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ASYMPTOTIC PROPERTIES OF INFINITESIMAL
CHARACTERS AND APPLICATIONS

ANDRES SAMBARINO

ABSTRACT. Inspired by classical results by Benoist, we introduce and study
natural objects associated to an integrable tangent vector to the character va-
riety X(T",G) of a semi-group I', with values on a semi-simple real algebraic
group G of the non-compact type. We obtain non-empty interior of the cone
of Jordan variations and when G is split we obtain double-density results as-
sociated to these variations, giving in particular non-empty interior of the set
of length-normalized variations. We then apply the developed techniques to
study pressure forms on the space of Anosov representations, in particular to
higher-rank Teichmiiller spaces. Among other things we exhibit an explicit
functional ¢ € a* whose pressure form is compatible with Goldman’s sym-
plectic form at the Fuchsian points of the Hitchin component. We finally
exhibit a Diophantine equation that governs the degeneration of the Hausdorff
dimension of higher-quasi-circles.

CONTENTS

Introduction
Preliminaries

Part 1. Affine actions

3.

NS O

Margulis invariant: basics

The Affine Ratio and Affine Limit Cone

The case of reducible representations

The cocycle viewpoint: Zariski density

Compatible and 0-Anosov linear part, normalized Margulis spectra

Part 2. The cone of Jordan variations, normalizations, pressure

8.
9.

10.
11.

12.

Part

13.
14.
15.
16.
17.

Variation of eigenvalues and some consequences of Part 1
Zariski-density of elements with full variation
Theorem B: Base-point independence
The case of 19-Anosov representations: cohomological independence
and other consequences
The case of O-positive representations

3. Hitchin components

Necessary facts
Kostant lines
Pressure degenerations are Lie-theoretic
Pressure forms at the Fuchsian locus IT
Hausdorff dimension degenerations

1

24
24
30
35
36
39

40
41
43
46

o1
93

98
99
60
69
76
78



References 84

1. INTRODUCTION

Let T be a semi-group and G a connected semi-simple real-algebraic Lie group of
the non-compact type. The character variety of I' with values in G, of morphisms up
to conjugation, is denoted by X(I', G) = hom(T", G)/G. In this paper we investigate
several objects associated to an integrable tangent vector

veT,X(,G).

We will think of v as the (quotient projection of the) derivative of a curve (pt)se(—e,c)
in hom(T', G) with py = p and such that for every v € T" the curve ¢ — p;(7y) is real-
analytic in some neighborhood of 0.

Let a be a Cartan subspace of G, at C a a closed Weyl chamber and denote
by A : G — a* the Kostant-Jordan-Lyapunov-projection: up to signs, exp(A(g)) is
conjugated to the R-diagonalizable element of Jordan’s decomposition of g. Com-
monly, g is lozodromic if A(g) € inta™. For v € T we let A7 : X(T',G) — a be the

map A7(n) = A(n(v)) and

dNY (v) = %

its differential at v. For ¢ € a* we let ¢7 : X(I', G) — R be the composition
P =poX in p(A(n()))-

Recall that Benoist’s limit cone of p is defined by £, = {Ry - AY(p) : v € T'}. Its
dual (£,)* consists on linear forms which are non-negative on £,, i.e. of ¢ € a*
such that ¢|L, > 0.

_Mau) €

1.1. The cone of Jordan variations. We introduce the cone

VT, = {ﬂh -dAY(v) : v € T with loxodromic p(v)} Ca

and call it the cone of Jordan variations. For ¢ € int (£,)* we introduce the set of
normalized variations

Vi o {d?ﬂ(v)
¥ (p)

Since we are dealing with semi-simple G we need to rule off variations that occur
in proper normal subgroups of G. Let g = @,.; g be the decomposition of g
in simple ideals and assume we’ve chosen the Cartan subspaces a; of g; so that
a= @i a;. Let p; : a — a; be the associated projections. We will say that v has
full loxodromic variation if for every i € I one has p;(7#,) # {0}, so full stands
for 'non-trivial variation in every simple factor of G’ and loxodromic stands for 'the
variation is seen on loxodromic elements’. A « € I" with loxodromic p(y) has full
variation if Vi p; (dAY(v)) # 0.

Let us simplify terminology and say that v has Zariski-dense base point if v €
T,X(T,G) and p(T') is Zariski-dense in G.

The following statements can be found (respectively) in Corollary 8.4, Proposi-
tion 9.1 and Proposition 9.7.

: v € I' with loxodromic p('y)} Ca.
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Theorem A. Let v € T,X(TI',G) have Zariski-dense base point and full lozodromic
variation. Then, Vf, is convex and has non-empty interior. Moreover, full varia-
tion elements of p(T") are Zariski-dense in G and their Jordan projections intersect
any open subcone of L,. For every ¢ € int (£,)* the set V¥ is conver.

The most involved statement is to guarantee non-empty interior of 7_¢,. This is
of course analogous, and inspired by, the classical result by Benoist [3] stating that
if p(T") is Zariski-dense then £, is convex and has non-empty interior.

Theorem A is stablished by means of the affine geometry Gx aqg. If (g, x) € Gx g
has loxodromic linear part, i.e. g is loxodromic, then its Margulis projection is well
defined. This is a conjugacy invariant introduced by Margulis [54, 55] for the
affine group SO2,1 xR, when he proved existence of non-abelian free groups acting
properly discontinuously on R? by affine transformations. In the current context,
this projection was defined by Smilga [70].

The bridge between Theorem A and the affine geometry is given by Proposition
8.1 below, independently established Kassel-Smilga [41] and also by Ghosh [27] who
further requires that G is split. Recall that a variation v € T,X(T', G) induces a
1-cocycle u, : I' — g defined by

0

=5 - pe(7)p(7) 71, (1.1)

Uv(’Y)

and (p,u,) is a group morphism I' — G x g. Then, Proposition 8.1 states that the
variation of the Jordan projection dA(v) coincides with the a-coordinate of the
Margulis projection of (p(7), uy(y))-

We then study more general affine groups G x4 V' for a class of representations
¢ : G — SL(V) and establish non-empty interior results in this setting (Corollary
4.6 for irreducible ¢ and Corollary 6.6 when ¢ is reducible but disjoined). Similar
versions of Corollary 4.6 will also appear in Kassel-Smilga [41] and in Ghosh [29],
in particular [11] obtains the convexity stated in Theorem A.

In order to mimic Benoist’s proof in [3], we introduce the concept of Affine Ratio,
an invariant defined for four affine flags in general position; that can also be found
in the independent work of Ghosh [27] who deals with split groups (and also proves
convexity of spectrum in this case). For example, this invariant vanishes if the four
flags concur. We then rely on Smilga’s work [72] to relate the defect of additivity
of Margulis’s invariants to this Affine ratio. These results are achieved in Part 1,
however this viewpoint is used in the sequel, specially for Theorem C.

As a consequence we obtain the following. If H is rank 1 and simple, and p : I' —
H is convex co-cocompact, then we let Z(p) be the Hausdorff dimension of its limit
set. Recall from Bridgeman-Canary-Labourie-S. [14] that # is analytic about p.

Corollary (Corollary 11.5 - Deformations along level sets of % give non-proper
actions). Let H be the (identity component of the) isometry group of Hgy n # 3,
Hiy n > 2, or the Cayley hyperbolic plane. Let v € T,X(I',H) have Zariski-dense
and convex-co-compact base-point, if d%4(v) = 0 then the action (p,u,) on b is not
proper. In particular, if % is critical at p then there is no proper affine action on b

above Ad p.

In the case of H, one should recall the work of Mess [57], Goldman-Labourie-
Margulis [31] and the alternative proof given by Danciger-Guéritaud-Kassel [21].



1.2. Base point Liv§ic-independence. Denote by A the set of simple restricted
roots associated to at. For o € A let g, be its root-space (Eq. (2.1)). For a non-
empty ¥ C A the subspace' ay = (Nyea_g kero comes equipped with a natural
projection my : a — ay (see §2.6). We let

)\19 = Ty © )\,
Vi, =m (V).
In Corollary 10.5 we prove the following:

Theorem B (Double-density for roots with multiplicity 1). Let p : T — G be a
Zariski-dense sub-semi-group and consider an integrable, full loxodromic variation
v e T,X(T,G). Let ¥ C A be such that dimg, =1 for all o € ¥, then the additive
group spanned by

{(dN}(v),N(p)) : v € T with lozodromic p(v)}

is dense in ag x a. In particular, for any ¢ € int (£,)* the convex set \/?U has
non-empty interior.

Before passing to the next subsection we show two applications of Theorem B.
The first one can be found in Corollary 11.7, we refer the reader to §2.13 for the
definition of Anosov representations, introduced by Labourie [48] and generalized
by Guichard-Wienhard [35]. Recall also that for p € X(I',SL(3,R)) the Hilbert
entropy is defined by

0 =X)e) ¢ )

AH = lim %log#{[v] el :

Corollary (No proper actions above level sets of entropy). Consider a A-Anosov
p : I — SL(3,R) with Zariski-dense image and 0 # v € T,X(I',SL(3,R)). If
dAH(v) = 0 then the affine action on sl(3,R) via u, is not proper. Moreover, there
is a neighborhood U of (p,v) in TX(T,SL(3,R)) such that for all (n,w) € U the
action via Uy, s also not proper.

The second one can be found in Corollary 13.6, the definition of the Hitchin
component Hy(S) of S associated to a simple split g can be found in §1.3.

Corollary (Curves with arbitrary small root-variation). Let g be simple split, ¢ €
A, ws € a* be the associated fundamental weight and 0 # v € T,34(S) have
Zariski-dense base-point. Then, there exists h > 0 such that for positive € and §
there exists C > 0 with
eht
#{[1] € [ S] primitive : @l (p) € (t — ¢,t] and |[da” (v)| < 6} ~ 01537’

In particular, for every § > 0 there exists v € m1.S with arbitrary large translation
length and such that |do” (v)] < 4.

LConventions are made so that ap = a.
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1.3. Pressure forms for higher-rank Teichmiiller spaces. A fundamental
question in higher rank Teichmiiller theory consists on finding an analog of the
Weil-Petterson Kéhler metric for the Hitchin component.

Let now g be a simple split Lie algebra and Inng be its group of inner auto-
morphisms. Recall from Kostant [46] that g contains a remarkable Inn g-conjugacy
class of sl5(R) embeddings called the principal sla’s. The Hitchin component of g
(or of Inng, or of the type of g) of a closed connected orientable surface S with
genus > 2, is a(ny) connected component of the character variety

Hy(S) C X(m1 5, Inn g)

characterized by the following fact: there exists a discrete and faithful p € 3 ()
whose Zariski-closure is a principal PSL(2,R) in Inng. The latter representations
are called Fuchsian and the space of Fuchsian representations forms a natural em-
bedding of the Teichmiiller space I (S) = Ha, (S) of S inside Hy(S).

Hitchin [37] showed that H(4(.S) is a contractible analytic manifold and Labourie
[48] - Beyrer-Guichard-Labourie-Pozzetti-Wienhard [6] show that every p € 3 (S)
is faithful with discrete image (see also Fock-Goncharov [25]).

The space 3{4(S), being a subset of a surface-group character variety, is naturally
equipped with Goldman’s [30] symplectic form w. Moreover, Bridgeman-Canary-
Labourie-S. [14] construct, for each p € H,(S) and each linear form 1 € int (£,)*,
a semi-definite symmetric bilinear form P},f’ on T,H4(5), called the ¢-pressure form
(see §2.12 for references on similar constructions).

The question from the beginning of this section can be interpreted as a compat-
ibility question between the pressure forms P¥, for different choices of v, and w.
Combining Labourie-Wentworth [52] with Corollary 8.6 and §14 we establish:

Corollary (Corollary 16.4). We let g have type A, B, C or Gy. Then there exist
a unique (up to scaling) and explicit form @ € a* such that P® is compatible with
Goldman’s symplectic form on Hy(S) at the Fuchsian points.

The form ¢ is explicit but rather involved to compute. For the rank 2 simple
split Lie algebras one has (see Remark 16.5), up to scaling:
Ps1(3,R) (a) =a1 —az —

V10

5 a2;

V10

Psp(am(a) = (3+ W)al +(1- To)az;
oo, = (34 355 o+ (2= 30 ) o

Observe that in all these cases @ € (a™)* so Theorem C below implies that P® is
Riemannian on the corresponding Hitchin component. However, uniqueness of ¢
suggests the need to work with the following concept. We let Mod(S) = Out(m.5)
be the group of outer automorphisms of 7.5, it acts by precomposition on the
character variety of m1S.

Definition 1.1. A length function on 3y(S) is a smooth Mod(S)-invariant map
P : Hy(S) — a* such that for all p one has P(p) € int (£,)*.

Indeed, it follows from Kim-Zhang [43] and Labourie [50] that rank 2 Hitchin
components carry a l-parameter family of Mod(S)-invariant Kéhler metrics, so its
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seems natural to expect that the length functional ¢ € int(£,)* so that P¥ is
compatible with w at p, (if it exists) depends on p.

The pressure forms P¥ only depend on ¢ € a* up to scaling, so non-constant
length functions are purely a higher-rank phenomenon. A natural choice is, for
example, Quint’s growth form: we fix a norm N on a and let P(p) = the unique
¢ in the critical hyper-surface Q, o of p minimizing the dual norm N*, (see Eq.
(2.15)).

In this paper we prove the following (see Corollary 12.10 for the corresponding
statement for ©-positive representations into SO(p, q)).

Corollary (Corollary 12.14). For any length function \p : Hy(S) — a* the asso-
ciated pressure semi-norm p — PY®) induces a Mod(S)-invariant path metric on
Hy(S). If moreover g has type A, B, C, D, or Go and \ is chosen as to not verify
any of the degenerations in Theorem C, then p — PV is q Mod(S)-invariant
Riemannian metric on Hy(S), as reqular as .

The proof essentially boils down to understanding the degenerating set of P¥
for a fixed 1 € int (£,)*. This is the content of Theorem C below which we now
explain.

Let us chose a principal sls, s, whose semi-simple element lies in a (and with
Weyl chamber contained in a™). Recall from Kostant [16] that the decomposition
of g into irreducible ad s-factor has rank g factors, each of them of odd dimension
2e + 1. The numbers e appearing in this decomposition are called the exponents of
g and we denote by V. the associated irreducible factor, so that

= Pp v

e exponent of g

is the decomposition of g into irreducible ads-factors. Table 2 in §14 gives the
exponents for each type of g.

Definition 1.2. If e is an exponent of g then we consider the line »¢ =V, Na and
call it the e-th Kostant line.

The family {5 : e exponent of g} spans a.

Identifying the tangent space at p to the character variety with the first twisted
cohomology group H}Xdp(mS, g) as in Eq. (1.1), the above decomposition of g in
s-modules yields a splitting at a Fuchsian point & € Hy(.5),

TsHy(S) = @ H11\d6<7T157V:i) = @ 5

e exponent of g e exponent of g

where we have simplified notation and writen T = Hj 4 5(m19, Vo).

Let us denote by i : a — a the opposition involution, if non-trivial, it is realized
by an external involution of Inng that induces an involution i : X(71S,Inng) —
X(m.S,Inng). Points in Hy(S) that are fixed by i will be called self-dual. If p is
self-dual then d,i is an involution on T,Hy(S5).

In the special case of Dy, its Dynkin diagram has an order three automorphism
T that induces an order three automorphism T of Hp,(S). Also, in this case 3
appears twice as an exponent (see Table 2), let us denote by V3, the ads-factor
that is not contained in the natural representation s0(3,4) — so(4,4) preserving a
non-isotropic line, see §14.3.1 for details.



With these notations at hand we can completely describe the degenerations of
pressure forms on the Hitchin component of classical type.

Theorem C (Pressure degenerations are Lie-theoretic). Let g be simple split of
type A, B, C, D or Gy. Consider p € Hy(S) and ¢ € int (£,)* then, the pressure
form Pg’ is degenerate at v € T,Hg(S) if and only if either of the following hold:

v E @ Tf,,

e:p(3¢)=0

- p is Fuchsian and

p is self dual, ¢ is i-invariant and v is d,i-anti-invariant.

g is of type Ag or Cs, the Zariski closure of p(m1S) is conjugate to the 7-
dimensional irreducible representation of the real split group Go, ¥(53) =0
and v € Hy, (118, V3).

- g is of type D4, the Zariski closure of p(m1S) has Lie algebra conjugate
to the spin representation so(3,4) — so(4,4), v € H}%d/)(mS,I(VB’a)) and
(=1,1,1,—1) = 0.

For example, in PSL(4,R) the Kostant lines are

' =R-(3,1,-1,-3),
W =R-(1,-1,-1,1),
W =R-(1,-3,3,-1),

so the strongly dominant weight 2zo; + w9 : @ + 3a; + a contains s in its kernel.
Consequently, Theorem C implies that the Pressure form P2¥1+®2 degenerates only
at the Fuchsian locus and in the directions given by Ti. See Table 3 in §14 for the
list of Kostant lines on sl(d,R) for d < 8.

Remark 1.3. The question of non-degeneration on the Hitchin component has been
dealt with in the previously mentioned work by Bridgeman-Canary-Labourie-S.
[14], where it is stablished that:

- if we let w; be the first fundamental weight w; : a — a1, then P®! is
Riemannian on Hqr)(S) and,

- for every strongly dominant weight x the form PX is Riemannian on the
space {p € Hy(S) : p(m1S) is Zariski-dense};

and in B.-C.-L.-S. [15] where it is stablished that P° is Riemannian, where oy :
a — ay — ag is the first simple root. In [14] it is also established the following
(to be compared with Theorem B): Let p; : T — SL(d,R) be an analytic curve of
irreducible representations with speed v and assume there exist g,h € T such that
po(g) and po(h) are bi-prozimal and transverse (see Def. 2.7), assume also that
dwi(v) # 0, then the set of pairs

{(dw] (v), @] (p)) : v €T with po(7y) prozimal} C R

is not contained in a line.

Finally, pressure forms for w; and o; have been shown to be Riemannian on the
Hitchin components of geometrically finite Fuchsian groups by Bray-Canary-Kao-
Martone [12].
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1.4. Hausdorff dimension of higher-quasi-circles. We then use Theorem C to
investigate deformations of higher-rank Teichmiiller spaces inside the complexified
ambient group.

Let us fix p € Hy(S). Then it follows from Labourie [1%] that there exists a
p-equivariant Holder-continuous map

Cp:0mS — Fa(Inng) (1.3)

from the Gromov-boundary of m.S to the full flag space of Inng. For type A,
this curve should be interpreted as a Holder w1 S-equivariant analogue, of the ana-
lytic PSL(2, R)-equivariant Veronesse map P! — P9=1. While the circle ¢(9m19) C
Fa(Inng) is only Lipschitz, each of its projections into the maximal flags

L,o = (;(0mS) C Fy(Inng),

for o € A, is a C1*« circle (Labourie [15] and Pozzetti-S.-Wienhard [62]). In this
paper we deform these circles inside the complex maximal flag variety F, (Inn(gc)).
More precisely, the equivariant map from Equation (1.3) can also be defined for
representations neighboring p in the complex characters X (S, Inn(ge)) ([18]).
Moreover, there exists a neighborhood U of Hy(S) C X (my, Inn(gc)) such that for
every 1 € U and every o € A the function

Hif, : U — [l,oo)
n — Hif(L, ,)

is real-analytic?, where Hff denotes the Hausdorff dimension for a Riemannian
metric on F,(Inn(ge)). We can thus study its Hessian at the critical points 34 (.S).

If we let J be the tensor squaring — id on the complex characters X (1.5, Inn(gc)),
induced by the complex structure of Inn(gc), then the tangent space at a Hitchin
point p € Hy(S) naturally splits as

T, (m 8, Inn(ge)) = T,3,(5) @ J(T,96,(S)).

Deformations along THy(S) are understood, Hff, = 1, so we turn into the comple-
mentary factor. By means of Bridgeman-Pozzetti-S.-Wienhard [16] and Theorem C,
in § 17 we establish the following (an analogous result for ©-positive representations
can be found on Corollary 12.7):

Corollary (Corollary 17.2). Let v € T,Hg4(S) be non-zero and have Zariski-dense
base point, then
Hess, Hff ,(Jv) > 0.

In particular there exists a neighborhood (in the complex characters) of points in
Hy(S) with Zariski-dense image where Hif, is rigid, i.e. such that if Hff ;(n) =1
then n has values in the real characters.

The second statement is a local analog of a classical result of Bowen [10] on the
Hausdorff dimension of quasi-circles who deals with g of type A;. The first one
is inspired by Bridgeman-Tayor [17] and McMullen [56], again for PSL(2,C). We
note that a higher-rank version of Bowen’s Theorem has been recently obtained by
Farre-Pozzetti-Viaggi [23], they consider the Hausdorfl dimension in the full flag
variety.

2due to [62] together with Bridgeman-Canary-Labourie-S. [14]
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Actually we can be much more precise. Zariski closures of Hitchin representations
have been classified (Guichard [33], S. [68]) so we can also look at the intermediate
strata. It turns out that the most subtle situation is actually the Fuchsian case,
which we now explain, the complete picture can be found on §17.

Corollary (Corollary 17.2). Let v € TsHy(S) be tangent to a Fuchsian represen-
tation d. If v € TS and »° C ker o, then Hesss Hif ,(Jv) = 0. If g has classical type
then the converse is also true: if Hesss Hff ,(Jv) = 0 then v € @ T¢S.

e:2¢Cker o

For example, when g = sl(d,R) with the standard Cartan subspace a = {a €
RZ: > a; = 0} and simple roots 0;(a) = a; —aj;1; the above corollary reduces the
question of understanding Hesss Hff 5, Ju = 0 to describing the triples of integers
(d,e,j) such that »° C kero;. This condition can be rephrased in terms of an
explicit Diophantine equation (see Equation (14.8)). For example, understanding
degenerations on the second Grassmannian ¢2(9m15) C Gra(R?) C Gry(C?) reduces
to the (elementary) equation

so Hess Hff 5, is only degenerate when d = 4,7,11,16... However, for the remaining
Grassmannians the equation is more involved. For Grz(C?) the equation becomes

et — 6de? + 2€® + 6d°> — 6de 4 11e? — 18d + 10e 4+ 12 = 0,

which turns out to be a genus-1 complex curve, whose integer solutions can be com-
pletely described via the Elliptic logarithm method Ellog (see for example Tzanakis
[76]), so we obtain in §17.2:

Corollary 1.4. Consider v € T ,Hqar)(S), then one has Hess, Hff 5, (Jv) = 0 if
and only if one of the following holds :

- d =6, p has values in PSp(6,R) and v € T2 & T},

- d=17, p is Fuchsian and v € Tﬁ &) Tg,

- d =58, p is Fuchsian and v € Tlg).

The Diophantine equation associated to the 4th root is

13 23 19 31 1 1 13 3 3 1
11 —?e—362—§e3—ﬂe‘l—§e5—ﬂeﬁ—I—?de—§d26+7d62—§d262+d63+§de4+d3—6d2 =6,
which according to Maple is a genus-4 complex curve with one singular point. To
our understanding, no general method to explicitly solve this kind of equation over

Z is known.

Acknowledgements. 1 would like to thank Luca Battistella, Martin Bridgeman,
Richard Canary, Jeffrey Danciger, Francois Labourie, Marco Macullan, Alejandro
Passeggi, Rafael Potrie, Germain Poullot and Maria Beatrice Pozzetti for enlight-
ening discussions related to this paper.

2. PRELIMINARIES

Throughout this paper we will let G be a Zariski-connected semi-simple real-
algebraic group of the non-compact type with Lie algebra g. We will also let V'
be a finite-dimensional real vector space, I' a semi-group and [ a finitely generated
word-hyperbolic group.
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2.1. Notations from Lie theory. Let us fix 0 : g — g a Cartan involution with
associated Cartan decomposition g = £€&p. Let a C p be a maximal abelian subspace
and let ® C a* be the set of restricted roots of a in g. For a € ® let us denote by

0o = {u€g:la,u] = ala)uVa € a} (2.1)

its associated root space. One has the (restricted) root space decomposition g =
90 D P co 9o, Where g is the centralizer of a. Fix a Weyl chamber a® of a and let
&1 and A be, respectively, the associated sets of positive roots and of simple roots.

Let us denote by (-, -) the Killing form of g, its restriction to a, and its associated
dual form in the dual of a, a*. For x,v¥ € a* define

)
Vv =200y

The Weyl group of @, denoted by W, is the group generated by, for each o € P,

the reflection #, : a* — a* on the hyperplane a™t,

7o(X) = X — (X, ¥)a.

It is a finite group with a unique longest element wy (w.r.t. the word metric on the
generating set {7, : @« € A}). This longest element sends a™ to —a™.
The restricted weight lattice is defined by

MN={pca”:{pa)€ZVac d},
it is spanned by the fundamental weights: {w, : c € A} where w, is defined by
<wa> 6> = do(soﬁ

for every 0,8 € A, where d, = 1 if 20 ¢ ®T and d, = 2 otherwise. The set M, of
dominant restricted weights is defined by My = NN (a™)*.
If g has reduced root system, then it is customary to denote by

1
=LY =Y
acdt cEA
where the last equality can be found in Humphreys [38, §13.3]. For every o € A
one has (4,0) =1 ([38, §10.2 ]).

2.2. Some sly’s of g. For ¢ € a* let u, € a be such that for all v € a one has

p(v) = (up,v).
For o € ® let h, € a be defined such that, for all ¢ € a* one has
p(ha) = (@, ).

The vectors u,, and h,, are related by the simple formula h, = 2u,/(tq, uq). Recall
that for € g, one has [z,0(z)] = (z,0(x))uy. Thus, for each @ € T and x, € go
there exists y, € g_ such that

(8(1))’_>X0u ((1)8)’_>ya and ((%Pl)’_)hm

is a Lie algebra isomorphism between sly(R) and the span of {Xa,Ya,ha}. Let us
fix such a choice of x, and y, from now on.

One says that g is split if the complexification a ® C is a Cartan subalgebra of
g ® C. Equivalently, g is split if the centralizer 3¢(a) of a in ¢ vanishes.



11

Assume that g is split. Following Kostant [46, §5], consider the dual basis of
{us : 0 € A} relative to (-,-): (€a,ug) = dap, and let eg = > -5 €; € a. Upon

writing
269 = Z Toly
geEA
for some 7, € Z~g, define et = Z Xs and e~ = Z roYeo. Since (2¢g, u,) = 2 for
gEA gEA

every o € A, the identification
(86) e (§8) e and (§°)— 26,

is also a Lie algebra isomorphism between sly(R) and the span s of {et,e™,2¢o}.
The Lie algebra s is called a principal sl and the Inn g-conjugacy class of this
representation is called the principal sly of g.

2.3. Cartan decomposition. Let K C G be a compact group that contains a
representative for every element of the Weyl group W. This is to say, such that the
normalizer Ng(A) verifies Ng(expa) = (Ng(exp a) N K) exp a. Cartan’s decomposi-
tion asserts the existence of a map

pw:G—at

such that for every g € G there exist k,l € K such that g = kexp(u(g))! and such
that for every g1, g2 € G one has g1 € KgoK if and only if p(g1) = p(ge). It is called
the Cartan projection of G.

2.4. Jordan decomposition. Recall that the Jordan decomposition states that
every g € G can be written as a commuting product ¢ = gegngn, where g, is elliptic,
gp, is diagonalizable over R and g,, is unipotent. The component gj is conjugate to
an element z, € exp(at) and we let

A(g) = ulzy) € a*.

The map A : G — a™ is called the Jordan projection of G.

2.5. Flag manifolds of G. A subset 1 C A determines a pair of opposite parabolic
subgroups Py and Py whose Lie algebras are defined by

= P o P o,

ocedtU{0} ce(A-1)
b= D 7o D o
ocedtuU{0} ce(A-1)

The group Py is conjugated to the parabolic group P;y. We denote the flag space
associated to ¥ by Fy = G/Py. The G orbit of the pair ([Py], [Ps]) is the unique

open orbit for the action of G in the product Fy x Fiy and is denoted by 3"1(92)

Remark 2.1. If g € Gis such that o(A(g)) > 0 for all o € ¥ then g acts proximally on

F9.We will denote by (¢7,¢7) € fr"éQ)(G) the corresponding attracting and repelling
flags, so that every flag y € Fo(G) in general position with g~ verifies g"y — g™.
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2.6. The center of the Levi group PyNPy. We now consider the vector subspace

Denoting by Wy = {w € W : w(v) =v Vv € ay} the subgroup of the Weyl group
generated by reflections associated to roots in A — 1, there is a unique projection
Ty : @ — ay invariant under Wy.

The dual (ay)* is canonically identified with the subspace of a* of my-invariant
linear forms. Such space is spanned by the fundamental weights of roots in J,

(a9)" ={pe€a”1pomy =9} = (wslay : 0 € V). (2.2)
We will denote, respectively, by

oy =mgou:G—ay
)\19:7&90)\:(;—)&19,

the compositions of the Cartan and Jordan projections with my.

2.7. Representations of G. The standard references for the following are Fulton-
Harris [26], Humphreys [38] and Tits [74].

Let ¢ : G — GL(V) be a finite dimensional rational® representation. We also
denote by ¢ : g — gl(V) the Lie algebra homomorphism associated to ¢.

If ¢ : g — gl(V) is irreducible then we say that ¢ : G — GL(V) is strongly
irreducible. This is equivalent to ¢(G) not preserving a finite collection of subspaces
of V.

The weight space associated to x € a* is the vector space

VX={veV:d(a)v = x(a)v Va € A}.

We say that x € a* is a restricted weight of ¢ if Vix # 0. Tits [74, Theorem 7.2]
states that the set of weights has a unique maximal element with respect to the
partial order x > v if x — 4 is a N-linear combination of positive roots. This is
called the highest weight of ¢ and denoted by x¢. By definition, for every g € G
one has

M(0(9) = xo(A9)), (2.3)

where A is the logarithm of the spectral radius of ¢(g).
We denote by M(¢) the set of restricted weights of the representation ¢

N($) ={x ea*: Vx#{0}},

these are all bounded above by x¢ (see for example Humphreys [38, §13.4 Lemma
BJ), namely every weight x € M(¢) has the form

X — Z nyo for n, € N.
oeA

Definition 2.2. Let ¢ : G — PGL(V) be a representation. We denote by 94, the
set of simple roots o € A such that x4 — o is still a weight of ¢. Equivalently

Vo ={o € N: (xp,0) #0}. (2.4)

3Namely a rational map between algebraic varieties.
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We denote by || ||¢ an Euclidean norm on V invariant under ¢K and such that
b expa is self-adjoint, see for example Benoist-Quint’s book [5, Lemma 6.33]. By
definition of x¢ and || ||¢, and Equation (2.3) one has, for every g € G, that

log [[bglle = xo (1(9))- (2.5)

Here, with a slight abuse of notation, we denote by || ||¢ also the induced operator
norm, which doesn’t depend on the scale of || ||¢.
Denote by W, the ¢pA-invariant complement of V,, . The stabilizer in G of W,

is Py, , and thus one has a map of flag spaces
(CosC3) : T (G) = Gy, (V). (2.6)

This is a proper embedding which is an homeomorphism onto its image. Here, as
above, G]r((fh)r1 v, (V) is the open PGL(V)-orbit in the product of the Grassmannian
&

¢

of (dim V, )-dimensional subspaces and the Grassmannian of (dim V' — dim V, , )-
dimensional subspaces. One has the following proposition (see also Humphreys [39,
Chapter XIJ).

Proposition 2.3 (Tits [71]). For each o € A there ezists a finite dimensional
rational irreducible representation ¢, : G — PSL(V,), such that x ¢, is an integer
multiple l, @, of the fundamental weight and dim 'V, = 1.

We will fix from now on such a set of representations and call them, for each
o € A, the Tits representation associated to o.

2.8. Gromov product and representations. Consider ¥ C A. Recall from [60]
that the Gromov product is the map

(1) : P - ag

defined by the unique vector (z|y) € ay such that

. * P
wa((x|y)) = —logsin Aitbao(fduxafq;uy) = —log M) >0
for all a € ¥, where v € {p,z — {0} and kerp = &3 y.
Remark 2.4. Note that
max wa ((2]y)o) = —logminsin £4,0(6¢. 2, 5, Y)- (2.7)

Note also that, since {wwa|ag}acy is a basis of ay, the right hand side of equation
(2.7) is comparable to the norm ||(z|y)]|.

The Gromov product is independent on the choice of Tits’s representations of

G, moreover, it keeps track of Gromov products for all irreducible representations
of G:

Remark 2.5. Let ¢ : G — PSL(V) be a proximal irreducible representation. If
(x,y) € 3"1(92(2 then’

(Eo7E59) 4o = xo ((2ly) = D (X 0) @0 ((2]y))-
a€dy

Note that by Definition 2.2, the coefficients in the last equation are all strictly
positive.

4We have identified A} with R via wa; .
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Proposition 2.6 (Bochi-Potrie-S. [8, Prop. 8.12]). Given ¥ there exist ¢ and ¢’ so
that for all (z,y) € ?1(92) one has

éll(xly)ll < inf {[lu(g)ll : g(IP’],[P”]) = (x,9)} < ell(zly)|| + -

2.9. Additive cross ratio. Let us consider the space 3"1(94) of pairs (z,y), (z,t) €
3"1(92) with the extra transversality condition that both pairs (x,t) and (z,y) are also
in general position. The (aditive) cross ratio is the map €y : 3"1(94) — ay defined by

Co(z,y, 2,t) = (zly) — (2[t) + (2[t) — (2]y).
It is G-invariant.

2.10. Proximality. Recall that g € End(V) is prozimal if it has a unique eigen-
value with maximal modulus and that the multiplicity if this eigenvalue in the char-
acteristic polynomial of g is 1. The associated eigenline is denoted by g+ € P(V)
and ¢~ is its g-invariant complementary subspace.

Let g € End(V) be proximal. We consider 8, € V* and vy, € ¢g* such that
ker 8, = g~ and B4(vg) = 1, we also let m,(w) = B4(w)v, be the projection over g™
following the decomposition V = g~ @ g7. We finally let V5(g) be the generalized
eigenspace of g associated to the second (in modulus) eigenvalue and 7, be the only
projection over V5(g) whose kernel is g-invariant.

Definition 2.7. If g, h € End(V') are both proximal, we say that they are transver-
sally proximal if

Bg(vn)Bn(vg) # 0.
Using notation from §2.9, one has then € (¢, g7, h",h7) = log|By(vi)Bn(vg)|.
We further say that g and h are strongly transversally prozimal if B (T4us) # 0.

We say then that g € G is 9-prozimal if for every o € ¥ one has ¢, (g) is proximal.
In this situation, there exists a pair (g, gf{) € 51(92), defined by, for every o € 9,
o, (g;) = ¢,(9)", and every flag # € Fy in general position with gj verifies
gtz — g:;.

Let us say that two elements g,h € G are transversally ¥-proximal if they are

¥-proximal and moreover {(g;;, hy), (h},95)} C 3'"1(92). One has the following result
from Benoist [3].

Theorem 2.8 (Benoist [3]). Let g,h € G be transversally ¥-proximal then,
Tim Ap(g"h") = Ao(g") = Ao (h") = Co(gy .95,y hy) = By(g, h).

Lemma 2.9 (Benoist-Quint [5, Lemma 7.10]). Let g,h € G be lozodromic, then
there exists a non-empty Zariski-open subset Ggp, of G* such that whenever (f,q) €
Gy the limit

lim  A(g™ fh"q) —mA(g) — nA(h)

min{n,m}—oo

exists. If g and h are transversally loxodromic, then (id,id) € Ggp,.

Lemma 2.10. Let g € G be lozodromic, then there exists a non-empty open subset
G, of G? such that whenever (f,q) € G, one has

Jim A(fg"q) —nA(9)

exists.
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Proof. The proof follows the exact same lines as Lemma 2.9. Indeed the equation

(flg*).alg™)) ¢ T2(G)

with variables f and g, is described by polynomials, so its complement G, is a
(non-empty) Zariski-open set of G2.
We commence by writing, for every o € A,

bo(9") = (£ exp (=0 (@) Ty + P

where 7y, is the projection with image (,(¢g") and kernel (%(¢~) and where the
spectral radius of P, is < exp(n(wy, — 0)(A(g))). Thus, if (f,q) € G, one has

i ds(f9™q)

im

n—oo (£)" exp(@q(nA(g)))
By the condition on (f,q), one has Trace(fmy,q) # 0, thus for big enough n,

&, (fg™q) is proximal together with the above convergence we get that A b, ((fg"q)) —
nwy(A(g)) converges as n — oo. Since this holds Vo € A the Lemma follows. O

= fﬂ'g,oq

It is also useful to consider a quantified version of proximality. Given r, e positive
we say that g is (r, €)-prozimal if it is proximal,

I~ 1g™)ll <
and for every z € Fy with [|(¢~|z)|| < 7! one has d5,(gz,9") < e. The following
is from Benoist [2, Corollaire 6.3], a proof can also be found in S. [65, Lemma 5.6].

Theorem 2.11 (Benoist [2]). For every 6 > 0 there exist r,e > 0 such that if g € G
is (r,e)-prozimal then

o (9) = Nalg) + (g5 95| < 6.

Lemma 2.12. There exists C' only depending on G such that for every ¥-proximal
g € G and a flag B € Fy transverse to g~ one has

d(gB, g") < Celo™1B) e min{o(M0):o €} + (9719

Proof. Follows from Theorem 2.11 together with, for example, Bochi-Potrie-S. [8,
Lemma A.6]. O

We record the following lemma that will be needed in § 6.

Lemma 2.13.

- Let d : G — SL(V) be a strongly irreducible representation and let {Wy}rer C
V' be a finite collection of subspaces of V', none of which coincides with V.
Consider a non-vanishing v € V', then the set {g € G : d(g)v & Upcr Wi}
s Zariski-open and non-empty.

- Consider now a finite collection of strongly irreducible representations {; :
G — Vi}tier. For each i € I assume we have a non-vanishing v; € V; and a
non-empty finite collection of strict subspaces {W,z :k e F;} onV;. Then
there exists g € G such that

ViEIg’Ui¢ U Wi.
kEF;
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Proof. The second item follows readily from the first: since G is connected, it is
Zariski-connected and thus it is Zariski-irreducible. It follows then that a finite
intersection of Zariski-open non-empty subsets is non-empty. The first item follows
easily as, G being connected, irreducibility of the representations implies no finite
collection of subspaces is preserved. O

2.11. Zariski-dense sub-semigroups of G. Let A < G be a semi-group. Its limit
cone is

La={RiA(g):g€ A} Cat. (2.8)
One has the following fundamental result:

Theorem 2.14 (Benoist [3, 1]). Let A < G be a Zariski-dense sub-semi-group,
then L is convex and has non-empty interior. Moreover, the group spanned by
{A(g) : g € A} is dense in a.

We will moreover need the following:

Proposition 2.15 (Benoist [3, Proposition 5.1]). Let A < G be a Zariski-dense
sub-semi-group and let € C L be a closed conver cone with non-empty interior.
Then there exists a Zariski-dense sub-semi-group A < A such that Ly = €. If €
18 i-invariant then A’ can be furthermore chosen to be a group.

One has moreover the following fact, that is not in the statement by Benoist but
is a consequence of its proof (see the proof of Benoist [3, Lemma 4.3]):

Remark 2.16. Moreover, if g € A is loxodromic and € is a convex closed cone with
non-empty interior and A(g) € € C L4, the semi-group A’ from the statement can
be chosen to be a Schottky semi-group that contains a high enough power of g.

2.12. Thermodynamics. We begin by recalling some facts on Thermodynamical
formalism over hyperbolic systems developed by Bowen, Ruelle, Parry, Pollicott

among others, see for example [11] and Parry-Pollicott [58].
We will work on the setting of Metric-Anosov flows. They are a metric version
of hyperbolic flows. The former are called Smale flows by Pollicott [59], who trans-

ferred to this more general setting the classical theory carried out for the latter.
As we will not really make use of the definition we refer the reader to, for example,
Pollicott [59], Bridgeman-Canary-Labourie-S. [141] or S. [67, Definition 2.2.1].

Let X be a compact metric space equipped with a continuous flow ¢ : X — X.
The space of ¢-invariant probability measures on X is denoted by M?. The metric
entropy of m € M? will be denoted by h(¢,m). Via the variational principle, we
will define the pressure of a function f: X — R as

P(f)= sup h(cﬁ,m)—&-/xfdm. (2.9)

meMe
A probability measure m realizing the least upper bound is called an equilibrium
state of f.
Two continuous maps f,g : X — V are Livsic-cohomologous if there exists a
U:X — V,of class C! in the direction of the flow”, such that for all z € X one has

0
f@)—g(@)= |  Ulg).
ot],_,
5i.e. such that if for every z € X, the map t +— U(¢rx) is of class C!, and the map z
% U(¢ix) is continuous

t=0
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The f-period of a periodic orbit 7 with period pe(7) is

()
wn= 1= " fgands e V.

Let f: X — Rs¢ be continuous. For every x € X the function xy : X xR — R,

defined by x(x,t) = f(f f(dsz)ds, is an increasing homeomorphism of R. There is
thus a continuous function « : X x R — R such that for all (z,t) € X xR,

oz, k(z,t)) = k(z, oz, 1)) =t

The reparametrization of ¢ by f : X — Rsg is the flow ¢/ = ((b{ : X = X)ier
defined, for all (z,t) € X x R by

¢{(x) = ¢a(w,t) (33)

The Abramov transform of m € M? is the probability measure m#* & M’
defined by
m? = Som .
f fdm
We assume from now on that ¢ is a Hoélder-continuous metric-Anosov. In this
situation, a classical result by Livsic asserts that the LivSic-cohomology class of a
Holder-continuous function is uniquely determined by its periods. Moreover, if f
is real-valued and Hélder-continuous, it has a unique equilibrium state, denoted it
by v;. We also let ugy = vo be the unique probability measure maximizing entropy
of ¢.
Recall that the co-variance is defined, for Holder-continuous g, h : X — R with
0= fgd\/f = fhd\/f, by

1 t t
covars(g,h) := lim - (/ g((bsz)ds) ( h(d)sx)ds) dvy,
0 0

t—o00 Xt

(2.10)

and the variance by vary(g) = covary(g,g) > 0.
Theorem 2.17 (Parry-Pollicott [58, Prop. 4.10,4.11]). Let f,g: X — R be Hélder
continuous. Then one has
= /gd'\/f.
t=0

OP(f + tg)
ot

= vary(g),

t=0

Moreover, If [ gdvy =0 then

&*P(f +tg)
ot

and if vary(g) = 0 then g is Livsic-cohomologous to zero.

The space of Holder-continuous functions with exponent « is naturally a Ba-
nach space, and by the previously mentioned result by Livsic, the space of Livsic-
cohomologically trivial functions is a closed subspace. The quotient Holder® (X)/ ~
is thus a Banach space. Since P is invariant under Liv8ic-cohomology, Proposition
2.17 equips the space of (classes of) pressure zero functions for a fixed Holder ex-
ponent

P*(X) ={f € Holder*(X)/ ~: P(—f) =0}
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with a natural Riemannian metric: if g € T;P(X) = {g: [ gdvy = 0} then we let

vary(g)
7(g) = :
ffd\/f
Since we are only considering functions up to Livsic-cohomology, Proposition 2.17
implies that P is non-degenerate.

We now turn to some concepts of Bridgeman-Canary-Labourie-S. [14]. Similar
concepts where also earlier defined by Bonahon [9], Bridgeman [13], Burger [18],
Croke-Fathi [20], Fathi-Flaminio [24], Katok-Knieper-Weiss [12], Knieper [15] and
McMullen [56].

Let f X — R be Hélder-continuous and positive, consider, for ¢ > 0, the finite
set Ry(f {T periodic : £4(7) < t} and define the entropy off by

F— Jim »
fe —tlggotlog#Rt(f)

It is the topological entropy of ¢/ and Wor = Vi%ff (see S. [65]).
If g : X — R is also Holder continuous then Bridgeman-Canary-Labourie-S. [14]

define it’s dynamical intersection with f by

7_

Iyo) = 1(f.0) = Jim 2o g &

Remark 2.18. These objects are more easily understood in terms of the reparametriza-
tion ¢/ of ¢ by f. Then the f-period of 7 is the period py, (7), %/ is the topological
entropy of ¢/ and, denoting by Wgs its probability measure of maximal entropy then,

(g) = / Feltgr

In particular kerIy = T_,; ;P(X).

The functions % and I are well defined and vary analytically on Holder®(X,R;)
and Holder® (X, R, ) x Holder™ (X, R) respectively. If ¢ is also positive then we
define its normalized dynamical intersection with f by

79
35l9) = 3(5,9) = Z15(0)
We have the following two rigidity results: one global and one infinitesimal.

Theorem 2.19 (Bridgeman-Canary-Labourie-S. [14]). One has J(f,g) > 1 and
equality holds only if for every periodic orbit T one has

A0 (T) = A90,(T).

Let (ft)ie(—c,c) € Holder®(X,Ry) be a C? curve with fo = f, then Hessy Jf(f, =

Pf(f), in particular Hess s J(f, f) = 0 f and only if for every periodic orbit T one
has

9
—|  afu =0 2.11
ALl b (1) =0, (2.11)

or equivalently, 0'°%/4 and '8 f are Livsic-cohomologous w.r.t. the flow ¢7.

In the above we have denoted by 9'°% the logarithmic derivative at 0

os g — (/90091
90
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We record the following consequence of J ¢ (-) being critical at f, giving the following
formula for the variation of entropy, to be compared with Katok-Knieper-Weiss [42].

Corollary 2.20 ([11]). Let (ft)ie(-c,c) be a C* curve of Hélder-continuous positive
functions with fo = f and denote by %, = A, then

S favoay
Jfdv_ns
Assumption A. Let now F': X — V be Holder-continuous and assume the vector

space spanned by the periods of F'is V. Assume moreover that F' and 1 are LivSic-
cohomologically independent.

9% o = — / 9'°% fdyys =

The compact convex subset of V'

MO (F) = {/Xqu;ueW}

has hence non-empty interior. On the other hand, for each ¢ € V* one can consider
the pressure of the function p(F): X — R:

P(p) = P(—po F).
Proposition 2.17 implies that P : V* — R is analytic and strictly convex. Moreover,
using the natural identification (V*)* =V, one has, for ¢ € V* that

d,P = /de_@(p). (2.12)
One has the following;:

Proposition 2.21 (Babillot-Ledrappier [I, Prop. 1.1]). Under Assumption A, the
map @ : V* = V defined by ¢ — d, P is a diffeomorphism between V* and the
interior of M?(F).

Observe that our Assumption A is slightly weaker than that of Babillot-Ledrappier
[1], however this does not affect the proof of [1, Prop. 1.1].

Remark 2.22. By Proposition 2.21 one has pp := p(0) = /qu¢ € int M?(F).

2.13. Anosov representations. Anosov representations where introduced by La-
bourie [418] for fundamental groups of closed negatively curved manifolds and ex-
tended to arbitrary (finitely generated) word-hyperbolic groups by Guichard-Wie-
nhard [35]. They have, since then, been object of numerous works. We will present
here a very summarized situation based on [18], [35], Guéritaud-Guichard-Kassel-
Wienhard [32], Kapovich-Leeb-Porti [10] and Bochi-Potrie-S. [8].

Let I be a finitely generated group and denote, for v € T, by |v| the word length
w.r.t. a fixed finite symmetric generating set of I'.

Definition 2.23. Let 9 C A be non-empty then, a representation p : [ — G is
J-Anosov if there exist ¢, u positive such that for all v € I' and o € 9 one has

o(u(p(v))) > ply| = (2.13)

We will denote by 4y(I',G) € X(I',G) the space of ¥-Anosov characters. If G =
SL(d,K) for K =R or C, a {07 }-Anosov representation is commonly called projec-
tive Anosov.
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If follows readily that for every o € ¥ the representation ¢, 0 p: I — GL(V,) is
projective-Anosov. The Theorem below can also be found in Bochi-Potrie-S. [8].

Theorem 2.24 (Kapovich-Leeb-Porti [10]). If p : T — G is ¥-Anosov then T is
word-hyperbolic.

The group I has thus a Gromov-boundary OI and a space of geodesics

0T = {(w,y) € (N)* : x # y}.
The following Proposition can be found in Bochi-Potrie-S. [3, Lemma 4.9], Kapovich-

Leeb-Porti [40] and Guéritaud-Guichard-Kassel-Wienhard [32] and relates Defini-
tion 2.23 to Labourie’s original definition.

Proposition 2.25. Ifp: [ — G is ¥-Anosov then there exist p-equivariant Hélder-
continuous maps

€70 = F9(G) and &7 :0r = Fi4(G)

such that if x,y € OF are distinct, then (£°(z),&7(y)) € 3"1(92). Moreover, if y € T
is hyperbolic, then p(v) is ¥-prozimal with attracting point £ (v+) = p(7)7.

By Labourie [18] and Guichard-Wienhard [35] 20 (T, G) is an open subset of the
character variety. We also let 2%%(I", G) be the space of regular points p such that
p(T) is Zariski-dense in G. Since we are assuming that G is connected, one has the
following:

Proposition 2.26 (Bridgeman-Canary-Labourie-S. [14, Proposition 7.3]). Assume
¥ contains at least one simple root of each factor of G. Then the space m;’z(r, G)
is an analytic manifold.

For surface groups one has the following description of the regular points of
characters, that can be found on Labourie’s book [49, § 5], from which we borrow
the terminology of very regular points:

hom" (715, G) = {p : Zg(p(m S)) = Z(G)}.

Observe that since G is connected, morphisms with Zariski-dense image are very
regular.

Theorem 2.27. Both hom" (715, G) and hom"" (7.5, G)/G are analytic manifolds.

2.13.1. A reference flow for a group admitting an Anosov representation. Assume
that I admits a ¥-Anosov representation pg, onto some G and some non-empty .
Fix 0 € ¥. Then, the composed representation ¢, o pg : ' — GL(V) is projective
Anosov and carries thus two maps

ol > P(V,) and €1 ar — P(V))

such that for every (z,y) € 9l one has kgfd_l(x) ® &Yy) = V,. We use the
equivariant maps to construct a bundle R — F — 92T whose fiber at (z,y) € 9°T is

F(ac,y) = {(9071)) € gdil(x) X El(y) : Sﬂ(”) = 1}/ ~,
where (p,v) ~ (=, —v). This bundle is equipped with a l-action y(¢,v) = (p o
p(v)7!, p(v)v) and an R-action (¢; : F — F)teR defined by ¢ - (p,v) = (elp, e tv).
Let _
ur =n\F
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and denote by ¢ = (¢ : F = F), < the induced flow on the quotient (it is usually
called the geodesic flow of Gy 0 po).
Theorem 2.28 (Bridgeman-Canary-Labourie-S. [11]). The above I-action is prop-

erly discontinuous and co-compact. The flow ¢ is Hélder-continuous and metric-
Anosov.

The flow-space Ul' and flow ¢ will be fixed from now on and used as a reference
flow. The set of hyperbolic elements of I' will be denoted by I',, and for v € 'y, we
will denote by £(v) the period for ¢ of the periodic orbit [y] associated to +.

2.13.2. The Ledrappier potential. We now recall a combination of facts from Bridgeman-
Canary-Labourie-S. [14], Potrie-S. [60] and S. [65, 67]. Recall from the previous
subsection that a base flow is fixed for I

Theorem 2.29. Let p: T — G be ¥-Anosov. Then there exists a Holder-continuous
map J, : UI — ay such that for every v € I'y

C1(3p) = Ny (p)-
Moreover, if {p, : T — Gluep is an analytic family of ¥-Anosov representations,
then the map u — J,, s analytic.
Definition 2.30. The function J, will be called the Ledrappier potential of p.

Let us consider the ¥-limit cone of p defined by

Lop=1{R: Ng(p(7)) i v €T} =Ry - M?(J,) C ay. (2.14)
Elements of int (Ly,,)* will be called length functionals. Indeed (see S. [(7, Lemma
3.4.2]), ¥ € int (Ly,,)* if and only if ¥(d,) is Livsic-cohomologous to a strictly
positive function, or equivalently there exist p positive such that for every v € I’
7 (p) = pl(y).
We can thus define the entropy of ¢ as fi;f’ = A%@¢) and the critical hypersurface

Qy,p = {6 € int(Lo,)" s 21 =1}, (2.15)

It follows that Qy , is a closed co-dimension-one analytic sub-manifold that
bounds a convex set, which is strictly convex if p(I) is Zariski-dense, see S. [07,
§5.9 and 5.10] and [14], where details and more information can be found.

The Ledrappier potential embeds the space of ¥-Anosov representations in the
space of Holder-continuous potentials Holder(UT; ay)

J:Ay(T, G) — Holder(UT, ay)
P> dps

and by Bridgeman-Canary-Labourie-S. [14] it is a real analytic map. Its differential
at v is (a LivSic-cohomlogy class of) a Holder-continuous map

—

31, Ul — ay
whose periods are, by definition, / g, = dA}(v).
Ml

By continuity of the ¥-limit cone w.r.t to the representation (Theorem 2.29 and
Eq. (2.14)), every ¢ € (ay)* defines an open subset

Uy ={n € Ay(T,G) : ¢ € int (Ly )"} (2.16)
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and gives in turn, with pre-composition with the Ledrappier potential, a map U, —
Holder(UT,R), p+— (d,).

Definition 2.31. The 1-pressure form P¥ on Uy is the pullback of the pressure
metric on P(Ul) by the map p — }%;f ~(dp)-

For ¢ € Qy,, and n € Uy, we can define the ¢-dynamical intersection of the pair
(p;m) as

1¥(p,n) =1(¢(3,),%(3,)) = lim
(o) =1(1(,), ¥ (3y)) = lim R0)

YERY (p)

where RY (p) = {y €Tw:9¥7(p)) <t}. By Theorem 2.19, upon denoting by J¥ the
associated normalized intersection, one has
Hess, J ? = Pﬁ.

Recall that the opposition involution i of a is induced by an external automor-
phism ¢ : G — G, which acts whence on characters i : X(I',G) — X(I',G). From
Equation (2.17) one concludes:

Corollary 2.32. For every ¢ € Qy , and 1 € Uy one has I¥(p,n) = I¥(ip,in). In
particular, the involution i on X(I',G) is an isometry of any pressure form P¥.

2.13.3. Entropy regulating form. We introduce the set of i-normalized variations
of v by

B dA7(v) .
b = {qp(xi(p)) "Y€ rh}'

Remark 2.33. By Eq. (2.11), the Pressure form P}f degenerates at v if and only if
w(\/g,v) = 08 £ in particular \/g,u is contained on a level set of 1.

Lemma 2.34. If p is 9-Anosov then \/Zé”v is compact and convex. Moreover the
map v \/g » 8 continuous on the open set TUy.

Proof. Recall we have a base-flow ¢ = (¢ : UI' — Ul);cg. Consider the Ledrappier
potential J : UI' — ay together with its variation J : UI' — ay associated to v. By
definition, for every v € [

Ag:m(;;) and szdxg(v).

If we let $¥@ be the reparametrization of ¢ by ¥(J) (recall §2.12) and we let
i +— 17 be the Abramov transform on invariant measures, then

dAjv) 1 / J
VI(p) Ly (V) Jy# ¥(3)

vy, =M (F/w(3)), (2.18)

which yields the desired conclusion. O

SO

It is convenient to name a particular point of \/gv, to do so we introduce the
length cone-bundle:

2y(T,G) = {(w,p) € ag x Ay(T,G) : 4 € int (Lp)*}.
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Corollary 2.35 (Entropy regulating form). There exists an analytic fibered map
p: Sg(r, G) — T*Qlﬂ(r, G) ® ay
such that if € £4(T,G) and v € T,A(T',G) then py(v) € rel-int \/z’v and

¥ (py(v)) = —dlog £ (v). (2.19)
Moreover, zfj and ¥(J) are Livsic-cohomologically independent, then \/:é},v has non-

empty interior and thus py(v) € int \/:ﬁ’)v.

Proof. For (1), p) € £4(T,G) and v € T,%y(T, G) we let pyv = [ Lz € VY, C
ay. Then the statements of the Corollary follow readily from the combination of
Corollary 2.20, Proposition 2.21 and Remark 2.22. ([l

2.13.4. A needed Lemma. The following is only needed in Corollary 11.5.

Lemma 2.36. Let G be semi-simple of non-compact type. Fiz a simple root a € A,
let p € Aoy (T, G) have Zariski-dense image and consider a non-zerov € T,X(I',G).

Then, for any 1 € int (Lgay,,)" one has \/?a}’v has non-empty interior and pyv €
; p
int V {a}o
Proof. All elements in (ag,y)* are scalar multiples of the fundamental weight @, so
it suffices to prove the result for ¥ = w,. In order to apply Corollary 2.35 we need
to show that the hypothesis of Proposition 2.21 by Babillot-Ledrappier are verified,
this is to say, we need to show then that J/w,(J) and 1 are Livsic-cohomologicaly
independent. Now ag,y is also 1-dimensional so the last statement is equivalent

to prove that w@s(J) and w@a(J) are independent, which is the exact content of
Theorem 2.37 below. 0

We conclude the section by stating the following result from Bridgeman-Canary-
Labourie-S. [14]. If G C SL(d, R) is semi-simple and p: I — G C SL(d,R) then, we
say that p is G-generic if p(I') contains an element that is loxodromic in G.

Theorem 2.37 ([14, Lemma 9.84+Prop. 10.1]). Let p: I — SL(d,R) be projective
Anosov and such that p(I) acts irreducibly on R%. Assume that p(T) C G for some
semi-simple Lie group G and let (py)ic(—c,c) be a differentiable curve through p of
G-generic representations. If there exists K € R such that for all v € T one has

B
e t:O?\l(pw) = KA (pv)

then K = 0 and the cocycle u € H}\de(I', G) associated to g is cohomologically
trivial.

2.13.5. Cross ratios. A decomposition R? = ¢ @ V into a line and a hyperplane
defines a rank-1 projection denoted by (. If R? = r @ W is such that dimr = 1
and moreover r NV = {0} = {N'W (we say in this case that the decompositions
are transverse) then we define the (multiplicative) cross ratio by

By (4, V,r, W) = Trace(me,ymrw). (2.20)

Let now n: I — PGL(d,R) be a projective Anosov representation with equivari-
ant maps ¢! : O — P(R?) and ¢471 : or — P((R?)*).
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A pair (x,y) € 9°T defines a decomposition R? = £*(y) ® &4 (z). If we let 9T
the space of pairwise distinct four-tuples then an element (z,y, z,t) € OWT defines
two transverse decompositions of R? so we define the cross ratio map by, : OWr - R
by

by (@, 2.8) = By (€1 (1), €71 (2),€1(8), €7 (2)).

If we now let p : I — G be ¥-Anosov then we define for later use the ag-valued
cross ratio map as b, : OWT — ay by, for each (z,y, z,t), as the unique vector such
that for every o € ¢

o (b,(2,y,2,t)) =log |bg, (x,y, 2,1)].

Theorem 2.38 ([14]). Let {p, : I — PGL(d,R)}ucp be an analytic family of
projective-Anosov representations, then for every four-tuple (x,y,z,t) € OMT, the
map u — b, (x,y,2,t) is real-analytic. In particular, if {p, : T — G}uecp is an
analytic family of 9-Anosov representations then for every four-tuple (x,y, z,t) €
OWT the map u — 0. (2,9, , 2,t) is real-analytic.

Part 1. Affine actions
3. MARGULIS INVARIANT: BASICS

3.1. An elementary lemma. Let V be a finite dimensional real vector space and
consider the affine group Aff(V) = GL(V) x V. An element f € Aff(V) has a linear
part f € GL(V') and a translation part vy so that Yu € V one has

f(u) = f(u) +vy.

Let us consider the (possibly trivial) generalized eigenspace of f associated to
the eigenvalue 1

0=0(f) = {weV:3In>0with (f —id)"w = 0}

and define the un-normalized Margulis invariant of f, m(f) € O, as follows. Jor-
dan’s decomposition of f guarantees the existence of a f-invariant decomposition
V=Wa®0O,let 7' : V — O be the associated projection and define

m(f) ="' (vy). (3.1)
Remark 3.1. Tt follows at once that m(f~1) = —m(f).

Lemma 3.2. Consider f € Aff(V), then there exists o € V such that the translate
VO(f) = O(f) + o is invariant by f. Moreover, the transformation © — O defined
by v— f(v+ 0) — o has linear part f|O and translation part m(f).

Proof. Indeed, 1 is not an eigenvalue of f |W and thus f |[W — idw is invertible.
Let w : V. — W the projection following the decomposition V. = W & O. The
transformation 7f = wo (fIW) : W - W

T f(w) = fw + (vy)
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has a unique fixed point 0 = oy, defined by 0 = —(f —id)" 7 (vy). For v € O one
has

flo+v) = flo+v)+uvy
(0) + f(v) + mvg + m(f)
(0) + vy + f(v) +m(f)

+ f(v) +m(f) €0+ 0,
concluding the proof. ]

f
f
o

We end this subsection with the following remarks:

Remark 3.3.
- For every h € GL(V) one has h(m(f)) = m(hfh™).
- Assume that f|O = id, then for all u € V the maps f and f +u — fu have
the same un-normalized Margulis invariant, that is

m(f) = m(f +u— fu).
Indeed 7% (u — f(u)) =0.
3.2. Around the 0O-restricted-weight of an irreducible representation. We

consider now a reductive real-algebraic group G and an irreducible representation
¢ : G — SL(V) with 0 € Mg, and define

My® = {x € Mg : xowo = x},
N= P v~
x€M,°
The vector space N will be called the ideally neutral space of ¢. For v € a we let
Me™ ={xeNy:x(v) >0},
Ny~ ={x €Ny :x(v) <0}

An element of Fix(i) necessarily annihilates all x € |_|$°. We fix an Xy €
a* NFix(i) which does not belong to the finite union of kernels ker x, x € Mg \ M.
This choice provides a partition g, = I_I$O U I_I$ U I_I$7 where

+ . Xo,+
Mg =T,
- . X, ,—
My ==T5"",
with the advantage that wo(M3) = My and {x € Ny : x(Xo) = 0} = Mg°.
We now consider the set of simple roots 0 such

A—GZ{UEA:f‘G(ﬂ+)—I—|+}

Then one has the following (observe we are using the opposite convention for par-
abolic groups than Smilga [72]).

Proposition 3.4 (Smilga [72, Prop. 6.4, Lemma 6.5]). If 0 € A — 0 then #,
necessarily fixes each x € I_Iifo. The set 0 is i-invariant and the parabolic group P°
is the stabilizer in G of each of
= @ VX and AT :=at ©N.
x€eny
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The group PO s the stabilizer of a” = @Xen; VX and A~ :=a & N.

Lemma 3.5 (Smilga [72, Lemme 7.12]). Consequently, for each x € I'I$0 the algebra
g° @UG(A—S} g°@®g 7 acts trivially on VX and thus the Levi group Lo acts as $(MA)
on N

Proof. Fix 0 € (A —0), the reflection 7, also stabilizes I'I$. Since x is wg-invariant
one readily sees that x + o is not. Now, »(x) € I'I?ﬁ0 ung (or else x = #5(#6X) €
I'I$) So if x + o € Ny then necessarily x + 0(Xg) > 0, i.e. x +0€ I'I$. However,

7s(X + 0)(Xo0) = (#ox — 0)(Xo) <0,

Le. 7o(x + 0) € M, achieving a contradiction. Whence x + o ¢ Mg and thus
#(gs)VX C VX% = {0} concluding the proof. O

We now consider the action of ¢(MA) on N. The first remarkable subspace, the
neutralizing space of ¢, is the fixed point subspace of $(MA) on N, and coincides
with the fixed point set of ¢(M) on V0. It is denoted by

T = VoMY = y0.0M = [y e VO o p(M)v = 0v}.
Definition 3.6. The neutralizing dimension of ¢ is neudim ¢ := dim 7T.
Let T+™ C N be the ¢(M)-invariant complement, the decomposition
N=TJlvgpT (3.2)
is canonical given ¢. Let 77 : N — T the associated projection.

Example 3.7.

- If G is split then T = V? see for example Ghosh [28, Lemma 2.5].

- For the defining representation of SO, ,, the neutralizing space is trivial.

- If we let & = Ad : G — SL(g) be the adjoint representation then N = g° =
m® a, and writing m = [m, m] @ 3(m) one has that M preserves each factor
¢ = [m,m] ® 3(m) ® a and acts trivially on 3(m) @ a so

T=3m) ®a.

The typical situation when 3(m) # {0} is when G is a complex group
considered as a real group, in which case 3(m) = m and 3(m) ® a is a
Cartan subalgebra of g (as a complex Lie algebra).

If we let ¥ = dima™ then, as d(wp)a™ = a~, one has k = dima™, let also
n be the dimension of N, and denote by F} , the space of partial flags (ug,un)
consisting on a k-dimensional subspace uy of V' contained on an n-dimensional one
Up. Proposition 3.4 and Equation (2.6) provide an algebraic ¢-equivariant map

: fFe(G) — Fk,n(V)
z— (14, Xo) (3.3)
such that if (x,y) € fﬂ(f)(G) then (z¢,X4) and (yge,Yy) are in general position.

Corollary 3.8. There exists a constant C' only depending on ¢ such that if (z,y) €
?éz) then

Il = < [|(( X)), < Clll)]-
C )

Proof. Follows from Proposition 3.4 and Remark 2.5. (]
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A pair of flags in general position (z,y) € 3"9 (G) determines then an n-dimensional
space, namely

X¢ ﬂYq).

By Lemma 3.5, such a space carries a natural decomposition into its neutralizing
space and the ”M-invariant complement”. Indeed, if gg,g91 € G are such that
go(z,y) = ([PY], [pe]) = g1(z,y) then gog; ' belongs to Lg, which preserves the
decomposition (3.2). Consequently, both subspaces of X¢ N Yy

TN = (g0) 71T
gl@y),lvm — (b(go)—l(gim)
are independent of go. We fix from now on, for each (z,y) € 3",(32), an element
Y(a,y) € G such that
Diay) (PP [PO]) = (2, 9). (3.4)
By Proposition 2.6 such an element can be chosen so that for ||u(t(,,))| is coarsely
comparable to the norm of the Gromov product (z]y)?.

3.3. (¢, Xo)-compatible elements. If § € G is 0-proximal we have, using Equa-
tion (3.3), a decomposition

V= (i3 @dy) @Gy (3.5)
where G% = G$ N G; Observe that

(i) ¢(g)|G% decomposes as sum of roto-hometheties,

(ii) the subspace gjg is not necessarily attracting for ¢(¢) on the Grassmannian
Grp (V). This only happens if A(g) lies in a specific neighborhood of Xj:
the open cone

{veat : xT () >xw), VT eng x’ e Mg’}
Symmetrizing in order to deal with inverses we consider the sub-cone of a*:
Xg={veat: I'I$(v) > My° (v) > I_I;(U)} (3.6)
Because of item (ii) one introduces the following definition.
Definition 3.9. An element g € G x V is ($, Xo)-compatible if A(§) € Xg.

Lemma 3.10. A ($, Xo)-compatible element g has 0-prozimal linear part. More-

over the flag (gj’;, G$) € Fi.n (V) is attracting for ¢(§) with repelling flag (gd_)7 G;)

Proof. By definition, for every o € 0 there exists x € I_|$ such that »,x ¢ I'I$.
Thus, if g is (¢, Xo)-compatible one has, for such y,
X(A(9) > (7o x)(M(9))
=(x — {(x,0)0)(M(g))
=x(A(9) — (x,0)a(A9)),

giving o(A(g)) > 0. The second statement follows by definition. O
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Observe that although the action ¢(g) on G?b = G$ N G; might have some
expanding/contracting spaces, this expansion is dominated by the one on g';f and
the same holds for the contraction and 9 Moreover, recall notation from § 3.1,

TW9)  0(g) C G,

Let now g € G x V be (¢, Xp)-compatible. Equation (3.1) provides an unnor-
malized Margulis invariant

t(g) € O(g) C G% — Gg:98) g Tl34:9¢)Lm

that we further project onto T(34:9%) and push to T via ¢+ 4-) to obtain the
Margulis invariant of g:

Definition 3.11. The Margulis invariant of a (¢, Xp)-compatible g € G x V' is
m(g) =77 (g+.g-)(M(9))) € T.

Remark 3.12.
- By combining both items on Remark 3.3, it is invariant under conjugation
by an element of G x V.
- Observe that the Weyl group acts on T and it follows from Remark 3.1 that

m(g™) =wo - (—m(g)).
3.4. Invariant flags. Assume g € G x V' is (¢, Xo)-compatible and consider the
projections parallel to the decomposition in Equation (3.5)

7T3: V= g$ D g'q_),

71'2 V= Gg)
Definition 3.13. The unique fixed point of the affine map 7T;t 0g: g'$ &5 g; —
¢ © g4 will be denoted by o,.

Whence, each of the following affine flags is g-invariant:

Gt =Gy +og,
G =Gy +og,
G’ =GY +0,.

Moreover, inside G* the notion of parallel to gj,g is preserved by g. Indeed
g(g$ +04) = QZE + 04 + 770(”9)'
The same thing happens for G~ and g,.

For an affine p-dimensional subspace U C V we consider U = {u—v:u,veU},
it is a vector subspace of V. We also consider the distance on the space of affine
p-dimensional spaces defined by

dag (U, W) := dGrp(V)(U,W) +inf {|lu —w|¢ : uw €U and w € W}.

Lemma 3.14. There exists a constant ¢ only depending on ¢ so that if g is (&, Xo)-
compatible and B is a co-dimension k affine subspace of V' transverse to 9¢ and we

let {b} = BN gy then,

Cc

dAff(gB, G+) < e~ min{o(A(9)):0€0}+|(gF g7l T ||g|gq—)||||b _ OQH'

o (05 1B) 00
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FIGURE 1. Dynamics of a (¢, Xo)-compatible element of G x V.

Proof. One has gB = §B + g(b) = ¢B. Since by Lemma 3.10 G$ is attracting for
g with repelling flag g, the distance between the vector subspaces gB and G$ is
controlled by Corollary 3.8 together with Lemma 2.12 giving the first term in the
inequality stated in the Lemma.

To control the second term, recall we have defined m(g) = m)(v,), s0 04 +m(g) €

G™. By definition b = v + o, for some v € Gg+ 80 gb = gv + 04 + m(g). Whence
int {llgv — ul - v € Byu € G} < |gb— (o + () | < ool
completing the proof. O
Remark 3.15. We remark that, as g is (¢, Xo)-compatible, the spectral radius of
g|gd—> is strictly smaller than 1, so ||g”|g;H — 0 as n — oo. Moreover, Smilga [72,

Proposition 7.26] states that given C' > 1 there exists ¢ such that every (¢, Xo)-
compatible g with ||(¢7]¢g7)|| < C it holds

e min{o(u(9)):0€0} < C||g|gd_>”'
Definition 3.16. The affine-contraction of a (b, Xo)-compatible g € G x V' is
s(9) == llglagll - g~ G5 - elosl.
We conclude the section with the following perturbation Lemma.
Lemma 3.17. Let h € G x V be ($, Xo)-compatible and loxodromic. Then, there

exists a non-empty Zariski-open subset Gp, of G? such that for every pair f,q € GXV
with (f,q) € Gy the following holds.
(i) The sequence Ry - N(fh™§) — Ry - A(h) as n — oo. In particular fhq is
(b, Xo)-compatible for all large enough n.
(ii) The attracting affine flag of fh"q converges, as n — oo, to f(H™) and the
repelling affine flag converges to g~ (H™).
Proof. We commence by considering the Zariski-open subset G, C G? of Lemma
2.10. For every (f,q) € G, the Lemma implies
A(fh"g) — nA(h)

n n—00

0,

giving the first statement in item (i). Since A is loxodromic, A(h) lies in the interior
of X¢ and thus item (i) follows readily.
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Now, if f,¢ moreover verify
FOHG) N (i) = {0} (3.7)
then, there exists a neighbourhood U of f(H™) such that for all B € U one has
q(B) M hy. Lemma 3.14 implies that h"q(B) — H™", so fh"q(B) — f(H*) as
n — oo; i.e. if n is large enough, there is a small neighbourhood of f(H™) that is
sent to itself by fh"gq, entailing that the attracting affine flag of fh"q is arbitrarily
close to f(HT) as n — oo.

To deal with the repelling flag, the argument follows similarly by considering the
equation

¢ (Hy) 0 f(hg) = {0} (38)

The lemma is settled by observing that, since all the flags h;, h;r), H o and Hc'g
are fixed, Equations (3.7) and (3.8) determine Zariski-open non-empty subsets of
G2, which we further intersect with Gy, to conclude the proof. O

4. THE AFFINE RATIO AND AFFINE LIMIT CONE

4.1. The Affine Ratio. Let us consider a real vector space V of dimension 2k + [
and the incomplete flag space

Fk,l(V) = {(f, W):tle Grk(V), W e Gl"k_;,_l(V), {C W}

It is a self-dual flag space of V' and two such flags, (a, A), (b, B), are in general
position if aN B =bN A = {0}, in this case AN B has dimension . For v € V, let
us denote by (a, A) + v the affine flag (a + v, A + v).

Consider four flags (a™, A"), (a=, A7), (b*,B"),(b~,B™) in Fy;(V), pairwise in
general position, and consider also two arbitrary vectors v, w € V. We will define
an invariant of the four-tuple of affine flags

at = (at A*)
am =(a, A7)+
b* = (b* +)
b™ = (b~ ,B)

which we call, by analogy with the cross ratio of four lines in the plane, the affine
ratio. Let us denote by A = AT N A~ (and B® = BT N B~). This invariant will
be an affine map from A° 4+ w to itself,

f(a=,bt,b7,a"): A% = A°,
defined by following procedure.

Consider u € A° so that u +w € A° + w C A~ 4 w, translate v + w parallel
to @~ + w until one reaches A~ +w N (BT + v), call this vector u;. Translate u;
parallel to b™ + v until reaching us € (BT + v) N (B~ + v), translate us parallel
to b~ + v until reaching uz € (B~ +v) N A, translate ug parallel to a™ + w until
reaching again uy € (A" +w) N (A~ + w) = A® + w. Then we let (see Figure 2)

Z(a=,bT,b7,a")(u) := uy —w € A.
Remark 4.1. The affine ratio is invariant under the action of GL(V) x V in the
following sense: if f € GL(V) x V then
fé@™,b*, b7 a") fTt =(fa", fa”, fbT, fb7).
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|1
ut+w A4+ w
FIGURE 2. Definition of the Affine Ratio

Given a decomposition V = U@ W let us denote by 7" : V' — U the projection
along it, so id = 7" @ 7>V The next lemma computes the translation part of 7.
Lemma 4.2. One has £(a=, b+, b=, a")(0) = x40 &b gbT@a".B (4, _ 4,

Proof. Without loss of generality we may assume that w = 0. Using the definition
of ¢ and the fact that © = 0 one directly observes
u =7% B .

From the decomposition u; —v = 7 B~ (u; —v) + 78 *" (u; —v), one obtains that

+p- +p- bt a- BT
up =uy — B (ul—v)zwb BTy 4 gB b g By,
N h = 7470 yy; so finall
ow one has uz =7 uo; so finally we get
o _ _ ot ~at At/ btB- bt o Bt
(a7, yty )(O)ZU4:7TA @y =g e AT (7Tb Byt gB bt g B v)
0 gtap —pt b+ a- BT
— pA%atab (U_TerU_Fﬂ,Bbﬂ_an)
0 —+ +
A,a Db~ (U+7T aBU—U))

AO ateb™ (v a8~ bt B*a*v))

+ pt
b’U BﬁBb@a)

A“ ateb™ Wzﬁ@a BO()
)

as desired. O

In particular, if all affine flags have one point in common p = a*Na™ NbT Nb™,
then the translation part of 7 is 0 since we can then then take v = w = p.

An affine ©-flag of G x V consists on the affine partial flag (z¢,X¢) + v, for
some x € Fo(G) and v € V. Let us now consider the affine ratio as an invariant of
four affine flags of the group G x V, we will also normalize it so as to consider it as
a map of N to itself.

Definition 4.3. Let X, X, YT, Y~ be a four-tuple of pairwise transverse affine
0-flags of G x V, and define

NXTYT YT X NS N
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by conjugating (X ~,Y ", Y™, XT) with the map
d)(w(er,:r*)) oT
that sends the pairs of affine flags X+ = (x;g, X;g) +wand X~ = (z,,X,)+wto
(a™, A") and (a™, A7). Finally, let us define the Translation Affine Ratio
(XYY, X eT
as the translation part of ep(X—, YT, Y, XT) : N — N along the neutralizing
space 7, this is to say

(XYY X = a7 (X, Y YT, X )(0)).

For a subset A < Gx V we let A < G be the subset consisting on its linear parts.
The purpose of this section is the following result.

Proposition 4.4. Assume G is Zariski-connected. Let A < G X V be a Zariski-
dense sub-semi-group such that £, N Xy has non-empty interior. Then the set

{ZN(G*,F+,F7,G+)(O) : f,g € A are (b, Xo)-compatible and tmnsverse}
is not contained in a hyperplane of N. Consequently, the set
{Zq(G_,F+,F_,G+) : fyg € A are (§, Xo)-compatible and tmnsverse}
is mot contained in a hyperplane of T.

Proof. By Zariski-density, and since £ ; N X4 has non-empty interior, there exists
a pair g,h € A such that the corresponding linear parts ¢ and h are (b, Xo)-
compatible, loxodromic and transverse.

By conjugating A we may, and will, assume that (recall Definition 3.13)

0, =0, g7 =[P%), and g~ = [PY],

so that (9,G¢) = (a7, A%), (95.G4) = (a7, A7), A = N, G+ = AT and
G~ = A~. Applying Lemma 4.2 we see that we have to understand the vector

v(g,h) =m0 Ehe iy @I o)
+ahT _ .
=0 ((a” @ hl) N H), (4.1)

for different choices of h. More precisely, we fix g and h as above and a hyperplane
U CN, we will find f,q € A and n € N such that v(g, fh"q) & U.

We apply Lemma 3.17 to find a non-empty Zariski-open subset G, C G? such
that if f,q € G x V verify (f, G) C Gy, then, for all large enough n one has fh™q is
(¢, Xo)-compatible with attracting flag arbitrary close to f(H™) and repelling flag
arbitrary close to ¢ 1(H ™) (as n — 00).

To find elements f,q € A such that v(g, fh"™q) ¢ U for big enough n, we use
Equation (4.1) and the above descriptions of the invariant affine flags of fh"q to
see that we must find f, ¢, € A such that (f, G) € G, and

Ueat®q ' (hy))N ((a— @ f(hy) N (FHT)N q—l(H—))) = . (4.2)

This last equation defines a Zariski-open subset of (G x V)2, the variables being
(f,q). Since (G x V)? is Zariski-connected, it is Zariski-irreducible and thus a
finite collection of non-empty Zariski-open subsets has non-trivial intersection. We
already now that G, is non-empty, so provided (4.2) defines a non-empty set we
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have: since A is Zariski-dense in G x V, the product semi-group A x A is Zariski-
dense in (G x V)2 and thus a pair (f,q) € A% with (f,4) € G, and satisfying
Equation (4.2) will exist.

To complete the proof it remains thus to show that there exist f,q € G x V that
verify (4.2). Consider then f=¢=1id. It suffices to find v € V such that

(U@a*@h;)m(h;g@a*)m(TU(H+OH*)) =0. (4.3)
In order to do so, we observe that
dim ((U ®at ®hy) N (h) @ a*)) =2k —1,
dmHY*NH™ =1

The second equality is obvious, the first one follows since U @ a™ @ h$ has co-
dimension 1 and hj; @ a~ is 2k-dimensional (by transversality of g and h) and not
contained in the former.

Thus, as the dimensions do not add up to dimV = 2k + [, we can translate the

latter as to not intersect the former. i.e. there exists v € V such that Equation
(4.3) holds, as desired. O

4.2. The affine ratio and additivity default of Marguils’ invariants. Given
C > 0, we say that two (¢, Xp)-compatible elements gg,g1 € G x V are a C-
transverse pair if for all i,j € {0,1} one has ||(gz+|g;)|| <C.

Theorem 4.5 (Smilga). Given € > 0 there exists C > 0 such that if f,q € GXV
are a (¢, Xo)-compatible C-transverse pair with affine contraction < 1/C, then

[m(fa) — (m(f) +m(q)) —e3(Q ™, QT F~,F")|| <e.

Quick sketch of proof. The proof is essentially contained in Smilga [72, Proposition
9.3], however the statement is not exactly the same us ours so we just explain the
main ideas.

We want to understand the Margulis invariant of fq by decomposing it into its
factors f and ¢q. The former is, up to normalizing its invariant flags, the translation
part of fq restricted to the neutralizing space

g(Go*G07) « (roy.

If the angles between the invariant flags of f and ¢ are controlled, and moreover
the affine contraction ¢(f) is small enough (recall Definition 3.16), Lemma 3.14
implies that, the attracting flag of fq is close to F*. An analogous control for
quantities related to ¢~ ! implies that the repelling flag of fq is arbitrarily close to
Q~, so the ideally neutral space (FQ)" of fq is close to F* N Q~. Similarly ¢f
has attracting flag close to Q7, repelling flag close to F'~, and ideally neutral space
close to QT N F~. See Figure 3.

Now, the map ¢ conjugates fq and qf, so q sends (FQ)° so (QF)°, and analo-
gously, f sends (QF)° to (FQ)°.

The idea is then to decompose the map ¢ : (FQ)? — (QF)° as the projection
from (FQ)° to Q° parallel to ¢—, followed by the projection Q° to (QF)° parallel
to ¢ and some quasi-translation of (FQ)°. Some errors have to be taken into
account here as (F/Q)° is not exactly F™ N Q~ but only close to it, these errors
tend to be negligible. However, for the approximation of ¢ : (FQ)? — (QF)° with
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this composition of projections and a quasi-translation to be good, a control on the
total separation of the spaces, namely, for example a control on ||o4|| and |lof]| is
sufficient (together with the previous control on angles/size of ¢ and f). This is
resolved in Lemmas 9.8 and 9.10 and Corollary 9.9 of Smilga [72].

(QF)°

F+ ‘ Q-

(FQ)°

FIGURE 3. Schematic situation in Theorem 4.5, the ideally neutral
spaces (FQ)® and (QF)° are very close (but do not coincide with)
FtNQ ™ and QT N F~ respectively.

On readily sees then the Affine Ratio of Figure 2 appearing as the corresponding
default, giving the result. O

4.3. The affine limit cone is convex and has non-empty interior. In analogy
with Benoist’s limit cone [3] we define the affine limit cone oA of a Zariski dense
sub-semigroup A < G x V as the smallest closed cone of T that contains the set of
Margulis invariants

I = {[R{Jr -m(f): feAIs (d),XO)—compatible}.

In light of Proposition 4.4 and Theorem 4.5 one has the following result. Similar
versions will also appear in Kassel-Smilga [11] and in Ghosh [29].

Corollary 4.6. Let ¢ : G — GL(V) be an irreducible representation with non-
trivial neutralizing space and let A < GV be a Zariski-dense sub-semi-group such
that int £ 3 N Xg¢ # 0. Then the affine limit cone A A is convex and has non-empty
imnterior.

In contrast with Benoist’s limit cone, it is fairly common for /5 to be the whole
space J. Indeed, this is the case when wq acts trivially on 7.

Proof. We first establish convexity. To that end, we fix a pair g, h € A of (b, Xo)-
compatible, loxodromic elements, we have to find an element in A whose Margulis
invariant lies about Ry (m(g) + m(h)).
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We consider the Zariski open sets G, and G, given by Lemma 3.17 applied to g
and h respectively. Since g and h are fixed, each of the equations
FUHG) N hg, = {0},
H{ ng'(hy) = {0},
Gy Ny (gg) = {0},
fo(GE) N gy = {0},
Hy Ndg (5g) = {0},
Gyng (b)) = {0},
defines a Zariski-open non-empty subset of G. Since G is Zariski-irreducible finite
collections of non-empty open sets intersect and thus there exist f, g, fo, o € /A such

that ( 1, q) € G, ( f07q0) € 9,4, that moreover verify the corresponding equations
above. For large enough n we have thus, by means of Lemma 3.17, that
- fh™q and fog™qo are (b, Xp)-compatible,
- fh™q and h are transverse,
- fog™qo and g are transverse,
- for all m > 1 the elements h™ fh"q and g™ fog™qo are also transverse (and
(¢, Xo)-compatible by Lemma 2.9).

Applying now Theorem 4.5 we see that, for big enough n,

. m(g*fog"aoh* fh"q) . m(g* fog"q0) + m(hF fh"q)
lim = lim
k—o0 k k—oo k
oy m(g") + m(fog"qo) + m(h*) + m(fh"q)
= l1im
k—o0 k‘
=m(g) + m(h),

proving convexity of /.

To prove that &/A has non-empty interior we use Theorem 4.5 together with
Proposition 4.4. Indeed, if there exists a hyperplane U C T such that m(g) € U for
every (¢, Xo)-compatible g € A, then for any transverse pair of (¢, Xy)-compatible
elements f,q € A we have

w(Q7,FH F7,QY) = Tim m(f"q") = n(m(f) + m(q)) € U,
n o0
contradicting Proposition 4.4. Finally, a convex cone that is not contained in a
hyperplane has non-empty interior, completing the proof. O
5. THE CASE OF REDUCIBLE REPRESENTATIONS

We now consider a finite collection of non-trivial irreducible representations {; :
G — SL(Vi) }ier with 0 € Mg, and study the representation

q;::@q)izc—w::@vi.

Fix Xy € at N Fix(i) which does not belong to the finite union of kernels ker ¥,
x € Mg, \Mg". Let 6; C A be the set of simple roots stabilizing I'I$i and

iel
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It we let
al‘-": U 728 andAj: U VX

+ + Unwo
Xeﬂ¢i Xeﬂdiuﬂ¢i

b

then the parabolic group Pg is the stabilizer in G of a* := @, a; and of A" :=
D, Aj and, if we denote by p; : Fog — Fo, the natural projection, then we have a
map Fo — Gry-, ki,Zini(V) defined by

5 (29, Xo) = (D Ei)e DPX)s, ).

? ?

(recall Equation (3.3)). We let Xy, := (), X¢,, where X, is defined as in Equation
(3.6), and we say that g € G x¢, V is (¢, Xo)-compatible if A(g) € Xg.
For each 7 let us denote by 7; the associated neutralizing space and define the
trivializing space of ¢ by
T=EP7.

Define also, for a (¢, Xo)-compatible g = (g,v) € G x4 V its Margulis invariant by
m(g) = 3" m(g,v0),
i
where v = ). v; in the decomposition V' = &, V;.
We extend the definitions of affine ratio and affine limit cone and the exact same
proof of Corollary 4.6 gives the following:

Corollary 5.1. Let ¢ : G — SL(V) be as above and let A < G x V be a Zariski-
dense sub-semi-group such that int £ ; "Xy # 0. Then the affine limit cone dp C T
is convexr and has non-empty interior.

6. THE COCYCLE VIEWPOINT: ZARISKI DENSITY

Let us fix a (possibly reducible) representation ¢ : G — SL(V). If ' < G is a

semi-group, a cocycle over ¢ is a map u : I' — V such that for every g,h € T one
has

u(gh) = u(9) + b(g)u(h);
it is a co-boundary if there exists v € V with u(g) = v — ¢(g)v. The vector space

les over ¢}
HLTV) = {cocyc
(V) {co-boundaries}

is called the first twisted cohomology group.
Semi-groups of G x ¢ V whose linear part is fixed and equal to I', are in bijective
correspondence with cocycles over ¢ via

u—T,:={(g,u(g) eGrep V:geT}.
Two such groups are conjugated by a pure translation, if and only if the associated
cocycles differ by a co-boundary, i.e. are cohomologous.

One has the following result of Ghosh [28] that crucially uses Whitehead’s Lemma
on the vanishing of the first cohomology of semi-simple Lie algebra representations.

Proposition 6.1 (Ghosh [28, Proposition 6.2]). Let ¢ : G — SL(V) be strongly
irreducible and non-trivial. Let T < G be Zariski-dense and u € Hé,(]"7 V) be non-
trivial. Then the group T\, is Zariski-dense in G x4 V.
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Proof. We add some details for later use. Let X be the Zariski closure of I, and
consider ’the linear part’ morphism L : X — G. Since I is Zariski-dense in G we
have that L(X) is surjective. Thus for every g € G there exists u, € V such that
(97 ug) e X

If L were injective then such u, would be unique giving a well defined cocycle,
g — uy € V of G over ¢, extending u. Whitehead’s Lemma (see for example
Raghunathan’s book [64]) implies then that ug is cohomologicaly trivial, and in
particular u is, a contradiction with our assumption on u. We conclude that L is
not injective and thus there exists a non-trivial pure translation (id,u) € X. Since
(g, ug)(id, w)(g,ug) ™ = (id, d(g)u), the Proposition will be proved once we have
stablished that the additive group spanned by ¢(G)u is V.

Lemma 2.13 provides a g € G such that for all x € Mg one has (¢p(g)u), # 0,
where, for a vector w € V, we have denoted by w, its componenent in the restricted
weight space VX, following the restricted weight decomposition of V.

Since the additive group spanned by ¢(G)u and that of ¢(G)dp(g)u coincide, we
assume from now that the pure translation (id,u) € X is such that for all x € Mg
one has

Uy 7 0.

Since Mg is finite we can consider z € a such that the values x(z), for x € Mg,
are pairwise distinct. In particular x(z) # 0 for any non-vanishing x.
Let us fix a weight p € Mg \ {0} and consider the linear map

R* = (d(exp(z))—id) H (Z(b(exp(z)) - cb(exp ((1 + lOgQ)z))> e gl(V).

XGH‘D*{O’H} X(Z)

One readily sees that

- R*u belongs to the additive group spanned by ¢(G)u,
- the order on the above product is irrelevant as we are only considering
elements of exp(a), which commute; whence R*u, = 0 for all x # p.

In particular,
Rfu = R*(uy,)
= ((e“(z) -1) H (2e1() — eh()+1os 2565 )) (up)

X€n¢7{0“u,}
=c-uy #0,

as the coefficient ¢ is non-zero since x(z) # p(z) for all x # p.

One concludes that, for all @ € a one has ¢(exp(a))R*u = exp(u(a))cu,, so by
also considering differences, we get that the line R(u,) is contained in the additive
group spanned by ¢(G)u. Now, the additive group spanned by ¢(G)R(u,) coincides
with the vector space spanned by ¢(G)(u,,), which coincides with V' by irreducibility
of the representation ¢, as desired. ([l

Lemma 6.2. Let ¢ : G — SL(V) and P : G — SL(W) be two representations with
b strongly irreducible and such that, there exists 0 # p € Mg \ My,. Let T < G be a
Zariski-dense semigroup, uy : I' =V a non-coboundary cocycle and uy : T' = W a
cocycle. Denote by

u=uy +uy:Fr—=VaoWw
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Then the Zariski closure X of T, contains G x V. If moreover I, is Zariski-dense
inGX W, then X =G x (Vo W).

Proof. Let X be the Zariski closure of T,. Consider the projection 7 : GX (VW) —
G x V given by m(g,v+w) = (g,v). Since [u]y # 0, Proposition 6.1 applies to give
that the restriction of w to X is surjective. This in turn implies that for every v € V'
there exists w € W such that (id,v +w) € X. Fix p € Mg \ My, and choose v so
that v, # 0.

We consider now the restricted weight space decomposition

Vew= Y (VaWw)yX,

x €My UMy,

and denote, for u € V& W by u, € (V @ W)X the associated component. Observe
that (V @ W)#* = V# and thus (v+ w), = v,.

We now proceed again as in the proof of Proposition 6.1 by considering the
(modified) operator

R* = (d(exp(z)) — id) H <2d)(exp(z)) — d)(exp ((1 + lo(gzi)z))> ’
X€M UMy —{0, 1} X
and applying to the vector u = v+ w. The same arguments lead now to the desired
inclusion.

To prove the last item, we consider the projection 7" : G x VeW)-G6Gx W
given by (g,v +w) ~ (g,w). By assumption 7"V (X) = G x W whence for each
w € W and g € G there exists v € V with (g,v + w) € X. However, as we have
established that G x V' C X, we obtain that (g, w) = (g,v+w) - (id, —v) € X. Thus,
X contains both G x V and G x W, giving the result. O

Let us introduce the following definition.

Definition 6.3. A finite collection of strongly irreducible representations {¢; :
G — Vi}ier is disjoined if we can order I = [[1, k] such that ¢, is non-trivial and
for each ¢ > 2 there exists 0 # p; € Mg, \U};i Mg,. A representation ¢ is disjoined
if the collection of its factors is.

Remark 6.4. Observe that the Adjoint representation is always disjoined (regardless
that G has isomorphic factors) since the restricted weights of each irreducible factor
of this representation lie on different factors of a*.

Corollary 6.5. Let {¢p; : G — SL(Vi)}¥ be a disjoined collection. Let T < G
be a Zariski-dense semigroup and consider for each i a mon-coboundary cocycle
up : ' = Vi, and define u = > ,u; : T — @, Vi. Then Ty is Zariski-dense in
G (@) Vi)

Proof. Follows by induction, Proposition 6.1 gives the base step, and the inductive

step is given by Lemma 6.2. (]

We fix from now on a disjoined representation ¢ : G — V and a cocycle u :
I' — V over ¢. Remark 3.3 implies that if ¢ € " is a (¢, Xp)-compatible element
then m(g,u(g)) only depends on the class [u] € Hy (T, V), so we consider the map

m:T® x Hy (T, V) — T defined by

mu(9) = m?(u) := m(g, u(g)),
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where we have denoted by I'* = {(¢, X()-compatible elements of T'}.

By the very definition of m, the map is linear on the second variable and m,
identically vanishes when u is a co-boundary. So from Corollary 4.6 we conclude
the following;:

Corollary 6.6. Let ' C G be a Zariski-dense sub-semi-group. Let {¢; : G —
SL(V;) }ier be a disjoined collection and for each i let u; : T — V; be a cocycle over
b;. Let & = D, di, and assume there exists, for each i, a (¢, Xo)-compatible g; € T
such that m(g;,u;(g;)) # 0. Denote by V =@, V; and byu=>",u; : T — V. Then
the affine limit cone dr, has non-empty interior.

Proof. By Remark 3.3, the fact that m(g;, u;(g;)) # 0 implies that the class [u]; # 0.
Corollary 6.5 then implies that T}, is Zariski-dense in Gx ¢ V' and thus the statement
is reduced to Corollary 5.1. O

7. COMPATIBLE AND 0-ANOSOV LINEAR PART, NORMALIZED MARGULIS
SPECTRA

Let ¢ : G — SL(V) be a disjoined representation and p € 2g(I', G). We say that
pis (b, Xo)-compatible if

Lp C 3C¢.
A cocycle u € Hip(l', V) induces a T-valued translation cocycle ¢ : I x 92 — T
as in S. [67] (see also Ledrappier [53]), defined by

C(’y, (l’, y)) _ ,R_‘J' (d) (w(_m%y))ﬁX(med)’I(b@yd) (u(’yfl))).
Indeed we have to check that for every pair v,h € [ one has

c(vh. (z,y)) = c(h, (z,y)) + (v, h(z,y)),
which follows from a straightforward computation.
Applying S. [67, Proposition 3.1.1] we obtain a Holder-continuous function

Ju:Ulr =7

such that for every hyperbolic v € ' one has £[,](du) = m(v,u(y)). Thus, for every
¥ € int (Lg )", the set of normalized Margulis spectra

e ) = { 20200 1 i

is convex and compact. Pairing the Ledrappier potential for u with an invariant
probability measure should be thought of as a generalization of Goldman-Labourie-
Margulis [31].

Remark 7.1. Under the assumptions of Corollary 6.6 for u, if " is replaced by p(I)
then, if wo acts trivially on T then MS¥([u]) has non-empty interior.

The following will only be needed in Section 11.3. Recall from Smilga [71] that
a representation is non-swinging if there exists Xy € Fix(i) such that x(Xo) # 0
for every x € Mg — {0}.

Proposition 7.2 (Kassel-Smilga [11]). Let ¢ : G — SL(V) be an irreducible, non-
swinging representation such that T = V° # 0 and let T be a 0-Anosov (b, Xo)-
compatible subgroup of G. If 0 € int MS¥ ([u]) then the action of p(T), on V is not

u
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proper. However, if ¢ € int (a™)* and 0 ¢ MSY([u]) then the corresponding action
1S proper.

We also have the following result by Kassel-Smilga [41] and Ghosh [27, Theorem
1.1.2] (who further requires that G is split and center free).

Proposition 7.3. Let ¢ : G — SL(V) be an irreducible non-swinging representation
such that such that T=V°? #0. Let p: T — G be a 0-Anosov (¢, Xo)-compatible
subgroup of G. Then the action of p(I'), on V is not proper if and only if there exists
a sequence {y,} C T such that Y7 (p) — oo and such that m(vy,,u(yy,)) remains
bounded, in particular 0 € MS¥ ([u]).

In particular, if 0 ¢ MS¥([u]) then these Margulis space-times lie on the context
of S. [67, §3.4,3.5,3.6] and several results there apply directly.

Part 2. The cone of Jordan variations, normalizations, pressure

Throughout this Part we fix a faithful morphism p: " — G, so we often identify
I' with p(T"), for example we will say that v € T is loxodromic if p(y) is. We will
finally consider an integrable vector

veT,X(T,G).
For v € T we denote by A7 : X(I',G) — a the map A'(n) = A(n(y)), and we

let dAY be its differential (when it is defined). Moreover, if ¢ € a* then we let
©7 : X(T,G) — R be the composition

T =poN 1 p=p(A(p(r)))-
The vector v € T,X(T", G) induces a cocycle u, : I' — g defined by, for y € T,

w0 = 2| oo
The cocycle u, is a co-boundary if and only if there exists (s;) € G with so = id
such that for all v € T the curves p;(y) and s;p(7y)s; ' have the same derivative.
Equivalently, the curve p; is tangent at 0 to the conjugacy class of p, which is also
equivalent to the fact that the curve of characters p; € X(T', G) has zero derivative.
We introduce two concepts which are the main object of this part.

Definition 7.4.
- The cone of Jordan variations of v is the cone associated to variations of
Jordan projections:

VE, = {IR+ ~dAY(v):y €T loxodromic} Ca.
- Let ¢ € int (£,)*, then the set of 1-normalized variations is
dA\7Y (v)
¥ (p)
Let g = @, gi be the decomposition of g on simple ideals and assume we’ve

chosen the Cartan subspaces a; of g; so that a = @, a;. Let p; : g — g; be the

associated projections, choices have been made so that p(a) = a;. Assume also the

Weyl chambers a;" where chosen so that a™ = P, aj.

\/;f’:{ :ver}Ca.
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The vector v has full variation if for every i € I the cocycle p;(u,) is not coho-
mologicaly trivial. It has moreover full loxodromic variation if for every ¢ the cone

pi(7¥,) is not {0}.
8. VARIATION OF EIGENVALUES AND SOME CONSEQUENCES OF PART 1

We now apply Part 1 to a particular situation: we let & = Ad : G — SL(g) be
the adjoint representation. The set of weights is the restricted root system @ of g
and no root is wp-invariant so the ideally neutral space

N=¢g’=mada.

Writing m = [m, m]&3(m) one has that M preserves each factor g° = [m, m]®3(m)da
and acts trivially on 3(m) @ a so the neutralizing space is

T =3(m)®a.

Moreover, picking any X, € a™ N Fix(i) one readily sees that the (Ad, Xg)-
compatible cone is nothing but the whole Weyl chamber a™. The Margulis invariant
is thus well defined for any g € G x g with loxodromic g € G and one has

m(g) € 3(m) & a.
Finally, observe that Ad is a disjoined representation (recall Definition 6.3).
8.1. The variation of the Kostant-Lyapunov-Jordan projection. Let (g;):e(—c,s) C
G be a differentiable curve with loxodromic g = go. We denote by g € T,,G its de-

rivative. Consider the affine transformation g € G x g whose linear part is g and
translation vector

. 0 _
dgLy-1(9) = &’t:ogtg Leg.

Then one has the following.

0
Proposition 8.1. The a-factor of m(g) is e 07\(gt).
t=

The proof requires the following Lemma.

Lemma 8.2. Consider a differentiable curve (s¢)(—c.ey C G with so = id and let
hi = s; *gis; and h € G x g be defined as above, then m(h) = m(g).

Proof. Indeed, explicit computation yields that the translation part of h is

9 -1 -1
= Ad — 3,
At l=o" " Bt |1=o”9 +Ad(90)(5) = 5
so the lemma follows by Remark 3.12. (]

Proof of Proposition 8.1. Since g is loxodromic, so is g; for small enough ¢; denote
by z;, 41 € Fa the corresponding repelling and attracting flags. Since m(g) is
invariant under conjugation, we can assume that zo = [P2] and yo = [P2], so that
g = go = ma for some m € M and a € A.

We can also consider a differentiable curve s; € G with sg = id, that sends the
pair (z¢,y;) to ([P2], [P2]), consequently by Lemma 8.2 one has m(h) = m(g), for
hy == st_lgtst.

We compute now m(h). Since h; fixes ([P2], [P2]) there exist m; € M and a; € A
such that

ht = MiQy
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with A(g;) = A(as). Computing the derivative of h;h =1 one sees

B L0 L
Bl = il meae” M
=mm~' +da?, (8.1)

since M and A commute. The Margulis invariant of g is then computed by consid-
ering the eigenspace decomposition of Ad(ma), which is nothing but the root space
decomposition

g 290@@ga =[mm|®3(m)BGadndn,
acd
and projecting the vector (8.1) onto T = 3(m) @ a parallel to this decomposition.
The a-factor of m(g) is then Ga—!, as desired. O

The same proof above actually gives the following:

Corollary 8.3. Let G¢ be a complex semi-simple algebraic group. Let ac be a Car-
tan subalgebra of Ge and let A¢c : G¢ — exp(ac) be the complex Jordan projection.
Let (gt)ie(—e,c) C Ge be a differentiable curve with loxodromic go. Then

0
m(g) = a’t:()}\c(gt) € ac.

Proof. Considering G¢ as a real-algebraic group one has that m is abelian, so m =
3(m) and ac = 3(m) @ a. In the course of the proof of Proposition 8.1 one may
observe that, the 3(m)-factor of m(g) is the projection of mm =1 € m = [m, m]®3(m)
parallel to [m, m], which readily gives the result. O

8.2. Every functional sees eigenvalue variations. We now prove Theorem A.

Corollary 8.4. Assume p(T") is Zariski-dense. If v has full loxodromic variation,
then Z.¢ ,, is convex and has non-empty interior. In particular, if p is a reqular point
of X(T', G) and ¢ € a* does not annihilate any of the a;’s, then the set {dap“’ 1y € F}
spans the co-tangent space T;%(F, G).

Proof. Proposition 8.1 places the statement in the conditions of Corollary 6.6 where
V; = g;. The Corollary applies since the Adjoint representation is disjoined (Remark
6.4). Thus, the affine limit cone

.pr(r)% C B(m) Da

is convex and has non-empty interior, whence it’s projection onto the second factor
also, giving the conclusion. [

We introduce for convenience the following definition.

Definition 8.5. If H is a reductive subgroup of G then an adjoint factor of H is a
collection of irreducible factors of the representation adg [h : h — gl(g). An adjoint
factor is disjoined if the associated representation is.

If p(T) has semi-simple Zariski closure H, then the cohomology H} (T, g) splits
as
Hidp(rvg) = @ H}Xdp(raVH)'
Vi irreducible adjoint factor
Thus one obtains the following refinement of Corollary 8.4 whose proof is iden-
tical. Recall Definition 6.3 of a disjoined representation ¢.



43

Corollary 8.6. Assume p(I") has semi-simple Zariski closure H and assume that
L,Ninta™ # 0. Let Vy be a disjoined adjoint factor and ¢ = Adg(H)|Vi. Assume
ue Hép(F,VH) \ {0} is integrable, then for every v € T with loxodromic p(vy) one
has
d?\”’(u) eVyna.

Moreover, if [u] projects non-trivially to the twisted cohomology associated to each
irreducible factor of &, then 7, is convex and has non-empty interior in Vy Na.
Consequently, for every ¢ € a* such that VqyNa C ker ¢ there exists v € T’ such that

de™(u) # 0.
Proof. Since H contains a G-loxodromic element the 0-weight space of the repre-
sentation ¢ : H — GL(Vy) verifies
anVy C (Vu)’ C (m@a)N V.
It follows that the a-factor of the Margulis invariant of (n(7y),u(y)), as an element

of H x¢, Vi, coincides with dAY(u), so non-empty interior of Z,#, in Vi N a follows
from Corollary 6.6. t

9. ZARISKI-DENSITY OF ELEMENTS WITH FULL VARIATION

We further assume throughout this section that p(T") is Zariski-dense and that v
has full loxodromic variation.

Proposition 9.1. Assumev € T,X(T, G) has full loxodromic variation and Zariski-
dense base point. Then the set

Ttun = {lozodromic and full variation g € T'}
is Zariski-dense in G. Moreover, the set {A(g) : g € Trun} intersects every open cone

contained in L,.

The proof follows the same lines as the analogous statement for loxodromic
elements by Benoist [3] (see [5, Theorem 6.36]).

Lemma 9.2. Let K be a field and consider w,g,h € GL(d,K), then for every
N € N the Zariski closure of {wg™h™ : n € [N,00)} contains the product wgh.
Analogously, the Zariski closure of {g"h™w : n € [N,00)} contains ghw.

Proof. Let I = {p € Rlz;;] : p(wg"h™) = 0 Vn > N} be the associated ideal. We
must show that for every p € I it holds p(wgh) = 0.
Let us consider the map 7' : R[z;;] — R[z;;] defined, for X = (z;;):;, by
Tp(X) = p(wg™w 1 XRrY).
It is an isomorphism that preserves I. Moreover, the finite-dimensional vector space
I™ = {p € I of total degree < m}
verifies T(I™) C I™ which yields, since T is invertible, that T'(I"™) = I™, and
thus T(I) = I. Consider then ¢ € I and let p € I be such that Tp = ¢, then
q(wgh) = p(wgVNT1ANT1) = 0, as desired. O

Lemma 9.3. Let g,h € T be loxodromic and transverse, if g has full variation and
k € N is such that
Vi p; (kdA? (v) + dA" (v)) # 0,

then for all large enough n (depending on k) the element (g*)"h™ has full variation.
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Proof. By Theorem 2.8 we have

A k npn

M) (r g+ Ay 220
and the convergence is uniform about g* and h. Since we're considering an analytic
variation u — p, and A is an analytic function when restricted to loxodromic

elements of G, we can differentiate both sides in the convergence to obtain

dA9" "R (1)
n

— kdM (v) — dA" (v) 2225 0.
By assumption we have, for every i, p;(kdA9(v) + dA"(v)) # 0 so the above conver-
gence implies the lemma. ([

Lemma 9.4. Let v € T' be loxodromic, then there exists g € Tt transverse to ~y.

Proof. Consider a loxodromic g € T with full variation, the existence of such g
is guaranteed by Theorem A. By means of Zariski density of p(T"), we can find a
loxodromic A that is transverse to both v and g. By Lemma 9.3 elements of the
form ¢g™h™, for arbitrary large n and m, have full variation, and analogously for
h™g"™. Again for large enough m,n, the pairs h™g"™ and g"h™ are transverse, so
we can find, by Lemma 9.3 again, large enough k,! so that

(A" g™ (g"h™)!
has full variation. Moreover, the attracting flag of the latter element is arbitrarily

close to h*™ and the repelling flag is close to h_, thus (h™g")*(g"h™)! has full
variation and is transverse to -y. (I

Lemma 9.5. Let g, h be lozodromic and transverse, assume moreover that g € T
then, the products hg and gh belong to the Zariski closure Tean”. Moreover, the
semi-group spanned by {gh, g} is also contained in Teun?.

Proof. Since g has full variation, there exist K such that for all £k > K one has
Vi pi (A" (0) + dA(v)) = pi (kdA? (v) + dA"(v)) # 0.

For every such k, Lemma 9.3 implies that for all large enough n (depending on k)
one has (gk)”h” € Tty- Lemma 9.2 implies that gkh € Trn?, for all k > K and
thus Lemma 9.2 again gives gh € Tru?.

We now show that the semi-group spanned by {gh, g} is also contained in Tp,p?.
To this end, consider an arbitrary word w on the letters gh and g, and assume by
induction that w € Tg%. We will show that the words

ghw,wgh, gw,wg

are all contained in Ty, %. Since g and h are transverse and we are only considering
positive powers in w, the word w is transverse to g, and to any element of the form
g™h™ for positive n,m € N.

Since ¢ € Tru, then the first statement of this lemma implies that wg € Trun? as
desired.

Moreover, again since g € [g,), the paragraph above establishes that, for all
k > K and all n > N(k), one has (¢g*)"h™ € T,. Thus, since w is transverse to
(g*)"h™, the first item of this Lemma gives that Vk > K, Vn > N (k)

w(gh)"h" € Tran?,
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which implies, by applying twice Lemma 9.2 that wgh € Ty % as desired. The
other inclusions are analogous. ([

Proof of Proposition 9.1. We will show that the Zariski closure of 'y, contains all
loxodromic elements of p(T"), which are in turn Zariski-dense by Benoist [3] (see for
example [5, Theorem 6.36]).

Consider then v € ' loxodromic. By Lemma 9.4 there exists g € I, transverse
to v. Lemma 9.5 establishes that the semigroup spanned by {gv, ¢} is contained
in Tgn?, but the Zariski closure of a semi-group is a group (c.f. [5, Lemma 6.15])
thus the group spanned by {g7, g} is contained in Tf,n% and in particular so does
v =9g"1(g7y), as desired.

We finally establish the last statement in the Proposition. Consider an open cone
€ C L,, v € T loxodromic with A(y) € € and g € T transverse to y. Consider
then t € Ry \ @ so that tA(y) + A(g) € €, by the abundance of such ¢’s we may
further assume that for all i p; (tdA”(v) +dA9(v)) # 0. Consider then a sequence of
rationals in lowest terms m,,/q, — t, since t € R\ Q@ we have min{m,,, q,} — oo.
Lemma 2.9 implies then that

i A™"9™)

n— oo q’ﬂ

=tA(7) +A(g) € €,

50 A(y™Mngin) € € for big enough n. Moreover, again by analyticity of our curve
and uniform convergence on the above limit, we get by differentiating both sided
of the limit that v~ g% € Iy for all large enough n. O

In fact, the above proof with minor modifications gives the following stronger
result.

Remark 9.6. Assume v € T,X(T", G) has full loxodromic variation and Zariski-dense
base point and fix a finite collection of hyperplanes U of a. Then the set

Ty = {loxodromic g € T': dAY(v) ¢ U U}
Ueu

is Zariski-dense in G. Moreover, the set {A(g) : g € 'y} intersects every open cone
contained in £ .

9.1. Convexity of normalized variations.

Proposition 9.7. Let v € T,X(T',G) have full lozodromic variation and Zariski-
dense base-point then, the set of normalized variations is conver.

Proof. Consider v, h € Ty We first assume that v and h are transversally lox-
odromic. In this case, using the argument from the proof of Proposition 9.1, we
obtain that for every irrational ¢ € R4 one has A(y™h)/q, — tA(y) +A(h) which
in turn gives:

Y (p)
qn n—
AN ()

qn n—oo

— 147 (p) + 9" (p),

tdAY (v) + dA" (v).

Combining both equations and since V¥ is closed, we obtain that for every ¢t € R
tdAY (v) + dA(v)
7 (p) +¥"(p)

A%
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So letting now ¢ = ¢"(p) /17 (p) we obtain % ((Z\J ((,:)) + OZ\: ((pv))

If v and h are not transversally proximal then we replace h by some element
of the form fh™q for big enough n and well chosen f,q € T whose existence is
guaranteed by Zariski-density of T. (Il

> € V¥, as desired.

10. THEOREM B: BASE-POINT INDEPENDENCE
We introduce, for convenience, the following definitions.

Definition 10.1.
- The support of ¢ € a* is suppp = {U €A (po)y# O}. Equivalently,
upon writing ¢ = YA ¢sWs, one has o € supp ¢ if and only if ¢, # 0.
In particular, ¢ € (ag)* if and only if supp ¢ C 9.
- If g € G we say that « strictly minimizes g among supp @ if a € supp ¢ and

a(A(g)) < o(Mg)) Vo € suppy — {a}. (10.1)
The main result of this section is the following.

Theorem 10.2. Let p: I — G be a Zariski-dense sub-semigroup andv € T,X(T', G)
have full lozodromic variation. Consider ¢ € a* and assume there exist a € supp @
with dimg, = 1 and g € T such that a strictly minimizes g among supp . Then
given 1 € a* there exists a lozodromic v € T such that dp”(v) — ¢ (p) ¢ Z.

Corollary 10.3. In the assumptions of Theorem 10.2, the additive group spanned
by the pairs {(dg(v),A(p)) : v € T lozodromic} is dense in R x a.

Proof. Otherwise, there exist (a,?) € R x a* s.t. for all loxodromic v € T it holds
ap(dN(v)) + P(A7(p)) € Z. If a # 0 then agp verifies the assumptions of Theorem
10.2 giving a contradiction. If @ = 0 this is contained in Benoist’s Theorem 2.14. [

Example 10.4. For g € PSL(2,C) denote by |y| its translation length on the
hyperbolic 3-space H?. Let 7 (S) be the Teichmiiller space of S as above. Consider
then a Zariski-dense quasi-Fuchsian representation 7 : 7.5 — PSL(2,C) and a non-
zero v = § € T, (5). Assume there exists g € m.S with |pg| < |ng|. Then by
Corollary 10.3 the group spanned by the pairs

{(0/0t)=olprrl. i) : 7 € mS}

is dense in R?.
Recall from § 2.6 that we have a projection my : a — ay.

Corollary 10.5. Let ¥ C A be such thatdimg, =1 for allo € 9. Letp: T — G be
a Zariski-dense sub-semi-group and consider an integrable, full loxodromic variation
v e T,X(TI',G). Then the group spanned by

{(dN}(v),A"(p)) : v € T lozodromic}

is dense in ay x a. In particular, for any ¢ € int (£,)* the set \/gm has non-empty
interior. '

*

Proof. Otherwise there exist ¢ € (ay)* and ¢ € a* such that for all loxodromic
v € T one has dg”(v) — ¥V (p) € Z. Since p(I') is Zariski-dense its limit cone
has non-empty interior, there exists then g € T such that values o9(p) for o € ¥
are pairwise distinct. Since supp ¢ C 9 and all roots in ¥ have 1-dimensional root
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space, there exists a € supp ¢ with 1-dimensional root-space that strictly minimizes
g among supp ¢. This contradicts Theorem 10.2. The last statement now follows
since by Proposition 9.7 \/?m is convex. O

10.1. Strongly transversally proximal elements. We recall some notation of
§2.10. Let V be a finite dimensional real vector space and g € End(V') be proximal,
with top eigenvalue (in modulus) denoted by p1(g). We consider f, € V* and
vy € g7 such that ker 8, = g~ and S,(vy) = 1, we also let

Tg(w) = By(w)vy.
We finally let V2(g) be the generalized eigenspace of g associated to ua(g), the
second (in modulus) eigenvalue and 7, be the only projection over V2(g) whose
kernel is g-invariant.
Recall from Definition 2.7 that if h € End(V') is also proximal, then g and h are
transversally proximal if

Bg(vh)ﬂh(vg) 7é 0;

and strongly transversally prozimal if Bj(14vp) # 0. Recall that an element of
End(V) is semi-simple if it is diagonalizable over C. Finally, recall Equation (2.20)
defining the multiplicative cross ratio B; of two decomposition of V' into a line and
a hyperplane.

Lemma 10.6 (Benoist-Quint [5, Lemma 7.15]). Let g,h € End(V') be transversally
prozimal, then for m,n big enough g"h™ is prozimal and

Trace(m,g™m _ _
M = Bl(g+ag 7gnh+7h )

(10.2)
If g and h are moreover strongly transversally proximal and g is semi-simple, then

the sequence
m(g))"
—==) loglen(g, h)|
<M2 (9) "
is bounded. Moreover, let g. be the elliptic component of g in Jordan’s decomposition
and ny, a sequence such that g7 |Va(g) = id [Va(g). Then,
—00

enlg, h) == "}gnoo Trace(mgmgnpm) = Trace(g™my)

o (alg)\™ __ —Pulrgun)
klingc <,Uf2(g)) 1Og |c7lk (gv h)‘ - Bl(ng;gi, h+, h,) 7& 07 (103)

and the convergence is moreover uniform on h.

Proof. We focus on the second statement which is slightly different from what is
found in [5]. Using Equation (10.2) we compute

Trace ((mg — 1)g™mh)

log |cn(g,h)| ~ calg,h) —1=
oglen(g: )|~ en(g,h) Trace(g™my)

The denominator is easily controlled, indeed

Trace(g"mn)  Br(g™vn) _ _
= Bn(mq(vn)) =Bi(gT, g ,hT,h7). 10.4
pa(g)” (g o () = Bl o o
We now study the numerator. Observe that Trace ((1—my)g" ) = B (9" Tgvn)+
o(u2(g)™). Since g is semi-simple, V>(g) decomposes as @, W; where each W; is g-
invariant and g|W; = ps2(g)K;, where K; : W; — W; lies in an abelian compact
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group. Thus, the sequence

Br(9" Tgun) + o(p2(g)™)
pa(g)™

is bounded.
Moreover, considering the sequence ny — oo as in the statement, for all ¢ one
has K" — id. Since g is semi-simple we deduce that

ngk
" |Va(g) id
p2(g)™  k—oc

)

so one concludes
Trace ((1 - 7T.c;r)gnkﬁh) _ 5h(gnk7—gvh) o(p2(g)™*) Bn(ry0n)
p2(g)™s p2(g)™ p2(g)™ koot NI
as desired. O

If we suppose now that g,h € G are ¥-proximal, then we say they are strongly
transversally ¥-prozimal if for every o € ¢ the maps ¢,g9 and b, h are strongly
transversally proximal. For such a pair and n € N we define the vector

Vg(g, h) € ag so that Vo €9, w, (V;f(g7 h)) = log ‘cn (d)[,g, d)a'h)" (10.5)

Proposition 10.7. Let g € G be lozodromic and consider h € G so that g and h
are strongly transversally ¥-proximal. Consider ¢ € (ay)* and let o € supp ¢ be
such that

a(Mg)) = min{o(A(g)) : o € supp g}, (10.6)
If « has multiplicity 1 and is the only root in supp p realizing the above minimum
then there exists k¥(g,h) € R such that

@(Vgn(g, h))eQ"o‘(}‘(g)) H—m> k¥(g,h) # 0. (10.7)

In the latter case, the map (v,n) — k¥(v,n) is analytic on both variables on a
neighborhood of (g, h) € G* and the above convergence is uniform on a neighborhood
of g and h.

Proof. By definition of v (g, h), upon writing ¢ = Y ey PoWo One has

= Z PoWo (Vg(gv h))

o€l
=" ¢olog|ea(bog, doh)|.
o€l

Considering, for each o € 1, the fundamental representation associated to w,
we see by Lemma 10.6 that e 9)) g, (ug (g, h)) is bounded, thus if « is the only
root realizing the minimum in Equation (10.6) we have, for every o € supp ¢ — {a}
that

e @), (17 (g, h)) —— 0.

n—oo

Moreover, since dim g, = 1, Va(d4(g)) is 1-dimensional. Thus

G -

and combining with the last statement of Lemma 10.6 we obtain
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no 7ﬁ h ThogVbah
CAULI e — (pawa(Cj(ng(;_?hi,h)_)) et 08

The convergence is uniform on a neighborhood of kA so we now treat uniform
convergence in g. If ¢’ is close to g then, by one-dimensionality of g, ¢’ also acts
as a homothety with ratio pa(bag’) on Va(dag') and thus uniform convergence
follows. Analyticity of x#(-,h) follows as, since g is loxodromic, the map 74,4
varies analytically about g. (I

For a real-analytic curve (t — (gt, ht)) with ¢ = go and h = hg strongly

te(—e,e)
transversally 9-proximal, with g loxodromic, we denote for every n € N and ¢ €

(a9)* by v9"(t) := v (g, he) and &% 91 (£) = K% (g, he). We also let

pom — D1 Lam gy and geen = 2

" Ot le=0 " Ot lt=0
Corollary 10.8. Consider a real-analytic curve t «— (g, hy) for t € (—e,€) with
g = go and h = hg strongly transversally ¥-proximal, and assume g is loxodromic.
Consider ¢ € (ag)* and assume there exists a € supp ¢ with dimg, = 1 and so
that

KOGR)(1),

a(A(g)) < o(Mg)) Vo € suppy —{a}. (10.9)
Then,

(p(béi,h))e2na(?\(g)) 4 (p(VQ(‘ZL’h))Q’rL (g

O‘O‘(gt))) e2na(M@) . poi(gh)

t=0 n— oo

Proof. Assumptions are made so that Proposition 10.7 applies. By definition,
A (t) and %(9")(t) are real-analytic, and since the convergence in Equation

(10.7) is uniform, we can intertwine limit and derivative to obtain the desired re-
sult. g

10.2. Proof of Theorem 10.2. We place ourselves under the assumptions of The-
orem 10.2 and begin with the following lemma that does not assume Zariski-density
of the base point, it will be also needed later on.

Lemma 10.9. Consider an analytic curve (p; : T — G)ie(—c o) with speed v and
a lozodromic g € T'. Consider ¢ € (ag)* and assume there exists a € supp ¢ with
dim g, = 1 that strictly minimizes g among supp . Let h € T be such that the pair
(g, h) is strongly transversally ¥-proximal. Consider ¢ € (ay)* and assume that the
values o9(p), for o € supp, are all distinct. If for all loxodromic v € T' it holds
do¥(v) — Y (p) € Z, then

daf(v) = 0.

Proof. By definition (Eq. (10.5)), the vector v, (g, h) is a uniform double limit of
sums of vectors of the form +A(p(g™(g*h!)™)). Moreover, for every n, v,(g,h) is
an analytic function on g and h, which is also a uniform limit of analytic functions.
Since the curve p; is analytic we can intertwine limit and derivative in the definition
of v, so for every n € N it holds, as g and h are transversally ¥-proximal, that

mn = dp (M) (v) = ¥ (v M () € Z, (10.10)
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where we have denoted by vy (9" (pt) = v (ptg, peh). Since dim g, = 1 Corollary
10.8 states that
d@(ugﬁ(g’h))(v)e%ag(p) + @(Vgﬁ(g’h)(p))?n(dag(v))ezmg(p) — s dr® (@) (v).

n—00

Pairing with Equation (10.10) gives

(w (Vgr’z(g’h) (p)) +m2n) 62"“g(p)+<p(ug’(g’h) (p))2n (dag(v))e%ag(ﬂ) — 5 AP @M (),

n
n—oo

(10.11)
Dividing by n and considering the limit we obtain by Equation (10.7)
9,(9,h) e2ne’(v) h
(5" () + man ) —— 2da? (v)5# @) (p) (10.12)
n—roo

One has that Vg’(g’h)(p) — 0 and thus also does w(uf’(g’h) (p)). Since €2’ () /n is

n n
divergent, we obtain that ms, = 0 for all big enough n, giving in turn that

ooy, o €217 (0)
(Ve " (p) ——— ——— 2da?(v)x" I (p). (10.13)
n n—o00
Using the definition of 129" we obtain
e2na9(p)w(,/§9n (g, h)) — Z legeZn(a-‘?(P)*og(P)) 021’ (p) log |C2n(¢gg, d)gh)|.
o€y

If there exists o € supp ¢ so that a9(p) —a9(p) > 0 then we let o be the root that
maximizes this value. Applying Lemma 10.6 to the representation ¢, we obtain a
subsequence n; such that

2k (0) 100 |cony (Dog, boh)| Eoo K £ 0.

Since the terms e2#9°(?) Jog |C2nk (bsg, ¢5h)| are bounded for every § € supp ¥, we
deduce that 62"’“"‘9(’))1#(%9% (g,h)) is diverging to infinity at an exponential rate
pu = a?(p) —o%(p) > 0, which combined with Equation (10.13) gives e2"** /ny, is
convergent as k — co, a contradiction.

We conclude that V o € supp® one has a9(p) < 09(p) and applying Lemma
10.6 we obtain, since e2mo’(p) log|cm(d)ag,cbgh)| is bounded for every o, that

62”‘19(”)1/1(1/§9n (g, h)) is converging to a constant C, which is possibly zero.

Thus
e2na?(p)

¢(V§7}(Q’h) (p)) o 0,

giving, since k% (g, h) # 0 by Proposition 10.7, that da?(v) = 0 as desired. O

Proof of Theorem 10.2. Let us assume by contradiction that for all v € T one has
4" (v) — 7 (p) € Z.

By hypothesis, there exists a € supp ¢ with dim g, = 1 and a loxodromic +y verifying

Eq. (10.1). The Zariski-density assumption gives (c.f. Benoist-Quint [5, Lemma

7.20]), for each loxodromic v, an h € T such that (v, h) are strongly transversally

loxodromic. Thus, we can apply Lemma 10.9 to every loxodromic g € T such that
the values 09(p), for o € ¥, are all distinct and verifies Equation (10.1) to obtain:

Remark 10.10. For every g € I' loxodromic such that the values 9(p), for o € ¥,
are all distinct and verifying Eq. (10.1) one has daf(v) = 0.
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Proposition 9.1 states we can choose v € Ty verifying the assumptions of the
above remark. Moreover, we use Proposition 2.15 by Benoist and more specifically
Remark 2.16 to choose a Zariski-dense sub-semi-group I" < T that contains v* for
some large power k and whose limit cone is a convex cone about R4 A(py), chosen
so that for all h € T" Equation (10.1) holds (for h instead of ) and such that the
values o"(p), for o € ¥, are all distinct.

Since I is chosen with v¥ € T, the curve 1, := p;|T” has full loxodromic variation.
However, Remark 10.10 gives that

Vh € T it holds da*(77) = 0,
contradicting Theorem A. This completes the proof. O

11. THE CASE OF ¥-ANOSOV REPRESENTATIONS: COHOMOLOGICAL
INDEPENDENCE AND OTHER CONSEQUENCES

We fix throughout this section a word-hyperbolic group [ and an analytic curve
(Pt)te(—c,e) C Ap(T,G) with po = p and v = .

11.1. Full loxodromic variation for - Anosov representations. In this para-
graph we establish the following.

Corollary 11.1. Assume that 9N A; # 0 for every simple factor g; of g. If v has
full variation then it has (full) loxodromic variation.

The proof is essentially contained in Bridgeman-Canary-Labourie-S. [14, § 10] so
we only give the minor required modifications.

Lemma 11.2. Let p: T — G be ¥-Anosov and have Zariski-dense image, then the
set of fized points

{(h=,h* v~ ,7T) : p(y) and p(h) are lozodromic}
is dense in 0T

Proof. The Lemma is certainly true if we remove the 'loxodromic’ condition, we
show how we reduce the question to this situation. Since p(I') is Zariski-dense
€7(ar) is the limit set of p(I') on the flag space Fy9(G). By Benoist [3, Remarque
3.6 2)] it is the image, under the natural projection, of the limit set A,(r) in the full
flag space Fa(G). Again by Zariski-density, the latter is the closure of attracting full
flags of loxodromic elements in p(I'), so the Lemma follows. A standard ping-pong
argument gives then the result. O

Proof of Corollary 11.1. Consider «; € ¥ N A;. We will show that for each ¢ there
exist 7 € [ with loxodromic p(v) such that one has (9/0t)|;—ow@a, (A(pe(7))) # 0.
Otherwise, for every v € I' with loxodromic p() one has

% L:OM (ba, (pe(7))) = 0.

Using now [14, Prop. 9.4] one has that for every co-prime pair v,h € [ with
p(7), p(h) loxodromic, it holds §'°2 ba,p (7,71, A7, Y) = 0 (recall notation from
§2.13.5).

By Lemma 11.2, this implies that for every four-tuple of points (z,v, z,t) € 99T
one has 9'°8 Do, (Y 57 A, AT) =0,
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Moreover ¢, p is irreducible and projective Anosov, so from this point on the
proof of [14, Lemma 10.3] woks verbatim to give that the cocycle p;(u,) is cohomo-
logically trivial, contradicting our assumptions. O

11.2. Cohomological independence of g% and 5“9. Consider the Ledrappier
potential J; = g9 : UF — ay and denote by

J=3%:Ur = ay

its differentiation w.r.t. ¢t at 0. Theorem 10.2 together with Liv8ic’s Theorem
readily imply the following and Corollary 11.1.

Corollary 11.3. Let v € T,y(I',G) have full variation and Zariski-dense base-
point.

(i) Consider ,v € (ag)* and assume there exist v € T and o multiplicity-1
root « that strictly minimizes v among supp ¢. Then, @(jﬁ) —p(3?) is not
Livsic-cohomologous to a function with periods in Z.

(i) If moreover every root in O has multiplicity one then 3° and 3 are Livic-
cohomologically independent (thus Corollary 2.35 applies).

Recall from Remark 2.33 that if P¥ is degenerate at v, then the set of normalized
variations \/:/;’v is contained in a level set of . This is a much weaker condition
than having non-empty interior and thus we obtain non-degeneracy of P}é’ in more
situations.

Corollary 11.4. Consider ¢ € int (Ly ,)* and assume there exist v € T and o
with dim g = 1 that strictly minimizes v among suppt. If v € T,X(I',G) has full
variation then P¥(v) > 0.

Proof. By Theorem 2.19, P;,” degenerates at v iff (dA%v)y(J) and ﬁiww(j) are
Livsic-cohomologous. However this does not hold by Corollary 11.3(i). O

11.3. Variations along level sets of % give non-proper actions. The principle
indicated in the title is used in Labourie [17, 51], we give new situations where it
applies.

Let us recall from Sullivan [73] (see also Yue [77]), that if X has rank 1 and
p: T — IsomX is convex-co-compact, then 7%, is the Hausdorff dimension of the
limit set of p on the visual boundary of X for a visual metric. Recall also from
Bridgeman-Canary-Labourie-S. [11] (see §2.13.2) that the function p — 7%, is real-
analytic on the of convex-co-compact representations on X.

The adjoint representation of a rank-one simple g has neutralizing dimension 1
as long as 3(m) = {0}. Thus, the rank 1 simple groups with neudim(Ad) # 1 have
Lie algebras equal to s01 3 or su; ,, for n > 2 (see Knapp [14, Appendix C]), whence
one concludes the following:

Corollary 11.5 (Rank 1). Let G be the identity component of the isometry group
of Hg for n # 3, Hjj n > 2, or the Cayley hyperbolic plane, and let p : T — G be
convex co-compact and Zariski-dense. Let u € H}Xdp(r,g) be an integrable cocycle.
If d,7%(u) = 0 then the affine action of p(I'), on g is not proper. In particular:

% s critical at p = there is no proper action on g above Ad p.
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Proof. If d%(u) = 0 Eq. (2.19) implies that @ (pw,u) = 0. Lemma 2.36 gives
then 0 € int V¢, Since 3(m) = {0} Proposition 8.1 implies that V¢" = Ms*” (u).
Kassel-Smilga’s Proposition 7.2 gives then non-properness of the corresponding
action. 0

Corollary 11.6. We let G be as in Corollary 11.5 and F be a non-abelian free
group, then there exists C > 0 such that if p : F — G is a Schottky group with
contraction greater than C, then %4 is not critical at p.

Proof. Follows from Corollary 11.5 together with Smilga’s construction [70]. O

Let us consider now G = SL(3,R) and the functional H € a* given by H(a) =
(a1 — a3)/2, whose associated entropy A" : A (I, SL(3,R)) — R, is usually called
the Hilbert entropy.

Corollary 11.7 (SL(3,R)). Consider a non-zerov € T,Aa(I',SL(3,R)) with Zariski-
dense base-point. If dA(v) = 0 then the affine action on sl(3,R) via u, is not
proper. In particular if % is critical at p, then there exists a neighborhood U of p
such that there is no proper affine action of T on sl(3,R) above any Adn forn € U.

Proof. Since SL(3,R) is simple, v # 0 is equivalent to having full variation. Ap-
plying Corollary 11.3 we obtain that V! has non-empty interior and by Corollary
2.35

prv € int VY.

By Equation (2.19) H(pyv) = —dlog#"(v) = 0, so pyv € kerH. Since H is
i-invariant, the set of normalized variations V! is also i-invariant so we obtain
i(pyv) = —puv € int VI thus by convexity, 0 € int V. Since SL(3,R) is split,
m = 0 and in particular 3(m) = {0}, so by Proposition 8.1 we conclude that
0 € int MS®" (uy). Kassel-Smilga’s Proposition 7.2 gives then non-properness of the
corresponding action. By continuity of v + V! the same conclusion holds on a
neighborhood of v in TX(I, SL(3,R)), completing the proof. O

As before, Corollary 11.7 together with Smilga’s construction [70] gives:

Corollary 11.8. Let F be a non-abelian free group, then there exists C > 0 such
that if p : F < SL(3,R) is a Schottky subgroup with contraction greater than C,
then AN is not critical at p.

12. THE CASE OF ©O-POSITIVE REPRESENTATIONS

The restricted root system of the group SO(p, q), for p < ¢, has Dynkin diagram

0—O0——O0—0O=50 |,

o o1 Ep
All the long roots on this diagram have one-dimensional root spaces (see the Appen-
dix in Knapp [44]). We let © = {a4, ..., 0p—1}. Guichard-Wienhard [36] have in-
troduced the notion of a @-positive representation from 1S with values in SO(p, q).
We refer to their work for the definition. Instead, we will use the following result,
which states that these representations are ©-Anosov, and verify an even stronger
form called hyperconvezity. We will whence study in §12.1 hyperconvex represen-
tations and then come back to ©-positive representations.

Let us denote by P5?(S) the space of ©-positive representations of S with values

in SO(p, q). Item (i) below places this setting in that earlier sections of this paper.
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Theorem 12.1.

(i) (Beyrer-Pozzetti[7], Guichard-Labourie-Wienhard [31]) Every O-positive
representation is ©-Anosov, moreover, PE(S) C X(mS,SO(p, q)) is open
and closed.

(ii) (Pozzetti-S.-Wiehard [63, Theorem 10.3]) For every k € [1,p — 2] the rep-
resentation N¥p is (1,1, 2)-hyperconvex (see Definition 12.2 below). In par-
ticular, /gt = 1.

12.1. (1,1, 2)-hyperconvex representations and Hausdorff dimension. The
main purpose of this section is to establish Corollary 12.6 below.

We recall a definition from Pozzetti-S.-Wienhard [62]. We consider SL(d,C) as
a real-algebraic Lie group.

Definition 12.2. A representation p: [ — SL(d,C) is (1,1, 2)-hyperconvex if it is
{01, 02 }-Anosov and for every triple x,y, z € Il of pairwise distinct points one has

(€' () @ E(y)) NE2(2) = {0},
Let us denote by
AN (F,SL(d7 C)) = {p: r— SL(d,C) is (1, 1,2)—hyperconvex}7

{o1,02}

it is an open subset of the character variety X(I',SL(d,C)) (Pozzetti-S.-Wienhard
[62, Proposition 6.2]).

Theorem 12.3. Let O be homeomorphic to a circle and p : T — SL(d,R) a
(1,1, 2)-hyperconvex representation, then
(i) (Pozzetti-S.-Wienhard [62]) /%t =1 and
(ii) (Pozzetti-S. [61, Theorem C]) if p(I) acts furthermore irreducibly on R?
then the Zariski closure G of p(I') is simple and the highest restricted weight
of the representation G < SL(d,R) is a multiple of a fundamental weight
for a root « € A with dimg, = 1.

Corollary 12.4. Let 9T be homeomorphic to a circle and p : T — SL(d,R) be an
irreducible (1, 1,2)-hyperconvex representation with Zariski closure G. Let o € Ag
be the root such that the representation G < SL(d,R) has highest weight nwo,.
Then P* is (well defined and) Riemannian on T,X(I',G). Moreover, considering
X(I,G) Cc X(I',SL(d,R)) one has Pt (v) = P*(v) for every v € T,X(I,G).

Proof. Denote by ¢ : G — SL(d,R) the representation induced by the inclusion.
By Theorem 12.3 it has highest restricted weight nw, for some n € N. Whence
VgeG

o1(A(dg)) = a(As(g)),
02(Nbg)) = _ min  o(Ac(g)).

oc€NG:(o,0)F#0
Since p is {o2}-Anosov it follows from this last equation that if we let ¥ = {0 €
Ag : {a,0) # 0} be the set of roots neighboring « in the Dynkin diagram of G, then
p: T — Gis ¥-Anosov. Moreover a € int ¥ and in particular « € (ay)*. It follows
that the pressure form P is well defined and one has P*(v) = P (v). Since
Ql?chcz}(r,SL(d, R)) is open and, by Theorem 12.3, p — %" is constant on this
space, it follows that £ is critical at p and thus P is degenerate at v € T,X(I", G)
if and only if for every v € I' one has a(dA7(v)) = 0 (Eq. (2.11)). However, since
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G is simple and v # 0, it has full variation and, since p is Anosov Corollary 11.1
implies that v has full loxodromic variation. We can thus apply Corollary 8.4 to
obtain that there exists v € I such that a(dA7(v)) # 0, thus P%(v) > 0. O

12.1.1. Root system of the complezification. We recall here some elementary facts
needed in subsection 12.1.2. Let g be a simple real Lie algebra with Cartan decom-
position g = €@ p.

Let gc be the complexification of g, then u = €@ ip is a compact subalgebra and
s = p @it is an ad,-module. It follows that the involution 7 : gc — g¢ defined
as 7|u = id and 7|s = —id is a Lie algebra involution which is moreover a Cartan
involution of gc.

Let b C m be a maximal Abelian subalgebra. Then h = a @ b is a Cartan
subalgebra of g, meaning that h¢ is a Cartan subalgebra of gc. As such, we have a
root-space decomposition

gc =bc® @(gc)a,

Q€L
where

(9c)a = {= € gc : Vh € b one has [h, 2] = a(h)z},
Y ={ae(hc) : (gc)a # {0}}.

Corollary 6.49 from Knapp’s book [11] states that every a € X verifies a|a @ ib
is real-valued, so since a @ ¢b is a real form form of h¢, « is uniquely determined by
ala®ib. Moreover a®ib is a maximal abelian subspace of s, so ¥’ = {aa®ib: a €
Y} is the restricted root system of g¢ as a real Lie algebra of non-compact type.

One has also that ([14, Eq. 6.48b]) if 0 € ¢ then

=30 @ (@)

a€X:ala=0
We obtain thus the following Lemma.

Lemma 12.5. Let g be simple and assume there exists 0 € ® such that dim g, = 1,
then gc is simple and there exists a unique o, € ¥ such thalt a,|a = 0. Conse-
quently, if o € A, we have a natural embedding of flag spaces F(5}(G) C Fyqa,3(Ge).

Proof. The real algebra g cannot in itself be complex (otherwise every root space
has dimension dimg = 2), so the first statement follows from [44, Theorem 9.4(b)].

Concerning the second statement, for every a € ¥ one has (g¢)o Ng # 0, indeed
if ¢+ iy € (g¢)o with z,y € g, then

[a,z + iy| = [a, 2] + i[a,y] = a(a)z + a(a)iy.

So since «a is real valued one has, for all a € a, [a,z] = a(a)r and [a,y] = a(a)y.
The last assertion follows. ]

12.1.2. Variation of Hausdorff dimension on complex groups. Throughout this sub-
section we will work with the real and complex forms of a given simple real-algebraic
Lie group, to avoid confusion we will let Gg be the real points and G¢ be the group
of its C-points. Consider the natural embedding Gg C G¢.

If « is a restricted root of G¢ (as a real group), then we fix a Riemannian metric
on the flag space F(,1(Gc), denote by Hff(X) the associated Hausdorff dimension
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of a subset X of F(,;(Gc) and consider the function
Hif,, : Ql{a}(l', Gq;) — [R>0
p = Hff(ga((’)l')).
We emphasize that the action of G¢ on Fyqy(Ge) is not conformal for the chosen
metric (unless Ge¢ = SL(2,C))
By Lemma 12.5, if 0 € A is a restricted root of Gg so that dimg, = 1, then
there is a unique restricted root a,, of G¢ so that a,|a = o, so we have an inclusion

A1 (T, Gr) C Aqa,3(T, Ge),

and an embedding of the flag spaces T4} (Gr) C Fya,1(Ge).
In this section we establish the following.

Corollary 12.6. Let Gg be simple, real-algebraic and connected and consider o € A
with dimg, = 1. Let p: mS — Gg have Zariski-dense image and be such that qp
is (1,1, 2)-hyperconvex. Then for every v € T,X(mS, Ge) that is not tangent to the
real characters one has

Hess, Hff . (v) > 0.
In particular, there exists a neighborhood V of p inside the complex characters
X(m1 S, Ge) such that if n € V verifies

Hff(fs‘(amS)) =1
then the Zariski closure of n(m1S) is (conjugate to) Gg.
The remainder of the section is devoted the proof of the Corollary.

Proof. Let J denote the almost-complex structure of the complex characters
:{(7'(15, GC)

induced by the complex structure of G¢. Let us also consider the irreducible repre-
sentation ¢, : Gg — SL(d, R) which extends by complexifying to a representation
do : Gc — SL(d,C). Since ¢,Gr contains a proximal element, the complexified
representation is also irreducible (over C). Theorem 2.27 implies then that p is a
regular point of X(m.5, G¢) and thus, since p has values in Gg, the tangent space
splits
T,X(mS, Ge) = X(m S, Gg) @ J(X(m15, Gr)). (12.1)

Moreover since representation ¢,0p is (1, 1, 2)-hyperconvex, Bridgeman-Pozzetti-
S.-Wienhard [16, Theorem A] applies to give that states that if v € T,X(m.5, Gg)
is non-zero, then

Hess, Hff 5, (Ju) = Py (v).
Thus combining with Corollary 12.4 we obtain that, for every v € T,X(m1 5, Gg)
Hess, Hff, (Jv) > 0.

It follows that any w € T,X(m1 5, Ge) that is not tangent to the real characters,
verifies Hess, Hff ,(w) > 0 and thus the result follows. O

12.2. Hessian of Hausdorff dimension. We now focus on ©-positive represen-
tations. Theorem 12.1(ii) by Pozzetti-S.-Wienhard, together with Corollary 12.6
readily give:

Corollary 12.7. For every non-zero v € TPZY(S) with Zariski-dense basepoint,
and oo € int © one has Hess, Hff  (Jv) > 0.
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12.3. Length functions and pressure. By means of Theorem 12.1 and Corollary
11.4 we establish the following:

Corollary 12.8. Let p: 1.5 — SO(p, q) be O-positive and denote by G the Zariski
closure of p(m.S).
(i) If G=SO0(p,q) then V¢ € int (Lo ,)* the pressure form P} is Riemannian.
(ii) If p(m1S) acts irreducibly on RPT9, then for every ¢ € int (Linte,p)* one
has P¥ is Riemannian when restricted to characters with values in G.

Proof. When p(715) is Zariski-dense then, since all roots in © have one-dimensional
root spaces and SO(p, q) is a simple group, the result readily follows from Corollary
11.4. The second item is a bit more involved. Since p(m1S) acts irreducibly, the
combination of Theorem 12.1(ii) and Theorem 12.3 by Pozzetti-S. gives that G is
simple. Moreover, the combination of Theorem 12.1(ii) and S. [68, Lemma 4.8]
imply that for every k € [1, p — 2] there exists (a unique) oy, € Ag such that for all
~v € m S it holds
ar(Ac(17)) = ox (A(py))-

In particular ¢ : m.S — G is {0;}-Anosov. Moreover [68, Lemma 4.8] states that
dimg,, =1 for all k.

Theorems 12.3 and 12.1(ii) imply moreover that for every k € [1,p — 2] and
every v €[

Wk (Aso(p,q))(p’y) = NEWg, ()\G(LPY))'
It follows that, since v € ({owy : k € [1,p — 2]}) there exists ¢ € (ag)* such that
for every v € m1 S one has

w(}\sa(p,q) (pf}/)) = w(}\G (VY) ) .

Moreover 1) € int (L46,3,.)" so we can apply Corollary 11.4 to obtain the desired
non-degeneracy. ([

We introduce then the following definition.
Definition 12.9. A length function on Pg?(S) is a map P : PZY(S) — (ae)* so
that for every p € PE(S) one has P(p) € int (Lo,,)*

Corollary 12.10. Let P : PEU(S) — (ainge)* be a Mod(S)-invariant length func-
tion. Then the semi-definite form p — P¥(®) induces a Mod(S)-invariant path
metric on the space of irreducible positive representations P57(S).

We emphasize that our length function has values in (ain0)*, a strict subspace
of (a@)*.

Proof. The set of pairs (G, ¢), where G is a simple Lie group and ¢ : G — SO(p, q)
is an irreducible representation up to conjugation, is finite. We further restrict the
class of such pairs by only considering (G, ) if there exists p € PE?(S)™ with
Zariski closure conjugate to ¢(G). Theorems 12.3 and 12.1(ii) imply then we can
stratify P57(S)"™ by the finitely many submanifolds of

W.o) = {p € PEU(S)"™ : p(m15)? C a conjugate of ¢(G)}.
Moreover, by Labourie [19, Theorem 5.2.6] the set
W(ZG7¢) ={p€We.a) : p(m18)% is conjugate to $(G)}
is open on W(g ¢ and W(G7¢)\W(ZG7¢) has dimension strictly smaller than dim Wg 4.
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Since we have chosen the length function 1V to have values in (a;,0)*, Corollary
12.8(ii) implies that p +— P¥(?) is Riemannian on every W(ZG ) SO Lemma 12.11
below gives the desired conclusion. a

Lemma 12.11 (Bray-Canary-Kao-Martone [12, Lemma 5.2]). Let Wy be a smooth
manifold and let W, C Wy,_1 C --- C Wy C Wy be a nested collection of submani-
folds of Wy so that W; has non-zero codimension in W;_q for all i. Set Wy, = 0.
Suppose that g is a smooth non-negative symmetric 2-tensor on Wy such that for
every i € [0,n], the restriction of g to T, W, is positive definite if x € W; \ Wi41.
Then, the path pseudo-metric defined by g is a metric.

Part 3. Hitchin components

Let g be a simple split real Lie algebra and Inng its group of inner automor-
phisms. Let also s C g be a principal sl as in §2.2. This Lie-algebra morphism
comes from a Lie-group morphism 7, = PSL(2,R) — Inn g also called principal.

Let also S be a closed orientable connected surface of Euler characteristic x(S) <
0. A representation p : m1.S — Inn g is Fuchsian if it factors as

715 — PSL(2,R) =% Inn g,

where the first arrow is discrete and faithful. A connected component of the char-
acter variety X(m1S,Inng) that contains a Fuchsian representation will be called
a Hitchin component of Inng and denoted by Hy(S). Hitchin [37] established
that H4(9S) is a contractible differentiable manifold of dimension |x(S)|dim g. The
Fuchsian locus of Fuchsian representations inside Hy(S) is a natural copy of the
Teichmiiller space of S.

The main purpose of this section is to establish Theorem C, describing degenera-
tions of pressure forms on Hgy(.S). Actually, by Labourie [1%] and Beyrer-Labourie-
Guichard-Pozzeti-Wienhard [6], Hitchin representations are A-Anosov, so represen-
tations with Zariski-dense image are already dealt with by Corollary 11.4:

Corollary 12.12. Let v € T,3(4(S) be non-zero and have Zariski-dense basepoint.
Then for every ¢ € int (£,)* the set of normalized variations V¥ has non-empty
interior, in particular the pressure form Pg is Riemannian at p.

This is already enough to establish separation of the path-pseudo metric:

Definition 12.13. A length function is a smooth Mod(S)-invariant map \ :
Hy(S) — a* such that for all p one has P(p) € int (L£,)*.

Corollary 12.14. For any length function \p : Hy(S) — a* the associated pressure
semi-norm p — P¥(P) induces a Mod(S)-invariant path metric on Hy(S).

Proof. The proof works analogous to Corollary 12.10 but easier as the Zariski clo-
sures of Hitchin representations are classified by Theorem 13.5 below. Indeed this
readily implies that if ¢ : H — G is a representation from Table 1 then there is a
natural inclusion between the corresponding Hitchin components. Then, Corollary
12.12 gives the needed non-degenerations to apply Lemma 12.11. O

However, understanding degenerations at non-Zariski-dense points is much more
subtle and will require some work. This will be finally established in Theorem 15.1,
that deals with types A, B, C, D and Gs.
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A key object to understand these degenerations is that of Kostant lines of g, by
definition these are the O-restricted weight space of an ad s-module.

Kostant lines appear in the statement of Theorem C but are also needed to
understand Hausdorff dimension degenerations (§17). This is why we will spend
some time finding a rather explicit computation of these lines (§14). These com-
putations play moreover a role on giving an explicit description of the functional
@ € a* whose pressure form P¢ is compatible with Goldman’s symplectic form at
the Fuchsian locus (Corollary 16.4).

13. NECESSARY FACTS

The opposition involution i of types A, D and Eg is induced by a non-trivial
external involution ¢ : Inng — Inng, unique up to conjugation, that induces in-
turn a non-trivial involution of the character variety that preserves each Hitchin
component i : Hy(S) — Hy(S). We have thus natural inclusions

Fixi* = Hg, (S) C Ha,, (5),

Fixi* = 3¢, (S) C Hag,,(5),
Fixix - G{Bk( ) c G{Dk+1 (S)
Fixi* = 3, (S) C He, (9). (13.1)

There is also another natural inclusion Hg, (S) C Hg,(S) given by the fact that the
fundamental representation for the short root of ¢ : &5 — s0(3,4) sends a principal
sl of &9 to a principal sly of s0(3,4).

Labourie [48] for types A, B, C and Gy together with Beyrer-Labourie-Pozzetti-
Wienhard [6] for a unified approach for all types gives the following (see also Fock-
Goncharov [25]).

Theorem 13.1 (Labourie [18]). Every Hitchin representation is A-Anosov.

Since Hitchin representations are A-Anosov we may consider their critical hy-
persurface as in §2.13. The following was first stablished by Potrie-S. [60] for types
A, B, C and G and the work from Pozzetti-S.-Wienhard [62] together with S. [68]
gives a unified approach for all types:

Theorem 13.2 ([60, 62, 68]). For every p € Hy(S) one has A C Q,.
Convexity of the critical hyper-surface together with the above gives then:

Corollary 13.3 ([60, 62, 68]). If & € Hy(S) is Fuchsian then every i € int (L5)*
has critical entropy at d.

The following is a consequence of Luzstig’s positivity from Fock-Goncharov [25]:

Proposition 13.4. For every p € Hy(S) and every pair of transverse v, h € m.S,
the pair p(vy) and p(h) is strongly transversally A-proximal.

The following recovers a result by Guichard [33] for types A, B, C and Gs.

Theorem 13.5 (S. [68]). Let p € Hy(S) have Zariski closure H. Then b4 is either
g, a principal slx(R), or Inn g-conjugated to one of the possibilities in Table 1.

We conclude this section with the proof of the following Corollary from the
Introduction.
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g Dss ¢:bss = 0

slo, (R) s5p(2n,R) defining representation
ol (R) so(n,n+1) Vn defining representation
ntl Byifn =3 fundamental for the short root
50(3,4) Gh) fundamental for the short root
so(n—1,n) VYn >3 stabilizer of a non-isotropic line

so(n, n) s50(3,4)ifn=4 fundamental for the short root

’ By ifn =4 stabilizes a non-isotropic line L and is
fundamental for the short root on L+

e6 fa Fixi (see Eq. (13.1))

TABLE 1. The statement of Theorem 13.5, if a simple split algebra g is
not listed in the first column then b, is either g or a principal sl (R);
¢6,f4+ and B2 denote the split real forms of the corresponding excep-
tional complex Lie algebras. Observe that there are two non Innsoy, ,-
conjugated embeddings s0,,n,—1 — 50,,, that stabilize a non-isotropic
line.

Corollary 13.6 (Curves with arbitrarily small root-variation). Let g be simple
split, 0 € A and v € T,Hy(S) be non-zero and have Zariski-dense base-point.
Then there exists h such that for positive € and § there exists C > 0 with

eht
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In particular, for every § > 0 there exists v € m.S such that |do”(v)| < 4.

#{[] € [m S] primitive : @} (p) € (t —€,t] and |[do” (v)| <6} ~C

Proof. Since p is Hitchin, the flow ¢@*(@) is Holder-conjugated to a C'*t*-Anosov
flow ® (Potrie-S. [60], Pozzetti-S.-Wienhard [62]). Theorem B implies that group
spanned by the periods

{(d(f*(v),w@(p)) iy € 7715}
is dense in R2. Finally, by Theorem 13.2 0 € int O'(\/Uw“). This places the ClTe-

-,

Anosov flow ® = (®; : US — US)icr together with the potential o(d) in the
assumptions of Babillot-Ledrappier [I, Theorem 1.2], where we can pick in their
notation £ = 0, thus completing the proof. O

14. KOSTANT LINES

Recall from Kostant [16] that there are rank g irreducible adjoint factors of s and
they have odd dimensions 2e + 1. The numbers e are called the exponents of g and
the associated factor is denoted by V.. Table 2 gives the exponents for each type.

If e is an exponent of g, then the O-restricted-weight space of V. is a line of a
that we will denote by »° = s = V. Na and call the Kostant line of exponent e.
In this section we task on giving a rather explicit description of these lines.

Remark 14.1. If e # f are exponents of g then »° and s/ are orthogonal for the
Killing form.

Proof. Let V' be a non-vanishing element of the highest restricted weight space of
the associated s-module. Let also s = (E, H, F') have the standard relations of an
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Aq exponents
Ag 1,2,...,d
Ba 1,3,5,...,2d -1
Cy 1,3,5,...,2d -1
Dg 1,3,...,2d-3,d—1
Es 1,4,5,7,8,11
E; 1,5,7,9,11,13,17
Eg | 1,7,11,13,17,19,23,29
Fy 1,5,7,11
G 1,5

TABLE 2. Exponents of irreducible reduced root systems

sla-triple and such that ad(E) - V;t = 0. By definition one has k. = ad(F)¢(V,") €
2 and is non-zero.
By associativity of the Killing form (-,-) one has

(ke kp) = (1) ((ad F)*(V."), (ad F)T (V})) = (=) (VeF, (ad F)H (V7)) =0,
since the later are ad H-eigenvectors with non-opposite eigenvalues if f # e. (Il

Remark 14.2. The longest element of the Weyl group of A; acts trivially on the 0-
restricted weight space of ¢ (2¢41)w, if € is even and as —1 if e is odd. Consequently,
the Kostant lines »° are fixed by the longest element of A, for even exponent e,
and are anti-fixed for odd exponent e.

14.1. A, B and C. If we denote by f(x) = x(d—z), then the triple {E, F, H} below
spans a principal sly of s[4(R), denoted by s :

H =diag(d—1,d—3,...,1—d),

fld—1)"0
Consider the matrix product £¢ = E --- E and define the Kostant vector
< 1= (1) (ad F)*(B) = [ [[B%, L, F] -+ F].

For every e € [1,d] the E° is annihilated by ad E and is an eigenvector of ad H
of eigenvalue 2e. The span

span{(ad F)! - E°:1 € Z>0}
is thus an ads-module of dimension 2e 4+ 1. The O-restricted weight space R -
(ad F)¢(E°) is the Kostant line ¢ and thus k¢ € »¢ — {0}.
Denote by 77, for i,j € [1,d], the elementary matrix whose only non-vanishing
entry is (j,1), and this entry is 1, this is to say, 7%/ is the operator sending ej e

and ey, — 0 for every k # j. Let us also simplify 7% as m%. Elementary computation
gives:
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0 if i £t j,
it ifitt =1,

LR e R A (14.1)
—nbiifi=t1# .
Also, with this notation one has
d—e d—1
EC=) 7, and F =) f(i)r"t". (14.2)
j=1 i=1

Proposition 14.3. One has that
_ - tf€) lte—t
= Z( (+e—-1)-3(=1) (t)w )
t=0

d e
Zﬁj( (e>f(j—t)~--f(j—t+e—1)). (14.3)

j=1 t=0

For example one has
d
=2) (d®+3d(1—2j) +65(j — 1) +2)n
1

j=

d
<3 =63 (<2j + 1+ d)(d® — 10dj + 1052 + 5d — 105 + 6)77
=1
] d o ld—1\ .
R (OIFCER) WV (A E (14.4)

Proof. We compute (ad F)¢(E®). Using Equation (14.2) this translates to comput-
ing the brackets

&

-1

[Zf pithi 7[ £(4) 1+1127TJ7€+J ]7

i=1

for which we use the elementary computations in Equatlon (14.1). To do so, we use
a recursive argument, for which we compute the bracket [F, a(l,t)7"t] for arbitrary
I,t € [1,d] and some real-valued function a. Direct computation gives then

[F,a(l,t)7"Y] = a(l,1) (f(l)’rrH'Lt — flt— 1)7rl,t—1).

I+1,t—1 I+1,t

Applying again [F) -], the term 7 will appear once for each factor w
and b1 with coefficient f(I)f(t—1)(—1)2. If one further applies [F, -] one readily
sees the binomial coefficients with the alternating signs appearing as the coefficient
of w!+k=3:t=J (together with the corresponding f’s), this is to say

(ad )k (rht) = f(g) k= Dbt

7

+ Zf fl+k—i—1)-ft—1)-- f(t— i)(_l)i(]f>7rz+k—i,t—i

+ (—1) flt=1)- - f(t = k)a"t=F (14.5)
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Thus, replacing t =1 + e and k = e one has:

(adF)e(ﬂ_l,l-‘re) — f(l) . f(l +e— 1)7rl+e,l+e

+z_:f(l)~~-f(l+efif D-fl+e— 1)~~~f(l+ei)(l)i(?)w”ei’”ei

+(=Df(l+e—-1)---f(l+e— e)ﬂ.l,lJrefe
=fl)---fl+e— 1)2(_1)1(?)%1%—2'. (14.6)
i=0

Summing on [/ from 1 to d — e gives the first required formula.
The second equality is not completely immediate from the first so we quickly
explain how it is obtained. By standard reordering of the sum one gets:

d—e e .
K€ — (_1)5(Zf(l) o fle—1)- Z(_l) (t> ﬂ.l-‘re—t)

el=1 d—e e = ,
=0 o L ()0 S e - )P s=en
s=0 j=1
e d—e-+s e ‘
=30 S () fim s sl s om0 =it
s=0 1=s+1

One observes then that for every ¢ € [1, s| the number f(i—s)--- f(i—s+e—1) =
0, since i —s <0andi—s+e—12>0 (recall s € [0,€e]), so one can extend the
lower index of the sum in 4 in the above formula to starting from ¢ = 1 and the
sum will be unchanged. Analogous reasoning allows to extend the upper index of
the sum (recall f(x) = f(d — x)) so the proof is complete. O

We will use the following computation to describe the adjoint factors in the
Hitchin component.

Lemma 14.4 (Exponents are shifted). Consider e,k € [2,d — 1] then the vector
[[F, E¢], E*] € R- EtF=1. Moreover, for k < d — 3 the vector [[F, E3], E¥] is
non-zero.

Proof. The centralizer of FE has dimension d — 1 (Kostant [16, Corollary 5.3]). It is
thus spanned, as a vector space, by {E' : | € [1,d — 1]}. The first assertion of the
lemma follows by the combination of two straightforward calculations:
adg ([[F, E°], B¥]) = [adg([F, E°)), B¥] = [[H, E°], E*] = 2¢[E°, E¥] = 0;
ady ([[F, E°], E*]) = [adg([F, E°]), E*] + [[F, E°],ad i (E")]
= (2e — 2+ 2k)[[F, E°], E*].
Indeed, the first computation gives that the desired element belongs to the span

of {E!: 1 € [1,d — 1]}, and the second asserts that it is an eigenvector of ady of
eigenvalue 2(e + k — 1), giving the desired conclusion.
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To show that [[F, E®], E¥] # 0 if kK < d — 3 we use the formulae from Equation
(14.1). One has

sH

-3
[F,E? =) f()md T — f(j +2)m?it2,
J

I
—

Since we intend to further bracket with E¥ = Zf;lk 7lF+ we observe that

i tLk++3 ifl=j+3,
[CEARTARIP LA [P QU Au R UVEE ST N iy
0 otherwise,

where both non-vanishing options cannot simultaneously occur (since k # —2).
Similarly one has

ahItht2 i =142,
[Wj,j-&-Q’ﬂ_l,/c-i-l} _ —pi—kg+2 ifk+1= 7,
0 otherwise.

Putting together the last three equations, one has
d-3

[[F, E3],Ek] = Z f(j)(wj+1,k+j*3 — 7Tj+171~c,j+3) —f( +2)(ﬁj,j+k+2 _ ijk,j+2).
j=1

We show then that the coefficient of [F, E3], E¥] in the element 7!**+3 is non-zero.
Indeed this coeflicient is

—f@3) + f(k+3) — f(k) = —6k #0
ifk<d—4dor —2f(3) £0ifk=d—3. O

Proposition 14.5 (Adjoint Factors).
- Let g = so(n,n 4+ 1) or sp(2n,R) and ¢ : g — sl(d,R) be the defining

representation. Then as an ad(¢ g)-module one has
5[(d7 R) = d)Qw(,l S ¢)wm2 .

These two factors also correspond to the decomposition of sl(d,R) in odd
VETSUS even erponents.

- Let now &4 be a real-split form of the exceptional complex Lie algebra of type
Gy and let ¢ : &3 — sl7(R) be the fundamental representation associated to
the short root. Then ¢(&2) has three adjoint factors given by Vi @& Vs, V3
and Vo &V, & V.

Proof. We focus on the first item, the second following similarly but with more
involved computations that we omit. Using the computation for the exponents of
g in Table 2 one sees that ¢(g) = > 44 . Ve is an irreducible factor. Moreover,
as [F, B3] € ¢(g), Lemma 14.4 implies that all even exponents belong to the same
irreducible factor, giving the result. O

Corollary 14.6. Let g be either sp(2n,R), so(n,n + 1) or &2, and denote by
¢o : g — sl(d,R) be either the defining representation in the first two cases or the
fundamental representation for the short root in the last case and let ¢ : g — Vy be
an adjoint factor of ¢o(g), then © = A and for any Xo € Fixi C a™ the cone of
(b, Xo)-compatible elements is Xy = a™.
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0]
o)
B
0]
[} o o owa:2a+ﬂ
o L 4
B
[e==6¢]
[¢] B «
o At ={a,B,a+ 8,20+ B30+ B30+ 28}

FIGURE 4. Hasse diagram for the 7-dimensional irreducible representa-
tion of Gz, which is the fundamental representation of the short root,
together with the corresponding weight sets (in black). Recall also that
wg = 3a + 20.

Proof. In the first two cases the result follows readily as, by direct computation, the
weights of ad(¢) are integer multiples of simple roots of g and every root appears.
The &4 case follows by explicit verification. See Figure 4. d

14.2. Cleaner formulae for »°. We proceed to a more explicit computation of k®
and notably of 0;(k®). To this end, let us consider the classical (finite) difference
operator defined, for a function g : R — R, by

Ag(x) = g(z +1) — g().
We also consider, for a real number z € R (a slight modification of) the falling
factorial notation: for k € N we let

E=z(z=1)-(z—k+1),

with the convention that 2% = 1, in particular 02 = 1, and for later use we define
2=k = (. For a function g, we let g(x)X be the k-th falling factorial applied to the
real number g(x).

Straightforward computations yield the following rules.

Lemma 14.7. For every k € N one has

) Atg(a) = i(—l)i (’j)m ki)

i=0
k
i) a Leibnitz rule A¥(gh)(z Z < ) ) AR h(z +1);
=0
iii) Axk = kxk=L and if we let r(z) = | — x for some | € R, then

A(T(x))* = —kr(z+1)k=L,
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Considering the function gq4.(z) = d + e — z, together with

Fae(w) = flx—e)f(x—e+1)-- flz = 1) = (x = 1) (ga.e(2))5, (14.7)
Proposition 14.3 yields
d

<€ — zd:wj(i(—l)t C) Fie(j—t+ e)) = Zﬂ'jAeFd,e(j)a
j=1 t=0

j=1

where the last equality comes from Lemma 14.7. We compute then A°Fy .(x) using
the Leibnitz rule applied to the product Fy.(z) = (x — 1)¢- (ga,e(x))s.

€

8 Faete) = 3 () 8 - 18 a0

=0

e fe e! o ol .

= (=1)%! Z(—l)i (j) (x — 1)67"(gd7e(3: + e))i.
i=0

In order to decide whether k® belongs to the kernel of a simple root o; € A we
compute —0;(k¢) = A°T1F, (), which we write, by Lemma 14.7, as

e+1 e+1 ) )
8 Faute) =3 (7 ) aita - 18 g o+

=0

e+1 .
- Z(—l)e“’i (ef1>e!,(x— 1) ¢ (gd@(x+e+1))d
i=0

i ) (e—1) i—1
= ) e S (j) (Z ¢ 1) (2= 1) (d—1 - 2)=L,

i=1

We record the above computations in the following lemma.

Lemma 14.8. One has

) G-t

~
[}
I
—
\
—_
S~—
®
L
S8
3
.
S
]
—~
\
—_
S~—
o~
7 N
~+~ O

t—1

e e - € € . e— A1
0, (k) = (—=1)%(e + 1)! (—1)t< ) < )(] —1)t(d-1 —j)tf. (14.8)
t=1
Remark 14.9. In particular one has @ (k) = el(d — 1)¢ > 0.

14.3. Type D. Consider a 2n dimensional real vector space equipped with a bilin-
ear form w of signature (n,n) and let SO, , be the volume preserving automor-
phisms of this form. Let also x — z* be the adjoint operator on sl(2n,R) defined
by w. One has

so(n,n) = {z € sl(2n,R) : x + 2 = 0}.

Consider a non-isotropic line ¢ and its orthogonal complement ¢+ for w.
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TABLE 3. The Kostant vectors of sl4(R) for d € [3, 8].

We have then an w-preserving involution i with i[¢ = —id and i|¢+ = id, which
gives an involution ¢ : SO, , — SO, , defined by g — igi. The group of fixed
points of 7 is the subgroup of SO,, ,, that stabilizes £. For g € Fix i, the restriction
g — g|t*+ gives an isomorphism of (Fixi)o with a special orthogonal group of
signature (n — 1, n).

The differential d.i : so,, ,, — $0,,, coincides with = +— izi and is a Lie-algebra
involution giving a decomposition

§0,, , = Lie(Fixi) & {z € so,,,, : doi(z) = —z}. (14.9)

If z € 5l(2n,R) is anti-fixed by d.i then one readily observes that x(¢) C ¢+ and
x(¢+) C £. We can easily describe then the anti-fixed subspace of so(n,n) as

{z € 50, , : d,i(z) = —x} = {:L' —z* : x € hom(¥, éL)}.

It is a 2n — 1-dimensional vector space and an irreducible Lie(Fix ¢)-module.
If 5 is a principal sly of so,, ,, then it stabilizes a non-isotropic line, which we can
assume to be ¢, and acts irreducibly on ¢, so we conclude that

V1,0 = {2 : dei(x) = -2}

is an irreducible s-factor of dimension 2(n — 1) + 1.

The a in the notation solves an ambiguity issue when n is even. Indeed, observe
from Table 2 that two situations occur for so, ,. If n is odd, the exponent n — 1
occurs with multiplicity one and is the only even exponent of so,, ,,. However if n is
even, there are two s-adjoint factors of dimension 2(n — 1)+ 1. One of these factors
is contained in Fixd,4, and the other one is Vj,_1 ,.

Let as,, , = R™ be a Cartan subspace of so,, , and consider the set of simple
roots A = {oy,...,0,-1,0,} where 0;(a) = a; — a;4+1 and o, (a) = an_1 + apn.
We can choose a Cartan subspace aso, ,, of Fixi that is embedded in as as

S50n,n

sl3(R) sly(R) sl (R) sls(R)

K[ (2,0,-2) (3.1,-1,-3) (4,2, 0 —2,—4) (5,3,1,— 3, 5)

(4, -84) [12-(1,-1,-1,1) | 12- (2,1, -2,-1,2) 8- (5,—1,— ~1,5)

e 36 (1,-3,3,—1) | 144-(1,-2, 0.2, -1) 72- (5,1, v —5)

e 576 - (1, 4,6, 4,1) 2880 - (1, -3,2,2, -3,1)

K5 14400 - (1, -5, 10, —10,5, —1)
sl7 (R) sls(R)
el (6,4,2,0,—2, 4, 6) (7.5.3,1,—1,-3, -5, -7)
2 (50 73,-4,-3,0,5) 2.(7,1,-3,5, 5 73.1,7)
3 720-( “1,0,1,1,-1) 180 - (7, —5,—7,-3,3,7,5,—7)
Kk 2880 - (3 7 1, 6 1, 7,3) 2880 - (7,—13,-3,9,9,-3,—-13,7)
P 86400 - (1,—4,5,0, 5,4, —1) | 43200- (7, 23,17, 15, —15, 17,23, —7)
k6 | 518400 - (1, -6, 15, —20, 15 6,1) 3628800 - (1, 5,9, -5, 5,9, —5,1)
K7 25401600 - (1, 7,21, 35,35, 21,7, —1)
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o o
01 [}
o O
o2 B2
o O
“7 Y o < 7 Y
N~
o o — 3% 0 )
o B
o3 «
o O
02 ﬁ?
o @]
01 e}
o o

FIGURE 5. The irreducible representation so(3,4) — so(4,4).

{a € R" : a,, = 0}. The involution d,i acts on a,, , as

i:=(ay,...,an) — (a1,...,—ap).
Observe that this involution sends 0,_; to «, and fixes the other roots so it’s
the opposition involution i of as,, ,. Moreover, the Kostant line associated to the
anti-fixed factor is

»"ha =R (0,...,0,1).

The remaining Kostant lines are the ones of 50,1, embedded in as,,, via the
above inclusion.

14.3.1. Triality. We now deal with the special case D4. In this special case the
Dynkin diagram has an order three automorphism T that fixes oy and o7 — 03,
03 — a4 and oy — 07, see Equation (14.10).

01@%\2 (14.10)

This automorphism can be realized as the orthogonal transformation

11 4h
Ti= 3 <1 11 1 ) P 05044 77 Os0y4-
1-1-1-1
This automorphism can also be extended to an external automorphism of T :
5044 — 5044 whose fixed point set Fixt = ¢ (&2). Moreover, the involution



69

it ! of as,, has fixed-point set the image ¢ (s034) of the fundamental repre-
sentation for the short root of so3 4, see Figure 5. The adjoint factors of ¢ (s03.4)
are then

s044 = (T(Vi@ Vs Vs)) @ (2(Vaa)).
Using the explicit formula for T : as, , — @50, , One has
T(Vaa) Naso, , = T(3>*) =R (-1,1,1,-1). (14.11)

This last equation will be needed in the proof of Theorem 15.1.

15. PRESSURE DEGENERATIONS ARE LIE-THEORETIC

In this section we establish the following. Recall that if 5 € H,(S) is Fuchsian,
we havce denoted by

5= H}xdﬁ(ﬂ-ls7 Ve).

Theorem 15.1. Let g be simple split of type A, B, C, D or Go. Consider p € Hy(S)
and a length functional 1 € int (£,)* then, the pressure form P’Ff’ 18 degenerate at
v € T,H,(S) if and only if either of the following situations hold:

vE @ TS,

e:p(2€)=0

- p is Fuchsian and

- p is self dual, ¥ is i-invariant and v is i-anti-invariant.

- g is of type Ag or Cs, the Zariski closure of p(m1.9) is Gw, (&2), ¥(53) =0
and v € Hy, (118, V3).

- g is of type Dy, the Zariski closure of p(m1S) is conjugate to $(SO03.4),
v E Hidp(mS, I(Vg,a)) and ¥(—1,1,1,—-1) = 0.

We begin the proof of Theorem 15.1 with some preparation lemmas.

15.1. Preparation Lemmas of independent interest I.

Lemma 15.2. Let & € Hy(S) be Fuchsian and e an exponent of g. For any non-
zero u € T¢ and every ¢ € int (Ls5)* such that ¢(x°) # 0 the set of normalized
variations V¥ C 5° has non-empty interior.

Proof. Corollary 13.3 and Equation (2.19) imply that
0= 0884 = y(pyu) € P(VY).

Since kert N ¢ = {0} and V¥ C ¢ by Corollary 8.6, the above equation yields
0 € VY. However, since V¥ is convex, if its interior where empty then it would be
reduced to the point {0} = V¥. This yields that, for every v € m1.9 one has

dA\7(u) =0,

in particular that d,A](u) = 0 for all ~, contradicting [1, Proposition 10.1] with
the fact that u # 0. (]

Lemma 15.3. Let p € Ha, ,(S) and ¢ € int (L,)*.
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(i) If p(m1.S) has Zariski-closure SO(n,n 4+ 1) or PSp(2n,R) according to the
parity if d, or Zariski-closure ¢, (Go) if d = 7, and if we let g be the
corresponding Lie algebra, then

Vo= P v

€ even

is an adjoint factor of p and for every non-zero u € H}Adp(mS, Va)
VY CV,

has non-empty interior.

(ii) If d = 7 and the Zariski closure of p(m1S) is &, (G2), then for any non-
trivial cocycle u € dep(ﬂlS, V) the set V¢ C 5 has non-empty interior
and contains {0} in its interior. In particular P¥(u) # 0.

Proof. By Remark 14.2 wq acts trivially on even exponent spaces, so the first item
is a consequence of Corollary 14.6 together with Remark 7.1. To deal with the
second item, we restrict ourselves to ¢, (G2) < SO(3,4) with Cartan subspace
Uso(3,4) = R?, Weyl chamber {a € R® : a1 > ag > ag > 0} and simple roots

01(a) = a; — ag, 02(a) = az — a3 and £3(a) = as.
The subalgebra ¢, (&2) has Cartan subspace ag_ (6,) C Gso(3,4) given by

Cl(bw@(@Q) = {(a17a27a1 — (12) tay,ag € R}

and simple roots {01, 02}, see Figure 4.

Since ag,_(6,) = ker(e — 01), any convex combination te — (1 —t)oy coincides
with o7 when restricted to ag_ (s,)- Since }%gl = 1 by Theorem 13.2, it follows
that the affine line {te + (1 —¢)oy : t € R} is contained in the critical hypersurface
Q, of p:m = bx,(G2) < SO(3,4), see Figure 6. Fix such a combination, ¢ =
(1/2)(e + o1) for example and observe, from Table 3 that 3 =R - (1,—1,—1) and
that ¢(1,-1,—-1) =1/2 #0.

If we let v be the tangent vector associated to u € H}\dp(mS, V3), and p; be a
short curve tangent to v, then again Theorem 13.2 implies that {€, 01} C Q,, giving
that the entropy %7, is critical at p. We are now in the exact situation of Lemma
15.4(ii) (with the roles of ¢ and v reversed). We obtain that the set of variations
V¥ C »® has non-empty interior as desired. The last statement now follows from
Lemma 15.4(iii). O

15.2. Pressure forms: some information on lower strata. We now focus on
A-Anosov representations of a finitely generated group I.

Let p: T — G be a such a representation and consider a cocycle u € Hédp(r, 9)
that we assume integrable, so we also denote by u € T,X(I',G) the associated
tangent vector.

Lemma 15.4. Let p € Aa([,G) have semi-simple Zariski closure H. Fix 1) €
int (£,)* and o disjoined adjoint factor Vy of H. Consider an integrable cocycle
u€ Hay,(T,Va) such that there exists v € T with dA\Y(u) # 0, then:

(i) If Va Na C ker v, then PY degenerates at u.
(ii) If Vunankery = {0} and dAY(u) = 0 then for every ¢ € int (£,)* with
Va Nankerp = {0} the set V¥ has non-empty interior and 0 € int V¥.
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€3

(Ao, (82))" (aso(3,4))*
FIGURE 6. The critical hypersurface in agq; 4, of a Hitchin representa-
tion p whose Zariski closure is ¢, (G2).

(iii) If VaNankery = {0} and P¥(u) = 0 then V¥ is reduced to a point and is
non-zero.

(iv) Assume H has rank 1. If ¢, € int (L£,)* both have kernel whose inter-
section with Vi N a wvanishes, then there exists ¢ > 0 such that for all
ve Hy,,(T,Va) one has

Pg(v) =cPy(v).

Proof. If the derivative of (p;) € Aa(l', G) has cocycle u then, Corollary 8.6 implies
that for all y € T
d\(u) € Vh Na. (15.1)

If we assume that Vi Na C kerv then V¥ C ker and thus Remark 2.33 shows
degeneracy.

If Vi Nankery = {0} then necessarily dim Vi Na = 1 and VY is an interval
contained in this line (possibly reduced to a point).

Let us deal now with item (ii), we first establish the result for ¢» and deal after-
wards with the general case. Since d%¥(u) = 0 Eq. (2.19) gives that ¢(pyu) = 0,
however p,u € V¥ C Viy N a which only intersects ker¢ at {0}. We conclude that

Pyu = 0.

If V¥ were reduced to a point, we would obtain that for all v € [ dA”(u) = 0
contrary to our assumptions. We obtain thus that V¥ is an interval with non-empty
interior. This implies in turn that 1(J) and () are not Livsic-cohomologous and
thus that 0 = pyu € int V¥. This gives item (ii) for ¥ but also gives a bit more:
there exists v, h € I such that

P(dAY(u)) < 0 < P(dA"(u)). (15.2)
If we let now ¢ € int (£,)* be such that Vi NaNkery = {0}, then there exists

¢ # 0 such that p|VyNa = eV Na. Assume without loss of generality that ¢ > 0.
Whence Equation (15.2) gives that

@(dA7(u)) < 0 < (dA"(u)),

which implies that ¢(V¥) is an interval that contains 0 in its interior, giving in turn
the desired result.

We now deal with item (iii). If P¥(u) = 0 then Remark 2.33 implies that V¥ is
contained in a level set of ¥, and is thus a point. If it where zero, for every v € [
we have dA7(u) = 0. Since we assumed this was not the case, V¢ # {0}.
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We now focus on item (iv), se we assume H has rank 1. As before Vg Na is
one-dimensional. Then one has:

- there exists ¢ > 0 such that for every u € ay one has p(u) = cip(u),
- there exists C' # 0 such that for every v € Vi Na one has p(v) = C(v).

Consequently, for every v € dep(F,VH) Equation (15.1) implies that ¢(J,) =
C(J,) and ©(d,) = c(d,). Moreover, Corollary 2.20 implies then that

0 C o
9 ¢ _to ¥
ot ‘tzoﬁptw(gpt) c Ot ‘t:oﬁptw(gp‘)'
Thus,
var (% tzoﬁftw(gm)amfﬁf@(g))
%5 [ o(@p)dm_ze(5)
var (CQ fi¢1p(3pt),m7ﬁgw(3)>

cot|,_y " p
/221 f"/}(gp)dmfﬁ;flp(g)

C2
= P;f’ (v).

P¥(v) =

c2

O

15.3. Pressure forms along the Fuchsian locus I. Consider a Fuchsian repre-
sentation § : m.S — PSLy(R), we have

T,Ha, ()= @ Ts (15.3)

e exponent

Let e € [1,d — 1] and let ¢ € H°(K“*1) be a holomorphic differential of degree
e+ 1 on the Riemann surface associated to 6. The Hitchin parametrization provides
a normalized deformation

\Ij(q) € Téj{Ad_l(S)u
as in Labourie-Wentworth [52], then [52, Corollary 3.5.2] implies that if we let
[u]w(g) € Hiqs (WlS,sld(R)) be the associated cocycle
(woe € 5. (15.4)
Moreover, [52, Proposition 6.5.7] states that if p is a holomorphic differential of
degree f+1# e+ 1 then
PZ (U(g), ¥(p)) = 0. (15.5)

We can now establish the following.

Lemma 15.5. Let g have type A, B, C, D, or Ga. Let & € Hy(S) be a Fuchsian
representation, then for every i € int (L5)* and exponents e # f the subspaces T§
and Tg are Pg’—orthogonal,

Proof. Since 3¢ is 1-dimensional and does not lie in ker w; (Remark 14.9), there
exist ¢, € R — {0} such that 9|»® = c.wwq|°.
Consider now u € T§ and v € Tg, and write [u] = [u]y(q) for some holomorphic

differential ¢ and similarly for v and a differential p. Corollary 8.6 implies that 7.
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has values in »¢ and J, has values in s/ , and thus

—

w(ju) - Cewl(au)a
w(j'V) = wal(EV)~
Moreover, since § is Fuchsian the argument of (iv) of Lemma 15.4 yields

PY (U (p), ¥(q)) = f PZ (¥(p), ¥(q)) = O,

c
by Equation (15.5).

This deals with types A, B, C and Gz, and for all exponents for the type Dy
except k*~12 However by §14.3

Hjqgs(miS,s0(k —1,k)) ® Haqs(m1S, Vie1,a)

is a decomposition consisting on fixed and anti-fixed point of the involution dsi*,
which is an isometry of P¥ by Lemma 2.32, yielding the result. O

15.4. Proof of Theorem 15.1. By means of Theorem 13.5, we proceed with an
analysis according to the Zariski closure of p(m1S). If p(m15) is Zariski-dense then
Corollary 12.12 implies that every ¢ € int (£,)* induces a Riemannian PY.

At the other end, if p = 6 is Fuchsian then we have

TsHy(S)= P Ts. (15.6)
e exponent

If follows from Lemma 15.5 that, for type A, B, C; D and G, the above decom-
position is orthogonal for every pressure form P?. So we only need to understand
each factor Tg.

Item (i) from Lemma 15.4 implies that P¥ degenerates on every T¢ with 3¢ C
ker. We have to show thus non-degeneracy of P¥ on the adjoint factors with
(k®) # 0. Let e be such that this happens.

Lemma 15.2 states that the set of normalized variations V¥ has non-empty in-
terior. If P¥ degenerates in T¢ thenLemma 15.4(ii) states that V¥ is reduced to a
point, yielding thus a contradiction. This concludes the Fuchsian points.

We deal now with type A and intermediate strata, i.e. p(m1.5) has Zariski-closure
either SO(n,n + 1) or PSp(2n) according to the parity of d (we deal later with the
Gy-case), let g be the associated Lie algebra. In this situation, Proposition 14.5
states that there are only two adjoint factors that coincide with g = @, 44 Ve and
va = @e even Ve'

The first factor is settled by Corollary 12.12, so we focus on the latter. Lemma
15.3 states that for any 1 € int (£,)* the set V¥ has non-empty interior. So the
only possibility for V¥ to be contained on a level set if v is that Vg C ker, or
equivalently v is i-invariant. Thus if ¢ is not i-invariant then both restrictions
PY|H}, ,(m1S,9) and PY|H}, (1, V) give definite pressure forms. To conclude
it suffices to show that

Hjq,(m18,9) Lps Hiq,(mS, Vy).
However, by Corollary 2.32 the involution 7% is an isometry of P¥ and the decom-
position above coincides with the decomposition
T,Ha, ,(S) = Fixd,i* ® Fix(—d,i%),

thus the decomposition is P¥-orthogonal, giving non-degeneracy on T,Ha, ,(5).
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We finally deal with the case where p(71S) has Zariski-closure ¢, (Gz), this is
the most involved case. In this situation by Proposition 14.5 there are three adjoint
factors

sbR) =Vsd (ViaVs)® (Vad Vid V)
=V3& b, (G2) B (Vo Vi Vp).

By Corollary 12.12 P¥ is non-degenerate on deformations along Vi @ V5 =
Gw, (B2). The factor Vo & Vy @ Vi is dealt with by means of item (i) of Lemma
15.3: it asserts that if u is a non-trivial cocycle with values on this factor then
VY C »? @ »* @ »° has non-empty interior, thus, unless V¥ C ker 1, which corre-
sponds to ¢ oi = 1, the pressure form P¥ is definite on the H'. The factor V3 is
dealt with in item (ii) of Lemma 15.3.

This deals with the adjoint factors individually. As in the previous paragraph,
the H' associated to even exponents and the H' associated to odd exponents are
P¥-orthogonal, so to prove non-degeneracy it remains to understand the restriction
of P¥ to H} 4, (w18, Va) ® Hpy (718, Vi & Vs).

As each factor has already been dealt with, we consider non-vanishing uz and u; 5
in Hy, (718, V3) and Hy, (1S, Vi © Vi) respectively and study the deformation
associated to

Uu=ug+uys€ Hidp(mS, V3) (&) Hidp(ﬂ'pg,vl &) V5).

We have to show that any ¢ € int (£,)* verifies P¥(u) # 0.

Since we are studying odd exponents, we can restrict ourselves to SO(3,4) with
Cartan subspace ag0(3,4) = R3 with Weyl chamber {a € R® : a; > as > a3z > 0} and
simple roots

U](G,) = ap — az, 0-2(0/) = a2 — as and Eg(a) = as.
The subalgebra ¢, (&2) has Cartan subspace ag_ (6,) C 0so(3,4) given by

Ao (B2) = {(a1,a2,a1 — az) : a1,as € R}

and simple roots {07, 02}, see Figure 4. The proof of non-degeneracy is split into
two cases:

(i) o2 € supp,
(i) o2 ¢ supp .

We deal first with item (i), the proof uses Lemma 10.9 applied to ¥ = ¢, so we
assume by contradiction that P¥(u) = 0, or equivalently that 1(J) and ci(J) are
Livsic-cohomologous for some ¢ # 0.

By Theorem 13.2 %' = %,2 = 1 so Theorem 2.19 implies that there exists
~v € m.5 such that

02(py) < 01(py) = es(py)-

Since by assumption oy € supp ¥ we have o3 strictly minimizes p() among supp ¢
and we can apply Lemma 10.9 (with @ = 03). Moreover, by Proposition 13.4, every
pair g,h € m.S with disjoint fixed points on 9715 has images p(g), p(h) that are
A-transversally proximal. By means of Benoist [3, Proposition 5.1] , and because
i = id in this case, we find a subgroup I" < 7.5 such that p(I") C ¢, (G2) is
Zariski-dense, A-Anosov and has limit cone contained in {a : 02(a) < o1(a)}. So
applying Lemma 10.9 we see that

%jvlpl C ker 09. (157)
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However, the representation Adso(s ) |$w, (G2) is disjoined, indeed it has only
two factors and one of them has more restricted weights than the other (recall
Definition 6.3), whence Corollary 8.6 states that Z.¢ o/ has non-empty interior
and cannot be contained in ker os.

We now turn to item (ii), i.e. 03 ¢ supp. Since we’re working in SO(3,4) we
think of ¢ as an element of C‘EO(:;, ne which is spanned by the fundamental weights

we, (a) = ay,
We,(a) = a1 + az,
we,(a) = a1 + as + as.
Since, by assumption o2 ¢ supp, up to scaling ¢, which does not change the
pressure form P¥, we have that for some b € R, either of the following hold:
Y = wo, + bwe,
Y =bwg, + we,.
Assume the first one holds (the other is analogous), so ¢ = wg, + bwe,.
The form ¢, on a4, _(G,) = 2! @ 55, verifies
Y(a1, az,a1 — az) = a1 + b(ay + az + (a1 — az)) = (1 + 2b)w, (a),
and one has moreover wg, |3® = —w.,|»® so, upon writing v = v3 + vy 5 in the
decomposition »® @ (3! @ »°),
Y(v) = Y(vs) + P (v15)
= —bwg, (v3) + (1 + 2b)wg, (v1,5)
= we, (—bus + (14 2b)vy5).

Assuming by contradiction that there exists ¢ # 0 such that for all v € 7.5 one
has ¥ (dA7(u))) = ctv(M(py)) we obtain that, for all 4 one has

o, ( — BN (u), + (1 + zb)dx’v(u)m) = c(1 + 2b)@e, (A(p7)).

Considering the cocycle u’ = —buz+ (1+2b)uy 5 we get, by linearity of the Margulis
invariant, that
dA7(u") = —=bdN7 (u); + (1 + 2b)dAY(u), 5,
so one has
T (N (W) = (1 + 26) e, (A(p7)).

Since p(m1S) acts irreducibly on R” we can apply Theorem 2.37 to obtain that
the cocycle u’ is trivial, giving in turn that either us or uj 5 is trivial, contradicting
our starting assumption. This completes the proof for types A, and thanks to the
inclusions (13.1) we have also dealt with types B, C and G,.

We end this section dealing with type D, so let p € H(S,D,,) with n > 5 (we
deal later with D4) and ¢ € int (£,)*.

As before we make use of the classification of Zariski closures of p(m.S) given
by Theorem 13.5 with the addition of Lemma 7.6 from Carvajales-Dey-Pozzetti-
Wienhard [19]: Theorem 13.5 classifies the semi-simple part of the Zariski closures,
[19, Lemma 7.6] states that the Zariski-closure is semi-simple. Thus we have that
p(m1S)% is:

- SO(n,n), in which case Corollary 12.12 implies that P is Riemannian;
- a principal SLy, this case is dealt with by Lemmas 15.2 and 15.5;
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- a representation SO(n — 1,n) — SO(n,n) that stabilizes a non-isotropic
line.

It remains to deal with the last item. In this case we have a group involution
i of SO(n,n) whose fixed points are the corresponding SO(n — 1,n). Thus, Adp
has two adjoint factors given by Equation (14.9), which are the fixed points and
anti-fixed point set d.i; Corollary 2.32 implies that

Hyg (718, Fixd, i) Lps H)g,(mS, AntiFixd,q) (15.8)

so we only have to deal with each factor independently.

One factor corresponds to deformations inside SO(n — 1,n) and is settled by
Corollary 12.12, the other one has one-dimensional neutralizing space, namely
3"~ 12 which is dealt with by means of the combination if items (ii) and (iii)
of Lemma 15.4. Indeed, we only need to find a linear form ¢ € int (£,)* whose
entropy has vanishing derivative along a given u € Hj, p(mS, Va—1,a). If we let
050, ,, = R™ be a Cartan subspace of s0,, ,, and consider the set of simple roots A =
{o1,...,0n_1, %, } then the Cartan subspace of ag,,_, , is ker(c,—1 — &;,). Since
by Theorem 13.2 A C Q,, for every n € Hp,, (S), the linear form (1/2)(0y,—1 + o)
has critical entropy at p (the argument is verbatim from the Gp-case in Figure 6),
as desired.

We finally deal with D4. The above discussion holds verbatim, except that we
have one more possibility of the Zariski closure of p(71.5), namely the fundamental
representation for the short root of SO(3,4). From §14.3.1 the adjoint factors of
Adp are deformations along SO(3,4) and cocycles with values in T(V3?), these
spaces correspond also to fixed and anti-fixed points of a Lie-algebra involution
(namely Tit!), and the above discussion works verbatim, giving, by Equation
(14.11), the resulting condition for ¢ to have degenerate pressure form.

16. PRESSURE FORMS AT THE FUCHSIAN Locus II

We restrict ourselves now to g = sl(d, R) and the natural inclusions from Equa-
tion (13.1).

Recall from Labourie-Wentworth [52] that if § is a Fuchsian representation and ¢
is a holomorphic differential over Ss, then there is a natural tangent vector ¥(q) €
TsHa, ,(S), called the normalized deformation. We will use our techniques and
the main result from [52] to homogenize the pressure metrics on these vectors.

16.1. Description of pressure metrics at the Fuchsian locus. Let us fix as
reference the functional w; € a* and consider 1 € a* with (k) > 0. For each
e € [1,d—1] we let c. € R be defined by

)3 1= cotoy | 5°.

Equivalently, by Remark 14.9, c. := 1(k¢)/(e!(d — 1)¢). The pressure form P is
defined on the open set Uy, (recall Eq. (2.16)) which, since ¢; > 0, contains the
Fuchsian locus. We describe P¥ at the Fuchsian points.

Ce

2
Proposition 16.1. For every Fuchsian 6 and v € T§ one has Pg’ = (—) Py
C1

Proof. 1t is exactly as in the proof of Lemma 15.4(iv). O
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16.2. A pressure form compatible at the Fuchsian locus. Consider a Fuch-
sian representation & : S — PSL4(R), e € [1,d — 1] and ¢ € H°(K°*!) a holo-
morphic differential of degree e + 1 on the Riemann surface associated to &. Then
Hitchin’s parametrization provides a normalized deformation

U(g) € TsHa, ,(5)
as in Labourie-Wentworth [52] and one has the following.

Theorem 16.2 (Labourie-Wentworth [52, Cor. 3.5.2 and Cor. 6.1.2]). Let & be
a Fuchsian representation, q a holomorphic differential on Ss of degree e + 1 and
[u]wg) € H}Ads(w&ﬁld(R)) the cocycle associated to the normalized deformation
U(q). Then [u]y(q) has values in V.. Moreover

= ~(d-1)?(d+1)dd—1) (2e +1)! [ llq||*dareas
i (¥(9) = 2¢ 3-2 (d+e)l(d—e—1)! : 7| x(S)]
(d=1)2 (d—1) (2e +1)! [ llgl|*dareas
S (dte=t 3 2¢ 27| x(S)]

We consider then the following functional.

Definition 16.3. We let @ € a* be defined by, for all e € [1,d — 1],

e __ (d + 6)671 3.92¢ .
o=\ e e @mvia-n =

By Remark 14.9 w;(k®) # 0, whence by definition @(k®) # 0 and thus Theorem
15.1 entails that P® is Riemannian on U,. We have:

Corollary 16.4. Let d be a Fuchsian representation and q € @Z;ll HO(K®) then

d

P¢(¥(q) = 27T|X(15?)/S ll¢||*dareas

and @ is the only linear form so that this equation holds at the Fuchsian points.
Thus, there exists A > 0 so that the operator j defined by P®(u,v) = w(ju,v)
squares —\ on the tangent space to Ha,_,(S) at the Fuchsian points I (S).

Proof. Theorem 16.2 states that [u]y(g) belongs to Hx, (18, Ve), so the result
follows from Theorem 16.2 and Proposition 16.1. The last assertion now follows
from [52, Lemma 5.1.1]. O

If we want to find the form @ restricted to the Hitchin components of type B, C
or Gy, then we keep the coefficients of Definition 16.3 for odd exponents and impose
@g(°) = 0 for even exponents, for type Gz we further impose @, _ (G2)(%3) =0.

Remark 16.5. Eq. (1.2) contains the computation of ¢ for the rank 2 simple split
algebras, we compute here @ for rank 3. These computations are straightforward
consequence of the definition of @ and the formule for k¢ from Lemma 14.8:
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20Qi(am)(a) = (6 + \g—?)al + (4 _ {7?0 _ @\/g)az n (2 N %517) B qﬁ)agg
ot -1+ By - (2,
28@s0(3,4)(a) = (3 + % + %)al + (2 _ \/@9\01@ _ \9/;1?)@2

+ (1 - % + %)a&

17. HAUSDORFF DIMENSION DEGENERATIONS

We begin by recalling the relation between Pressure forms and the Hessian of
Hausdorff dimension from Bridgeman-Pozzetti-S.-Wienhard [16]. Let G be a simple
split real-algebraic Lie groupe G¢ the group of its C-points and J the almost complex
structure on the space of complex characters X(I', G¢) induced by the complex
structure of G¢.

For a simple root o of G¢ (and of G) we consider the map

Hff, : Ql{g}(l', Gc) — R>0
p— HIE(£7(T)).

It follows from Pozzetti-S.-Wienhard [62] and Bridgeman-Canary-Labourie-S.
[14] that Hff; is an analytic function on a neighborhood V of the Hitchin component
inside the complex characters:

HE(S) cVcC x(ﬂjs, Gc)
If p € Hy(S) then
T,X(mS,Ge) = T,Hg(S) ® J(T,Hq(S)).
The function Hff, is constant on J4(S) so we study the complementary factor
I(TpHg(9))-
Theorem 17.1 ([16]). Let g be simple split and p € Hy(S) then, for every v €
T,34(S) and o € A one has Hess, Hff,(Jv) = P (v).
Together with Theorem C one obtains:
Corollary 17.2.
(i) If0# v e T,Hy(S) has Zariski-dense base-point then,
Hess, Hff ,(Jv) > 0.
(i) Let v € TsHy(S) be tangent to a Fuchsian representation §. If v € T§
and »° C kero, then Hesss Hif ,(Jv) = 0. If g has classical type then the
converse is also true: if Hesss Hff o (Jv) = 0 then v € @, . ccyero 15

We now apply Theorem 15.1 to understand degenerations for the lower strata.
The theorem reduces the question to two exceptional situations (i.e. ¢, (G2) C
SL(7,R) and the spin representation of SO(3,4) inside SO(4,4)) and the Fuchsian
locus for types A, B, C, D and G;. Together with Theorem 17.1 the question is
reduced to understanding the triplets (d, e, j) such that

0;(k%) =0. (17.1)
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Such Kostant line will be called a simple-singular Kostant line. In the following we
try to understand this equation in some situations, however the general case is still
to be understood.

17.1. Elementary Families.

Proposition 17.3. The following families are simple-singular Kostant lines for
Ad—lf

(i) d = 2n, even exponent and the middle simple root o,
(ii) the second root o3 and, for every exponent e, d =1+ e(e+1)/2,
(iil) the triplets (d, exponent, root) defined as, for every m € N

(4m + 3,2m + 1,2m),

k
(iv) e =3 and the pairs (d, j) := (‘11 :?) (;), for any integer k > 0,
k
(v) the 4th exponent e = 4 and the pairs (d, j) of the form (d, j) = (? :Z) (121 ),
k
or (d,j) = (‘f :I) (137), for any integer k > 0.

Proof. Ttem (i) follows from i-invariance of »° for even e (Remark 14.2). The next
two items follow by direct computation on the formula from Lemma 14.8. Let us
do (iii).

Indeed, using Lemma 14.8 and replacing j by 2m, e by 2m + 1 and d by 4m + 3
one has

2 (K2 £ ¢(2m+1\ 2m+1 2m+1—t t—1
(G—I)SZHI;! B ; =1 ( t >( t—1 >(2m_1)+(2m+2)

2m+1 m — 1)! m !
= Z (—1)t(2mt+1) (2?:{1) (Q(t _ 2)1!) (25721 +J?: 3)t)!

=2
= (2m — 1)!I(2m + 2) % (1)t (2mt+1) (2171451) (2;7121)
=2
=0,

since by the change of variables k = 2m+1—t in the above formula, the sum equals
its negative®.

The next two also follow from Lemma 14.8 however in these cases one is left
to find the integer solutions of an integral quadratic form ¢ = ¢. For the third
exponent one has qz(d, j) = —d? + 5dj — 552 = 1 which is solved by computing the

cyclic group SO(q,Z) = ((‘11 :?)> The last case is analogous. O

6We thank Germain Poullot for the above argument leading to the combinatorial identity

2m
2 EDCTHCIED (V) = m2m + )%
t=2
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d =rank+1 | exponent | root
46 32 21

70 49 34

128 90 62

153 132 75

156 34 4

571 494 | 284

TABLE 4. Simple-singular principal lines of Az—1, up to d = 700, that
do not fall in the elementary families or in Corollary 1.4.

17.2. Degenerations for the 3rd root. We establish in this section Corollary
1.4. By Theorem 17.1 we must describe the vectors v € T,Ha, ,(S) such that
P (v) = 0. If we moreover assume d > 6 then, Theorem 15.1 implies that p = 8

is Fuchsian and
v E @ TS.

e:03(2¢¢)=0

We thus investigate each factor T§:

Corollary 17.4. An element v € T§ is such that P°3(v) = 0 if and only if the pair
(d,e) satisfies the Diophantine equation

et — 6de? + 2€® + 6d? — 6de 4 11e? — 18d + 10e 4+ 12 = 0, (17.2)
together with the constrain 1 < e < d.

Proof. By means of Lemma 14.8 we obtain that o3(k®) = 0 if and only if

S (p)(, )=

We begin by observing that 2¢=t # 0 if and only if e — ¢t € {0,1,2}, and that
(d—4)=L #£ 0 iff t < d — 2. Moreover, since t < e and k%! is never singular by
Eq. (14.4), we can restrict to t <e < d — 2.

If we let p(e,t) denote the general term in the sum (17.3), then we want to
compute the alternated sum

ple,e) —ple,e —1) +ple,e —2) =0,
together with the constrain e < d — 2. Explicit computation gives
plese) = (e(d = =2 ) (d = e~ ))(d - e - 2);
ple,e—1) = (e(d - 4)ﬁ)e(e —1)(d—e—1);

ple,e —2) = (e(d - 4)673) %2(6_2).

So alternating the sum and removing the common factor gives Equation (17.2). O

(d—4)==0. (17.3)

In order to complete the proof of Corollary 1.4 we explicitly solve (17.2) over Z.

Proposition 17.5. The integer solutions (d,e) of Equation (17.2) are precisely
given by Table 5.
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e d| d
-9 || 58 |17
S5 17| 6
-3 6] 3
-2 3] 2
-1 2 1

0 2 1

1 3] 2

2 6] 3

41|1171] 6

81 58 |17

TABLE 5. All integer solutions of Equation (17.2), each e has two pos-
sible d’s which appear in the subsequent two columns.

We prove now Proposition 17.5, i.e. we explicitly solve Equation (17.2) over the
integers. A first remark is that it is preserved by the involution (d,e) — (d, —e—1),
so we only need to find (and care about) its solutions for positive e.

Clearing the variable d gives d = EQJFT“"H + +/3(e + 23 — €2 —2e + 3) so we
now focus on the Diophantine equation

f(z) == 3(z* + 2% — 2% — 22 + 3) = 4%, (17.4)

which, by means of the rational solution (—1,3), can be transformed by a Q-
birational map to an elliptic equation:

Lemma 17.6. Consider the elliptic curve over Q defined by
E: y? =2%— 147z + 610. (17.5)

Then rational solutions of Equation (17.4) are parametrized by E(Q) via the rational
maps X1 and Xo defined by

~Tx+35+y _—22° +y? + 922 + 28y + 169
Xl(l',y) =\

17T+y—=z ’ (17 +y — x)? ’
Xol(y) = T =35+y ,—22% +4% + 92 — 28y + 169
ALY/ = —17T+z+y’ (=17 +z +y)? '

Proof. This is standard given there exists a rational solution of (17.4), in this case
x = —1, y = 3. We begin by replacing by x — 1 which gives

3zt —62° — 322 + 62 +9—y% =0,

followed by replacing @ by 1/z and y by 3y/z?, which gives, by considering the
numerator

2 1 2 1
92 + 62 — 322 —62+3—-9y2 =0=a+ 2% — 22 — a4~z — 2
3 3 3 3
We now replace z by 2 — 2/(3-4) and y by 22 +y — (1/6 - 2) to obtain a
quadratic polynomial on x, indeed the additive terms are chosen to make disappear
the higher-degree terms on x. The solutions of the obtained quadratic polynomial



82

on xr are

—14 £ \/—5832y3 + 2646y + 610
Tr =
18(6y + 1) ’
which are obtained by describing the rational solutions of the equation A = v2.
This latter equation is

v? = —5832u® + 2646u + 610 = ( — 3%2u)’ — 147( — 322u) + 610,

so replacing —3%2u by u we obtain the desired elliptic Equation (17.5), and the
composition of the above local change of variables give the stated rational map(s).
|

We now proceed via the Ellog method and, more precisely, use Tzanakis [75].
The Mordel-Weil group of E(Q) consists on one torsion point (5,0) (of order 2),
and the points

Ri=(9,4) and R, = (11,18)
form a basis of the free part. If (x,y) is a rational solution of Equation (17.4) then
via Lemma 17.5 X;(z,y) € E(Q) and thus can be written as

Xi(xz,y) = mo(5,0) + miRy + maRy

for some integers m;, (with mg € {0,1}), additivity here is the group law of the
Mordel-Weil group of E(Q). The method consists on providing a reasonable’ upper
bound for M = max{|mi|,|msz|} under the assumption that (x,y) is a pair of
integers, which reduces the problem to an explicit computation that can be carried
out by, for example, Maple.

To find this upper bound we collect some relevant data about the curve F, most
of the following computations are computer-assisted and required to work on Maple
with 13 decimal digits:

e The solutions of q(u) = u® — 147u + 610 = 0 are
=5 —-3v57 -5+ 3V57
B 2 2 ’
and the minimal real period of FE is

€3 a62:5761:

o dt
w= 2/ — =< 0.9810124566....
es V/a(t)
We will also need the point zg = 6v3—1> e1, we let 0 = 1 and we consider
the point
Ry = (20,6(3 - V3)) € E(Q(V3)).
o If we let Eyp(R) denote the unbounded component, which is the identity
component of the Mordell-Weil group of E(R), then for p € Ey(R) with
coordinates (u(p),v(p)), the map ¢ : Eg(R) — R/Z given by

0 mod 1 if p= 0,
o(p) == l/ du mod 1 if v(p) >0,

W Juw) Va(u)

—¢(—P) mod 1 if v(p) <0,

is a group homomorphism.

e The discriminant of g is 2659392 and A = 2% x 2659392 = 42550272,



83
e The j-invariant is jp = 470596/57 and so the Archimedean contribution to
its height is
heo(j) = log |470596/57| =< 9.018703988....
By means of [69, Theorem 1.1] we have, for every p € E(Q), that

~ 1 1
h(p) = 5h(x(p) < W +1.07 = ¢11 = 3.285408400... (17.6)

e The fundamental periods are, when denoting by M the arithmetic-geometric
mean,

2r
= = 2w < 1.962095763...,
M(\/el — €3, \/61 - 62)
2w
= = 1.177161295... — 1.128478211..../—1.
M(\/el — €3, \/jl\/ €y — 63)

Since wo /wy does not belong to the Gauss fundamental domain of the mod-
ular surface, we consider

7= (19)(~wo/wr) =< 0.1849446113... + 1.171782212.../—1

with modulus |7| < 1.186287512...
e Observe that Ry and R lie on the unbounded component Eo(R). One has

wé(Ry) = 0.8918445254. .
wé(Ry) = 0.6925571056...
wé(Ry) = 0.8235278325...

e Let h be the logarithmic height, defined for a rational p/q in lowest terms,
defined by h(p/q) = log max{[pl, [q|}, and if (pi/q;) € Q" we let

h(p1/qu, - - Pn/an) = logmax{q, q|pil/q¢: : i € [1,n[},
where ¢ = lem{g; : i € [1,n]}. We denote by

hg = max{1, h(—147/4,610/16), h(jg)}
= h(jg) = log 470596 =< 13.06175526....

e The method from Tzanakis [75] requires us to choose numbers Ay, ..., As, &
such that
Ap > ma {h s’ } = hi = 1306175526
be — ¢t =hg < 13.
0 = E> ‘Wl‘Qj(T) E )
3rw?p(Ri) -
Ay > {h oM OV (R, ;}
+1 Z MaxX 4 NE |w1|23(7) ( )

=max {hg, H(Ri)} = hg;

. |W1| 2A037’ |w1| 2Ai+1j7' .
<éEL — 4/ 4/ =0,1,2 ;;
€= 6 =emm { w 3 T wo(Ry) 3t ' B

where we have used Equation (17.6) to find an upper bound of i(R;), and
e is the Euler number. Explicit computation implies we can choose then




84

A; =135 for i = 0,1,2,3, and & = 9. Then we compute the constants
¢4, c5 and cg from [75, §7] given by David [22, Théoréeme 2.1]:

ey =2.9-10%0.210. 432 . 5803 (150 £)79(13.5)*
= 2.043497279... - 10110

cs = log(28) = log(18)

c = log(18) + hp = 15.95212702....

We also consider the regulator matrix associated to the basis {Rj, Ra},
defined by the matrix associated to the quadratic form on E(Q) defined by
(P,Q) = h(P + Q) — h(P) — h(Q), and we let ¢; be its smallest eigenvalue,
explicit computation gives

c1 < 0.303868...
We now have to find a constant ¢g such that
1 /°° dx co 1
— S -
w Jy f(u) wU

which can be easily shown to be

We now compute a constant cig so that for every u > 1

h(ﬁmu; 6u + 18)

< ¢10 + 2logu,

and we get c19 = 3.
We finally have that the constants c1o = 1 and ¢;3 = 0 and we obtain the
first upper bound on M > 16:

1
aiM? <logcg + SC10 et ca(log M + c5)(loglog M + c6)°,

which gives M < 6.123 - 10%°.
We now proceed with the reduction of the upper bound for M applying
[75, §5]. Since Ry does not belong to E(Q), the R/Z elements

{¢(RO)= ¢(R1)7 ¢(R2)}

are linearly independent over @, and thus our situation is Case 2 in that
section, we are hence bound to use [75, Proposition 4], which gives the re-
duction M < 30. At this point we proceed with a case by case computation
using, for example, Maple.
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