), ξ(γ+))

n
,

since ξ is equivariant. Hölder continuity of ξ implies that the last quantity is bounded
above by

lim
n→∞

log K δo(γ
n x, γ+)α

n
= −α|γ |,
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again using Lemma 5.1. Thus, for every non-torsion γ ∈ �, one has

α ≤ |ργ |
|γ | .

This finishes the proof. ��
The spaceU� is naturally equippedwith a flowφ = {φt : U� → U�}t∈R simply by

changing the parametrization of a given complete geodesic. This is called the geodesic
flow of �. The following theorem relates this section to the preceding one.

Theorem 5.5 (c.f. Bourdon [5]) Let � be a convex cocompact group of Isom X. Then
the geodesic flow of � is a metric Anosov flow. The topological entropy of the geodesic
flow is hence

h� = lim
t→∞

1

t
log # {[γ ] ∈ [�] non-torsion : |γ | ≤ t} .

5.1 Hölder cocycles

Wewill now focus onHölder cocycles on ∂∞�.Themain references for this subsection
are Ledrappier [17] and [20, Section 5].

Definition 5.6 A Hölder cocycle is a function c : � × ∂∞� → R such that

c(γ0γ1, x) = c(γ0, γ1x) + c(γ1, x)

for any γ0, γ1 ∈ � and x ∈ ∂∞� and where c(γ, ·) is a Hölder map for every γ ∈ �

(the same exponent is assumed for every γ ∈ �).

Given a Hölder cocycle c and γ ∈ � − {e}, the period of γ for c is defined by

�c(γ ) = c(γ, γ+),

where γ+ is the attractive fixed point of γ on ∂∞�. The cocycle property implies that
the period of γ only depends on its conjugacy class [γ ] ∈ [�].

Two Hölder cocycles c, c′ : � × ∂∞� → R are cohomologous if there exists a
Hölder-continuous function U : ∂∞� → R such that, for all γ ∈ � one has

c(γ, x) − c′(γ, x) = U (γ x) − U (x).

One easily deduces from the definition that the set of periods of a Hölder cocycle, is
a cohomological invariant.

Theorem 5.7 (Ledrappier [17]) Two Hölder cocycles are cohomologous if and only if
their periods coincide for every non-torsion γ ∈ �. For a given Hölder cocycle c there
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exists a Hölder-continuous function fc : U� → R such that for every non-torsion [γ ]
one has

∫

[γ ]
fc = �c(γ ).

If c is cohomologous to c′ then fc is Livšic-cohomologous to fc′ .

We are interested in cocycles whose periods are non-negative, i.e. such that �c(γ ) ≥
0 for every non-torsion γ ∈ �. The entropy2 of such cocycle is defined by

hc = lim sup
t→∞

1

t
log # {[γ ] ∈ [�] non-torsion : �c(γ ) ≤ t} ∈ R+ ∪ {∞}.

The Busseman function induces a Hölder cocycle on ∂∞� as follows. Fix a point
o ∈ X, consider the equivariant map ξ : ∂∞� → L� and define σ� : � × ∂∞� → R

by

σ�(γ, x) = Bξ(x)(γ
−1o, o).

The period σ�(γ, γ+) = |γ | is the length of the closed geodesic associated to γ, and
the entropy of σ� is h�.

Lemma 5.8 [20, Section 3] Let c be a Hölder cocycle with hc ∈ (0,∞), then fc is
Livšic-cohomologous to a positive function.

Lemma 5.9 Consider a Hölder cocycle c with finite and positive entropy. Then there
exists a positive number L(c), and a sequence γn → ∞ in �, such that

�c(γn)

|γn| → L(c) ≤ h�

hc
,

as n → ∞. Moreover, if L(c) = h�/hc, then there exists a constant κ > 0, such that
c and κσ� are cohomologous.

In the language of [8], one has L(c)I( fc, 1) = 1, and the lemma is direct conse-
quence of [8, Proposition 7.7]. Nevertheless, we give a proof for completeness.

Proof Applying Lemma 5.8, there exists a positive, Hölder-continuous function fc :
U� → R

∗+ such that, for every non-torsion conjugacy class [γ ] of [�], one has
∫

[γ ]
fc = �c(γ ).

2 In [20] this is called the exponential growth rate of the cocycle.
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Denote by m−hc fc the equilibrium state of −hc fc and consider a sequence of periodic
orbits {[γn]} such that

Lebγn

|γn| → m−hc fc ,

as n → ∞. The existence of this sequence is guaranteed by Anosov’s closing
Lemma 4.5. Thus,

�c(γn)

|γn| = 1

|γn|
∫

[γn ]
f →

∫
f dm−hc fc

which, using Lemma 4.7, is equal to

h(φ, m−hc fc )

hc
.

Define L(c) = h(φ, m−hc fc )/hc.

Recall that h� is the maximal entropy of φ, hence L(c) ≤ h�/hc and the equality
L(c) = h�/hc implies that m−hρ fc is the measure of maximal entropy of φ. Thus,
Proposition 4.6 implies that the function fc is Livšic-cohomologous to a constant and
the proof is completed. ��

If ρ : � → Isom(Y ) is a convex cocompact action on a CAT(−1) space Y, denote
by

αρ = sup
{
α ∈ R

∗+ : the equivariant map ξ : L� → Lρ� is α-Hölder
}
.

We can now prove the following proposition stated in the Introduction, this is a simpler
version of the arguments for Theorem A.

Proposition 5.10 Consider a convex cocompact group � of X and consider a convex
cocompact action ρ : � → Isom(Y ), where Y is CAT(−1), such that αρhρ = h�.

Then the Hölder cocycles σρ� and αρσ� are cohomologous.

Proof Recall that hρ is the entropy of the Hölder cocycle σρ�, hence hρ ∈ (0,∞).

Applying Lemma 5.9 to the cocycle σρ� one obtains a sequence {γn} in � such that

�c(γn)

|γn| → L(σρ�) ≤ h�

hρ

.

Using Lemma 5.4 one has

αρ ≤ |ργn|
|γn| ≤ L(σρ�)(1 + ε) ≤ h�

hρ

(1 + ε),

for a given ε > 0 and big enough n.The equalityαρhρ = h� impliesL(σρ�) = h�/hρ

and hence there exists κ such that σρ� and κσ� are cohomologous. Again αρhρ = h�

implies κ = αρ. ��
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6 Convex representations

Let � be a convex cocompact isometry group of a CAT(−1) space.

Definition 6.1 A representation ρ : � → PGL(d,R) is convex if there exists a ρ-
equivariant Hölder-continuous map

(ξ, ξ∗) : ∂∞� → P(Rd) × P((Rd)∗),

such that Rd = ξ(x) ⊕ ker ξ∗(y) whenever x �= y.

Lemma 6.2 Let ρ : � → PGL(d,R) be a convex representation, then the action of
ρ� on 〈ξ(∂∞�)〉 is irreducible.

Proof Consider W ⊂ 〈ξ(∂∞�)〉 a ρ�-invariant subspace. Considerw ∈ W and write

w =
k∑

i=1

αivi

where vi ∈ ξ(xi ) for k-points xi ∈ ∂∞�. Consider now some non-torsion γ ∈ � such
that γ− /∈ {x1, . . . , xk}. We then have γ n xi → γ+ and hence Rργ n(w) → ξ(γ+) in
P(Rd). Thus ξ(γ+) ∈ W, since W is ρ�-invariant one has

ξ(∂∞�) = ξ(� · γ+) ⊂ W.

This finishes the proof. ��
We say that g ∈ PGL(d,R) is proximal if it has a unique complex eigenvalue of

maximal modulus, and its generalized eigenspace is one dimensional. This eigenvalue
is necessarily real, and its modulus is equal to exp λ1(g).Denote by g+ the g-fixed line
ofRd consisting of eigenvectors of this eigenvalue and g− the g-invariant complement
of g+ (i.e. Rd = g+ ⊕ g−). The line g+ is an attractor on P(Rd) for the action of g,

and g− is the repelling hyperplane.

Lemma 6.3 [20, Section 3] Let ρ : � → PGL(d,R) be a convex irreducible rep-
resentation. Then for every non-torsion element γ ∈ �, ρ(γ ) is proximal, ξ(γ+)

is its attractive fixed line and ξ∗(γ−) is the repelling hyperplane. Consequently
ξ(x) ⊂ ξ∗(x) for every x ∈ ∂∞�.

Fix now a norm ‖ ‖ on Rd . We define the Hölder cocycles βρ, βρ : � × ∂∞� → R

by

βρ(γ, x) = log
‖ρ(γ )v‖

‖v‖ and βρ(γ, x) = log
‖θ ◦ ρ(γ −1)‖

‖θ‖ ,

for a non zero v ∈ ξ(x), and a non zero linear form θ ∈ ξ∗(x). Lemma 6.3 implies
the following.

Lemma 6.4 [20, Section 3] Assume ρ is convex and irreducible, then for every non-
torsion γ ∈ � one has �βρ (γ ) = λ1(ργ ) and �βρ

(γ ) = λ1(ργ −1) = −λd(ργ ).
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6.1 Adjoint representation

Given an irreducible convex representation ρ : � → PGL(d,R) we will now show
how the Adjoint representation Ad : PGL(d,R) → PGL(sl(d,R)) induces again an
irreducible convex representation Aρ such that

λ1(Aργ ) = λ1(ργ ) − λd(ργ ).

This is standard.
Recall that the adjoint representation is defined by conjugation Ad(g)(T ) =

gT g−1, where T ∈ sl(d,R) = {traceless endomorphisms of Rd}. Consider F∗(Rd)

the space of incomplete flags consisting of a line contained on a hyperplane,

F∗(Rd) = {(v, θ) ∈ P(Rd) × P((Rd)∗) : θ(v) = 0}.

Given (v, θ) ∈ F∗ define M(v, θ) ∈ P(sl(d,R)) by M(v, θ)(w) = θ(w)v and
define �(v, θ) ∈ P(sl(d,R)∗) by �(v, θ)(T ) = θ(T v). These maps induce a map

(M,�) : F∗(Rd) → F∗(sl(d,R)).

Say that two points (v, θ), (w, ϕ) ∈ F∗(Rd) are in general position if

θ(w) �= 0 and ϕ(v) �= 0.

Lemma 6.5 The maps M and � are Ad-equivariant. If (v, θ), (w, ϕ) ∈ F∗(Rd) are
in general position, the points

(M,�)(v, θ) and (M,�)(w, ϕ)

are also in general position. If g and g−1 are proximal then Ad g is proximal and its
attractor is M(g+, (g−1)−).

The proof of the lemma is standard and direct.

Lemma 6.6 Consider a convex irreducible representation ρ : � → PGL(d,R) and
consider the map η = M ◦ (ξ, ξ∗) : ∂∞� → P(sl(d,R)). Denote by Vρ = 〈η(∂∞�)〉
and

η∗ = (� ◦ (ξ, ξ∗)) ∩ Vρ.

Then Aρ = Ad ◦ρ|Vρ : � → PGL(Vρ) is an irreducible convex representation with
equivariant maps (η, η∗), moreover for a non-torsion γ ∈ �, one has

λ1(Aργ ) = λ1(ργ ) − λd(ργ ).

We will say that Aρ is the irreducible adjoint representation of ρ.
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Proof Irreducibility follows from Lemma 6.2. The other properties are consequence
of Lemma 6.5, together with Lemma 6.3. The last statement follows from the fact that,
if γ ∈ � is non-torsion, then ξ∗(γ+) is the repelling hyperplane of ργ −1 and hence

M(ξ(γ+), ξ∗(γ+)),

the attractor of Aργ, belongs to Vρ. ��

6.2 Regularity

The following lemma is from Benoist [3].

Lemma 6.7 (Benoist [3]) Let g ∈ PGL(V ) be proximal and let Vλ2(g) be the sum of
the characteristic spaces of g whose associated eigenvalue is of modulus exp λ2(g).

Then for every v /∈ P(g−), with non zero component in Vλ2(g), one has

lim
n→∞

log dP(gn(v), g+)

n
= λ2(g) − λ1(g).

The following lemma relates the Hölder exponent of the equivariant map and eigen-
values of ρ(γ ) for non-torsion γ ∈ �.

Lemma 6.8 Let ρ : � → PGL(d,R) be a convex irreducible representation then, for
every non torsion γ ∈ �, one has

α ≤ min

{
λ1(ργ ) − λ2(ργ )

|γ | ,
λd−1(ργ ) − λd(ργ )

|γ |
}

,

when ξ is α-Hölder.

Proof Consider a non-torsion γ ∈ �. Since ρ is irreducible, there exists x ∈ ∂∞� −
{γ−} such that ξ(x) has non zero projection to Vλ2(ργ ), the characteristic space of ργ

of eigenvalue of modulus exp λ2(ργ ). Lemma 6.3 states that ξ(γ+) is the attractor of
ργ. Applying Benoist’s Lemma 6.7 we obtain

λ2(ργ ) − λ1(ργ ) = lim
n→∞

log dP(ργ n(ξ x), ξ(γ+))

n
= lim

n→∞
log dP(ξ(γ n x), ξ(γ+))

n
,

since ξ is equivariant. Hölder continuity of ξ implies that the last quantity is smaller
than

lim
n→∞

log K δo(γ
n x, γ+)α

n
= −α|γ |,

according to Lemma 5.1. Thus, for every non-torsion γ ∈ �, one has

α ≤ λ1(ργ ) − λ2(ργ )

|γ | ,
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applying this inequality to γ −1 one obtains

α ≤ λd−1(ργ ) − λd(ργ )

|γ | .

��

7 Proof of Theorem A

This section is devoted to the proof of Theorem A. Consider an irreducible convex
representation ρ : � → PGL(d,R). Proposition 1.4 states that hρ ∈ (0,∞). Since
Aρ is also convex and irreducible one gets Hρ = 2hAρ

∈ (0,∞).

Denote by c either the Hölder cocyle

βρ or
βρ + βρ

2
.

Remark that, either hc = hρ or hc = Hρ.

Using Lemma 5.9 for c, one obtains a sequence {γn} in �, such that

�c(γn)

|γn| → L(c) ≤ h�

hc
.

Lemma 6.8 then gives

α ≤ min

{
(λ1 − λ2)(ργn)

|γn| ,
(λd−1 − λd)(ργn)

|γn|
}

≤ min

{
(λ1 − λ2)(ργn)

�c(γn)
,
(λd−1 − λd)(ργn)

�c(γn)

}
L(c)(1 + ε), (7)

for a given ε and big enough n.

We will now distinguish the two cases c = βρ and c = (βρ + βρ)/2 separately:

First case: c = βρ In this case �c(γ ) = λ1(ργ ), hc = hρ (the spectral entropy of ρ)

and Eq. (7) is

αhρ

h�

≤ α

L(βρ)
≤ min

{
λ1 − λ2

λ1
(ργn),

λd−1 − λd

λ1
(ργn)

}
(1 + ε).

We will now maximize the function V1 : P(a+) → R defined by

V1(a1, . . . , ad) = min

{
a1 − a2

a1
,

ad−1 − ad

a1

}
.

Recall that

a+ = {(a1, . . . , ad) ∈ R
d : a1 + · · · + ad = 0 and a1 ≥ · · · ≥ ad}

and consider a ∈ a+. We will distinguish two cases.
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Assume a2 ≥ 0: In this case one has

V1(a) ≤ a1 − a2
a1

= 1 − a2
a1

≤ 1.

Assume a2 < 0:

Lemma 7.1 In this case one has a1−a2 > ad−1−ad , henceV1(a) = (ad−1−ad)/a1.

Proof Recall that ak+1−ak ≤ 0 for all k ∈ {1, . . . , d −1}.Using the following tricky
equality (recall d ≥ 3)

a1 + (d − 1)a2 +
d−1∑

k=2

(d − k)(ak+1 − ak) = a1 + a2 + · · · + ad = 0,

one obtains

a1 − a2 + ad − ad−1 = −da2 −
d−2∑

k=2

(d − k)(ak+1 − ak) > 0.

Hence a1 − a2 > ad−1 − ad . ��
Since 0 > a2 ≥ · · · ≥ ad one has

a1 = −a2 − · · · − ad > −(ad−1 + ad) ≥ 0.

Given that d ≥ 3 one obtains, ad−1 < 0 < −ad−1 and subtracting ad on each side
one gets ad−1 − ad < −(ad−1 + ad) < a1, finally

V1(a) = ad−1 − ad

a1
< 1.

In any case one obtains V1 ≤ 1. We then get

αhρ

h�

≤ α

L(βρ)
≤ V1(λ(ργn))(1 + ε) ≤ 1 + ε. (8)

Since ε is arbitrary, we obtain the desired inequality.

Second case: c = (βρ + βρ)/2

In this case we have �c(γ ) = (λ1(ργ ) − λd(ργ ))/2, hc = Hρ (the Hilbert entropy of
ρ) and inequality (7) is

αHρ

h�

≤ α

L((βρ + βρ)/2)
≤ min

{
λ1 − λ2

(λ1 − λd)/2
(ργn),

λd−1 − λd

(λ1 − λd)/2
(ργn)

}
(1 + ε),

for all n large enough.
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We will now maximize the function V2 : P(a+) → R defined by

V2(a1, . . . , ad) = min

{
a1 − a2

(a1 − ad)/2
,

ad−1 − ad

(a1 − ad)/2

}
.

Consider a ∈ a+ such that

x = a1 − a2 ≤ ad−1 − ad = y.

For such a one has a2 = a1 − x and ad−1 = y + ad . Since d ≥ 3 one has a2 ≥ ad−1
hence a1 − x ≥ ad + y ≥ ad + x and thus

V2(a) = 2x

a1 − ad
≤ 1.

If, on the opposite, one has a ∈ a+ such that

x = ad−1 − ad ≤ a1 − a2 = y,

then, again the fact that a2 ≥ ad−1 implies a1 − x ≥ a1 − y ≥ ad + x and thus

V2(a) = 2x

a1 − ad
≤ 1.

In any case one obtains V2 ≤ 1. We then get

αHρ

h�

≤ α

L((βρ + βρ)/2)
≤ V2(λ(ργn))(1 + ε) ≤ 1 + ε. (9)

Since ε is arbitrary we obtain the desired inequality. This finishes the proof. ��
Denote by αρ = sup{α ∈ R

∗+ : ξ is α-Hölder}. From the proof one obtains the
following.

Proposition 7.2 Let ρ : � → PGL(d,R) be an irreducible convex representation.

(i) If αρhρ = h�, then βρ and αρσ� are cohomologous.
(ii) If αρHρ = h�, then βρ + βρ and 2αρσ� are cohomologous.

Proof Let us prove (i), the other being completely analogous. If one has αρhρ = h�,

then inequality (8) implies L(βρ) = h�/hρ, and hence using Lemma 5.9, there exists
κ > 0 such that, βρ and κσ� are cohomologous. Equality αρhρ = h� implies then
αρ = κ. ��
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8 Proximal representations and the limit cone of Benoist

We will freely use the notations of Sect. 3.1. For an irreducible representation φ :
G → PGL(d,R), denote by χφ ∈ a∗ its restricted highest weight. For every g ∈ G
one has, by definition,

λ1(φg) = χφ(λ(g)). (10)

The representation φ is proximal if there exists g ∈ G such that φ(g) is a proximal
matrix. One has the following standard proposition in Representation Theory.

Proposition 8.1 (see Benoist [4, Section 2.2]) The set of restricted weights of a∗ is in
bijection with (equivalence classes of) irreducible proximal representations of G.

Let {ωθ }θ∈� be the set of fundamental weights of �. We will need the following
result of Tits [23].

Proposition 8.2 (Tits [23])For each θ ∈ �, there exists a finite dimensional proximal
irreducible representation �θ : G → PGL(Vθ ) such that the restricted highest weight
χθ of �θ is an integer multiple of ωθ .

We will now specialize to the group Isom+ H
k . The Cartan subspace aHk is 1-

dimensional and is thus identified with R. The Jordan projection of γ ∈ Isom+ H
k

is

λHk (γ ) = inf
p∈Hk

dHk (p, γ p),

which coincides with the translation length |γ | when γ is a hyperbolic element.

Remark 8.3 If ρ : Isom+ H
k → PGL(k + 1,R) is the Klein model of Hk and γ ∈

Isom+ H
k is hyperbolic then λ1(ργ ) = |γ | and λ1(Ad ργ ) = 2|γ |.

8.1 The limit cone of Benoist

Let � be a subgroup of G. The limit cone of � is the closed cone of a+ generated by

{λ(g) : g ∈ �}

and we denote it byL�. One has the following theorem of Benoist [2].

Theorem 8.4 (Benoist [2]) Let � be a Zariski-dense discrete subgroup of G, then
L� has non-empty interior.

Let Gi i = 1, 2 be connected center free real-algebraic semisimple Lie groups
without compact factors, and denote by aGi aCartan subspace ofGi .Themain purpose
of this section is the following corollary personally communicated by Quint.
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Corollary 8.5 (Quint) Let ρ : � → G1 and η : � → G2 be Zariski-dense. Assume
there exist ϕ1 ∈ (a+

G1
)∗ and ϕ2 ∈ (a+

G2
)∗ such that for all g ∈ � one has

ϕ1(λG1(ρg)) = ϕ2(λG2(ηg)).

Then η ◦ ρ−1 : ρ(�) → η(�) extends to an isomorphism G1 → G2.

Proof Let H be theZariski closure of the product representationρ×η : � → G1×G2,

defined by g �→ (ρg, ηg). Since the equation

ϕ1(λG1(g1)) = ϕ2(λG2(g2)) (11)

holds for every pair (g1, g2) ∈ ρ × η (�), Benoist’s [2] Theorem 8.4 implies that the
same relation holds for every pair (g1, g2) ∈ H.

The group H ∩(G1×{e}) is a normal subgroup of G1, it is hence (up to finite index)
a product of simple factors. Equation (11) implies that for all (g, e) ∈ H ∩ (Gρ ×{e})
necessarily one has ϕ1(λG1g) = 0. Since ϕ1(v) > 0 for all v ∈ a+

G1
− {0}, one has

λG1(g) = 0. This implies that H ∩ (G1 × {e}) is a normal compact subgroup of
G1. Since G1 does not have compact factors and is center free one concludes that
H ∩ (Gρ × e) = {e}.

The same argument implies that H ∩ ({e} × G2) = {e} and hence H is the graph
of an isomorphism extending ηρ−1. ��

We will need the following lemma.

Lemma 8.6 (Quint) Let � be a subgroup of GL(d,R) acting irreducibly on R
d and

with a proximal element. Then the Zariski closure of � is a center free semisimple Lie
group without compact factors.

Proof Assume that g ∈ PGL(d,R) commutes with all elements on �, and let γ ∈ �

be proximal. The attractor of γ is fixed by g and hence gv = av for some a ∈ R

and all v ∈ γ+. One easily sees that if h ∈ � is another proximal element of � then
necessarily gw = aw for w ∈ h+. Thus, g acts as an homothety on the vector space
spanned by the attracting lines of proximal elements of �. Since � acts irreducibly
this vector space is Rd . The Zariski closure G of � is hence center free.

Since � acts irreducibly so does G, hence G is a center free reductive Lie group,
i.e. a semisimple Lie group without center.

Let K be the maximal normal connected compact subgroup of G, and let H be the
product of the non-compact Zariski connected, simple factors of G. Then H and K
commute and H K has finite index in G.

Consider now a proximal element g ∈ G. Replacing g by a large enough power,
we can assume that g = hk for some h ∈ H and k ∈ K . Since eigenvalues of k have
modulus 1 and k and h commute, we conclude that h is proximal. So we can assume
that g ∈ H.

Since g and K commute, the attracting line of g is fixed by K , and, since K is
connected, each vector of this attracting line is fixed by K . Let W be the vector space
of K -fixed vectors on R

d , then W is G-invariant (K is normal in G) and nonzero.
Since G is irreducible on obtains W = R

d and K = {e}. ��
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9 Hyperconvex representations and Theorem C

Recall that � is a convex cocompact isometry group of a CAT(−1) space. We will
freely use the notations of Sect. 8. Let G be a real non-compact semi-simple Lie group,
and denote byF the Furstenberg boundary of the symmetric space of G. The product
F × F has a unique open G-orbit, denoted by F (2).

Definition 9.1 A representation ρ : � → G is hyperconvex if there exists a ρ-
equivariant Hölder-continuous map ζ : ∂∞� → F such that if x �= y are distinct
points in ∂∞�, then the pair (ζ(x), ζ(y)) belongs toF (2).

The following lemma relates hyperconvex representations to convex ones.

Lemma 9.2 If ρ : � → G is Zariski-dense and hyperconvex and � : G → PGL(V )

is a finite dimensional irreducible proximal representation, then the composition �◦ρ :
� → PGL(V ) is irreducible and convex.

Proof A proximal representation � : G → PGL(V ) induces a C∞ equivariant map
F → P(V ). Considering the dual representation �∗ : G → PGL(V ∗) one obtains
another equivariant map F → PGL(V ∗). The remainder of the statement follows
directly. ��

We need the following theorem from [20].

Theorem 9.3 [20, Section 7] Let ρ : � → G be a Zariski-dense hyperconvex repre-
sentation, then there exists a (vector valued) Hölder cocycle β : � × ∂∞� → a such
that, for every non-torsion conjugacy class [γ ] ∈ [�] one has, β(γ, γ+) = λ(ργ ). If
ϕ ∈ a∗ is such that ϕ|a+ − {0} > 0, then the Hölder cocycle βϕ = ϕ ◦ β has finite
and positive entropy.

Assume from now on that ρ : � → G is a Zariski-dense hyperconvex representa-
tion, and assume that ζ : L� → F is α-Hölder.

Lemma 9.4 For every simple root θ ∈ � and every non-torsion γ ∈ �, one has

α ≤ θ(λ(ργ ))

|γ | .

Proof Let �θ ◦ ρ : � → PGL(Vθ ) be the irreducible convex representation given by
Tits’s Proposition 8.2 and Lemma 9.2. One then has

θ(λ(ργ )) = λ1(�θ ◦ ργ ) − λ2(�θ ◦ ργ ).

The lemma follows from Lemma 6.8. ��

9.1 Proof of Theorem C

The proof is very similar to the proof of Theorem A. Consider the cocycle β : � ×
∂∞� → a given by Theorem 9.3, and consider ϕ ∈ a∗ such that ϕ|a+ − {0} > 0.
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Consider the Hölder cocycle βϕ = ϕ ◦ β. Theorem 9.3 states that hβϕ = hϕ is finite
and positive. Hence, Lemma 5.9 applies to the cocycle βϕ and one obtains a sequence
{γn} in � such that

ϕ(λ(ργn))

|γn| → L(βϕ) ≤ h�

hϕ

.

Analogous reasoning to Theorem A, together with Lemma 9.4, yields
αhϕ

h�

≤ α

L(βϕ)
≤ θ(λ(ργn))

ϕ(λ(ργn))
(1 + ε),

for every simple root θ ∈ �, and all big enough n. We now try to maximize the
function V : P(a+) → R defined by

V(a) = min
θ∈�

{
θ(a)

ϕ(a)

}
.

We need the following standard Linear Algebra lemma. Consider an n-dimensional
vector space W, a k-simplex is the convex hull of k + 1 points {x0, . . . , xk} in W such
that for every i ∈ {0, . . . , k} the set {x0, . . . , xk} − {xi } is linearly independent.

Lemma 9.5 Consider n + 1 affine linear forms ϕi : W → R on an n-dimensional
vector space V, such that

� =
n⋂

0

{v ∈ W : ϕi (v) ≥ 0}

is an n-dimensional simplex. Then

max
v∈�

min{ϕi (v) : i ∈ {0, . . . , n}},

is given in the point all the ϕi ’s coincide, i.e. in the unique v ∈ � such that

ϕ0(v) = ϕ1(v) = · · · = ϕn(v).

We continue with the proof of Theorem C. Fix a vector v in the interior of a+ such
thatϕ(v) �= 0 and consider themap T : ker ϕ → P(a) defined byw �→ R(v+w).This
map identifies ker ϕ with P(a) − P(ker ϕ). The functions Tθ : ker ϕ → R given by

Tθ (w) = θ(w + v)

ϕ(w + v)
= θ(v)

ϕ(v)
+ θ(w)

ϕ(v)

are affine functionals. Since ϕ is positive on the Weyl chamber a+ − {0}, we get that

� = T −1(P(a+)) = T −1

(

P

(
⋂

θ∈�

{θ ≥ 0}
))

=
⋂

θ∈�

{Tθ ≥ 0}

is a simplex of dimension dim a − 1 = dim ker ϕ.
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Remark that V ◦ T = min{Tθ : θ ∈ �}. Hence Lemma 9.5 implies that the
maximum of V ◦ T |� is realized where all the functions {Tθ : θ ∈ �} coincide, i.e.
in the set

{a ∈ a+ : θ1(a) = θ2(a) for every pair θ1, θ2 ∈ �}.

This is exactly the barycenter of the Weyl chamber bara+ .

Hence
αhϕ

h�

≤ α

L(βϕ)
≤ V(λ(ργn))(1 + ε) ≤ θ(bara+)

ϕ(bara+)
(1 + ε). (12)

This shows the desired inequality.

Remark 9.6 As in Theorem A, observe that equality in Eq. (12) implies that there
exists κ > 0 such that βϕ and κσ� are cohomologous.

10 Proof of rigidity statements

Let’s prove Theorem B (Corollary 3.1 and Theorem D are completely analogous).
Assume ρ : � → PGL(d,R) is a convex representation such that αρhρ = h�.

Proposition 7.2 implies that for all γ ∈ � one has

λ1(ργ ) = αρ |γ |.

Since ρ� is irreducible and proximal, and� is Zariski-dense in Isom+ H
k,Lemma 8.6

and Corollary 8.5 imply that ρ extends to ρ : Isom+ H
k → PGL(d,R). Hence, the

equivariant map ξ is the restriction of the C∞, ρ-equivariant map ξ : ∂∞H
k → P(Rd).

Thus, ξ is Lipschitz, i.e. αρ = 1. Proposition 8.1 together with Remark 8.3 imply that
ρ is the Klein model of Hk .

11 Proof of Corollary 3.4

Wewill nowprove the following corollary.Recall that� is a closed oriented hyperbolic
surface.

Corollary Let f : π1� → PSL(2,R) be a hyperbolization of �, and consider a
representation in the Hitchin component ρ : π1� → PSL(d,R). Denote by α the best
Hölder exponent of the equivariant map ζ : ∂∞H

2 → F . Then

αhρ ≤ 2

d − 1
and αHρ ≤ 2

d − 1
.

Either equality holds only if ρ = τd ◦ f, where τd : PSL(2,R) → PSL(d,R) is the
irreducible representation.

Denote by G the Zariski closure of ρ, since G is a semisimple Lie group without
compact factors ρ : π1� → G is again hyperconvex. Consider a a Cartan subspace
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of g, and let χ ∈ a∗ be the restricted highest weight of the (irreducible proximal)
representation G ⊂ PSL(d,R), i.e. if g ∈ G then χ(λ(g)) = λ1(g). Denote by
i : a → a the opposition involution of a associated to the choice of a+.

Remark that by definition the entropy of ρ relative to χ is the spectral entropy
hρ = hχ of ρ, and the entropy of ρ relative to

ϕ = χ + χ ◦ i

2

is the Hilbert entropy Hρ = hϕ of ρ. We will prove the corollary for the spectral
entropy, the other being completely analogous.

Theorem C asserts that

αhρ ≤ θ(bara+)

χ(bara+)
(13)

for any simple root θ ∈ � of a and where bara+ is the barycenter of the Weyl
chamber a+. Theorem D implies that equality in (13) can only hold if G is isomorphic
to PSL(2,R).

Guichard’s Theorem gives a finite list of possible groups G, i.e. of possible Zariski
closures of ρ(π1�). We will finish with an explicit computation showing that in all
possible cases one has

θ(bara+)

χ(bara+)
= 2

d − 1
.

The author would like to thank Olivier Guichard for discussions concerning his
work.

Theorem 11.1 (Guichard [11]) Let ρ : π1� → SL(d,R) be the lift of a represen-
tation in the Hitchin component, then the Zariski closure ρZ is either conjugate to
τd(SL(2,R)), SL(d,R) or conjugate to one of the following groups:

– Sp(2n,R) if d = 2n,

– SO(n, n + 1) if d = 2n + 1,
– G2 or SO(3, 4) if d = 7.

For i ∈ {1, . . . , k} we will denote by εi : Rk → R the function

εi (a1, . . . , ak) = ai .

We refer the reader to Knapp’s book [15] for the standard computations of simple
roots and highest weights that follow.

The τd(SL(2,R)) and SL(d,R) cases

Assume first that ρ(π1�) is Fuchsian, i.e. it is Zariski dense in τd(SL(2,R)).ACartan
subspace of sl(2,R) is a = {(a,−a) : a ∈ R} the Weyl chamber is a+ = {(a,−a) :
a ≥ 0} with simple root � = {2ε1}. The highest weight of the representation τd is
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χ(a,−a) = (d − 1)a. Hence

θ(bara+)

χ(bara+)
= 2a

(d − 1)a
= 2

d − 1
.

Suppose now that ρ(π1�) is Zariski dense in SL(d,R). The Cartan subspace of
sl(d,R) is a = {(a1, . . . , ad) ∈ R

d : a1 + · · · + ad = 0} and

a+ = {(a1, . . . , ad) ∈ a : a1 ≥ · · · ≥ ad},

the simple roots are

� = {θi (a1, . . . , ad) = ai − ai+1 : i ∈ {1, . . . , d − 1}}

and the barycenter is

bara+ = {((d − 1)t, (d − 3)t, . . . , (3 − d)t, (1 − d)t) : t ≥ 0}.

Hence for any θ ∈ � one has

θ(bara+)

χ(bara+)
= 2t

(d − 1)t
= 2

d − 1
.

The Sp(2n,R) case

Assume d = 2n and that the Zariski closure of ρ(π1�) is Sp(2n,R). Standard com-
putations show that a = R

n, and a Weyl chamber is

a+ = {(a1, . . . , an) : ai ≥ ai+1 i = 1, . . . , n − 1 and an ≥ 0}.

The set of simple roots associated to this Weyl chamber is

� = {εi − εi+1 : i = 1, . . . , n − 1} ∪ {2εn}.

The barycenter of the Weyl chamber is hence

bara+ = {((2n − 1)t, (2n − 3)t, . . . , 3t, t) : t ≥ 0}.

The highest weight of the representation Sp(2n,R) ⊂ SL(d,R) is χ(a1, . . . , an) =
a1. Finally, for any θ ∈ � one has

θ(bara+)

χ(bara+)
= 2t

(2n − 1)t
= 2

d − 1
.
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The SO(n, n+ 1) case

Suppose now that d = 2n + 1 and that the Zariski closure of ρ(π1�) is SO(n, n + 1).
Standard computations show that a = R

n, and a Weyl chamber is

a+ = {(a1, . . . , an) : ai ≥ ai+1 i = 1, . . . , n − 1 and an ≥ 0}.

The set of simple roots associated to this Weyl chamber is

� = {εi − εi+1 : i = 1, . . . , n − 1} ∪ {εn}.

The barycenter of the Weyl chamber is hence

bara+ = {(nt, (n − 1)t, . . . , 2t, t) : t ≥ 0}.

The highest weight of the representation SO(n, n+1) ⊂ SL(d,R) is χ(a1, . . . , an) =
a1. Finally, for any θ ∈ � one has

θ(bara+)

χ(bara+)
= t

nt
= 1

n
= 2

d − 1
.

The G2 case

Proof The remaining case is d = 7 and the Zariski closure of ρ(π1�) being the
exceptional simple Lie group G2 . We refer the reader to Knapp’s book [15, page 692]
for the following computations. In this case we have

a = {(a1, a2, a3) ∈ R
3 : a1 + a2 + a3 = 0},

a Weyl chamber is

a+ = {(a1, a2, a3) : a1 ≥ a2 and − 2a1 + a2 + a3 ≥ 0}.

The set of simple roots is

� = {ε1 − ε2,−2ε1 + ε2 + ε3},

and the barycenter of the Weyl chamber is hence

bara+ = {(−t,−4t, 5t) : t ≥ 0}.

The highest weight associated to the representation G2 → SL(7,R) is

χ = ω1 = 2(ε1 − ε2) − 2ε1 + ε2 + ε3 = ε3 − ε2.

Finally, for any θ ∈ � one has
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θ(bara+)

χ(bara+)
= 3t

5t + 4t
= 1

3
= 2

d − 1
.

This finishes the proof. ��
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