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Abstract We show that the critical exponent of a representation p in the
Hitchin component of PSL(d, R) is bounded above, the least upper bound
being attained only in the Fuchsian locus. This provides a rigid inequality
for the area of a minimal surface on p\ X, where X is the symmetric space
of PSL(d, R). The proof relies in a construction useful to prove a regularity
statement: if the Frenet equivariant curve of p is smooth, then p is Fuchsian.
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1 Introduction

Let X be a closed orientable surface of genus >2. A representation 71 ¥ —
PSL(d, R) is Fuchsian if it factors as

7% — PSL(2, R) — PSL(d, R),

where the first arrow is a choice of a hyperbolic metric on X, and the second
arrow is the (unique up to conjugation) irreducible linear action of SL(2, R)
on R4 !

A Hitchin component of PSL(d, R) is a connected component of

X(m 2, PSL(d, R)) = hom(w; £, PSL(d, R))/ PSL(d, R)

that contains a Fuchsian representation. Hitchin [23] proved that there are
either one, or two Hitchin components (according to d odd or even respec-
tively), and that each of these components is diffeomorphic to an open
|x(Z)| - dim PSL(d, R)-dimensional Euclidean ball. When d = 2 these two
components correspond to the Teichmiiller space of ¥ with a fixed orienta-
tion. A Hitchin component appears then as a higher rank generalization of
Teichmiiller space. Denote by Hitchin(X, d) this (these) component(s).

The analogy with Teichmiiller space is carried on. Labourie [27] shows that
a representation in Hitchin(X, d) (from now on a Hitchin representation) is
discrete, irreducible and faithful, and consists of purely loxodromic elements.
Guichard—Wienhard [21] proved that Hitchin components are deformation
spaces of geometric structures on closed manifolds. Bridgeman—Canary—
Labourie—Sambarino [12] provide a Weil-Petersson-type Riemannian metric
on Hitchin(X, d), invariant under the mapping class group of X.

Denote by X the symmetric space of PSL(d, R), and by dx a distance on X
induced by a PSL(d, R)-invariant Riemannian metric on X. If A is a discrete
subgroup of PSL(d, R), the critical exponent of A is defined by

! This is standard, see Guichard [20] for an explicit construction.
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Eigenvalues and entropy 887

hy(A) = lim log#{g € A :dx(0,g-0) < s}’
§—> 00 S
for some (any) o € X.

Introduced by Margulis [31] in the negatively curved setting, this invari-
ant associated to a discrete group of isometries has been object of numerous
deep results. Recall for example the Patterson—Sullivan theory used for pre-
cise orbital counting, or its rigid structure due to Besson—Courtois—Gallot [7],
Bowen [10] and Bourdon [9], just to name a few.

This paper is concerned on the rigidity problem for Hitchin representations
(the orbital counting problem has already been treated in [37]). Normalize dx
so that the totally geodesic embedding of H? in X, induced by the morphism
PSL(2, R) — PSL(d, R) has curvature —1. The main result of this work is
the following theorem.

Theorem A Forall p € Hitchin(X, d) onehashx(p(71 X)) < 1and equality
only holds if p is Fuchsian.

Theorem A confirms the current philosophy that deformations in higher
rank spaces should decrease the critical exponent, as opposed to deformations
on rank 1 spaces (i.e. pinched negative curvature) where the critical exponent
increases (see Bowen’s fundamental paper [10] on quasi-Fuchsian representa-
tions). It would be interesting to find a global explanation for these two different
phenomena, today understood independently: in rank 1 the critical exponent
is the Hausdorff dimension of the limit set, bounded below by the topologi-
cal dimension; in higher rank (as we shall see below) it is the possibility of
growing in different directions that forces & x to decrease.

This philosophy probably originated in Bishop—Steger’s work [8], where
they show that if p, n € Hitchin(X, 2) then

. log#{[y]l e [mZ]: |py|+ Iny| < s}
D (p, ) = lim - <1/2,

where |g| is the translation distance of g in H? and [7r; £] denotes the set of
conjugacy classes of 71 X. Moreover, equality implies p = 1. As noticed by
Burger [13], this is a rank-2 problem, associated to the product representation
p xn:mX— PSL(2,R) x PSL(2, R).

An analogous result holds for Benoist representations.”> These are homo-
morphisms p : I' — PGL(n + 1, R) where I' is a word-hyperbolic group,
such that p(I") preserves an open convex set 2 C P(R"*!) properly con-
tained on an affine chart, and such that the quotient p(I")\€2 is compact. The

2 These are also called divisible convex sets with strictly convex boundary, or strictly convex
projective structures on closed manifolds.
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888 R. Potrie, A. Sambarino

Hilbert metric on 2 induces a p(I')-invariant Finsler metric on 2. Crampon
[15] proved that the topological entropy of the geodesic flow on T!p(I")\2
associated to this metric, is bounded above by n — 1 and equality only holds
if 2 is an ellipsoid. We provide a new proof of Crampon’s result in Sect. 7.

It is consequence of Choi—Goldman’s work [14] that the space of Benoist
representations of 711 X coincides with Hitchin(X, 3).

Before explaining the main ideas of the proof let us remark that, as explained
by Labourie [26, Section 1.4], the inequality in Theorem A implies a (rigid)
inequality concerning the area of a minimal surface on p (71 X)\X. Recall
from Labourie [28] that the minimal area of p is defined by

MinArea(p) = inf{e,(J) : J € Hitchin(X, 2)},

where e, (J) is the energy of the unique harmonic p-equivariant map from
% equipped with J to p (w1 £)\ X. It follows from Hitchin’s construction that
such a harmonic map is an immersion (see Sanders [39] for details). Standard
computations imply that the metric induced on this immersed surface is nec-
essarily negatively curved and hence its topological entropy is bounded above
by hx(p(m1X)). Applying a theorem of Katok [24, Theorem B] one has

27 x ()

MinArea(p) > —/—————,
hy (p(m1 £))

where y (X) is the Euler characteristic of X. Consequently, Theorem A implies

the following:

Corollary 1.1 Let p € Hitchin(X, d) then
MinArea(p) > —2mx x (X)

and equality only holds if p is Fuchsian.

This is a theorem of Labourie [26, Theorem 1.4.1] when the Zariski closure
of p has rank 2, proved using Higgs bundles techniques.

Finally, let us note that Theorem A is still open for the Hitchin components of
the real split simple groups PSO(n, n) (n > 4) and the exceptional real split Lie
groups (except G2). This is due to the fact that the Frenet property of Labourie’s
equivariant flag curve (see below) is only known to hold for Hitchin(X, d) (and
hence for the groups PSp(2k, R), PSO(k, k+ 1) and G2, since their respective
Hitchin components are canonically embeded in Hitchin(X, d) for d = 2k,
2k + 1 and 7 respectively).
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Eigenvalues and entropy 889

1.1 Proof of Theorem A: The asymptotic location of eigenvalues

The general method is not specific to the Hitchin component. Indeed, our
method applied in different situations gives an improvement of Crampon’s
result and a generalization of Bishop—Steger’s theorem to arbitrary products
such as

Hitchin(X, dy) x - - - x Hitchin(X, d),

replacing 1/2 with a proper upper bound. We will explain here how the idea
works in the Hitchin component, and leave to Sect. 7 the case of Benoist’s
representations.

The first step of the proof of Theorem A reposes on some previous results
of Quint [34] and Sambarino [35] which relate the critical exponent with the
(asymptotic) location of the eigenvalues of a Hitchin representation.

Leta={a € R :ap+--4ag = 0} be a Cartan subalgebra of sl(d, R)
and denote by ¢;(a) = qa;. Let

at={aeca:a > - >ay

be a closed Weyl chamber and IT = {0; = ¢; —g;y1 € a*:i e {l,...,d —
1}} the set of simple roots associated to the choice of a™. Denote by A :
PSL(d,R) — a* the Jordan projection:

AMg) = (A1(g), -+, Aa(g)),

consisting on the log of the modulus of the eigenvalues of g (possibly with
repetition) and in decreasing order.

For p € Hitchin(Z, d) denote by .Z, the closed cone of at generated
by {A(py) : y € mX}. This cone contains all possible directions where
A(p(r1X)) is. A finer invariant is to understand how many eigenvalues of p
are on a given direction inside .Z,. Denote by £ = {¢ € a* : ¢|.Z), > 0}
the dual cone of Z). For ¢ € £ define its entropy by

o — 1 08HIr] € M1 : 9 py)) < s}
o= 1m .

§—>00 Ky

A linear form ¢ belongs to the interior of f;‘ if and only if h(ﬁ is finite and
positive (Lemma 2.7). The main object we are interested in is the set

D, ={p: h% € (0, 11}.

Proposition 4.11 states that D, is a convex subset of a*, and the formula
h;‘p = h%/t implies that if ¢ € D, then tp € D, for all # > 1. Moreover, its
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890 R. Potrie, A. Sambarino

boundary 0D, = {¢ : hﬁ = l}isacodimension 1 closed analytic submanifold
of a*. The shape of D, will be crucial in the sequel.

Recall that dy is a distance on X induced by a PSL(d, R)-invariant Rieman-
nian metric on X. Denote by || ||, the Euclidean norm on a (invariant under
the Weyl group) induced by dx, and by || ||+ the induced norm on a*. One
has the following result.’

Proposition 1.2 (Quint [34, Corollary 3.1.4] + [35, Corollary 4.4]) Let p €
Hitchin(X, d) then

hx(p(m1 X)) = min{[|[lex : ¢ € D,}.

Example 1.3 The irreducible linear action 77 : PSL(2, R) — PSL(d, R) is
given by the canonical action of PSL(2, R) on the (d — 1)-symmetric power
SI1(R?) of R%. If g € PSL(2, R) one has ApsLo,r)(g) = (Igl/2, —1gl/2),
where |g| denotes the translation distance of g, and hence

)»(ng)Z%(d—l,d—&...,?)—d,l—d).

Thus, for all o € IT one has o (A(17g)) = |g|. Moreover if ¢ belongs to the
affine hyperplane generated by IT,

VHZ{ZtGO‘ZZZ‘(,le,
oell

then ¢(A(tzg)) = |g|. Consequently, if pg € Hitchin(X, d) is Fuchsian then
0D ,, = Vn. Since dy is normalized such that the totally geodesic embedding

of H? in X to have curvature —1, the Fuchsian representation pg has critical
exponent equal to 1. One concludes, using Proposition 1.2, that

min{[|@|las 1 ¢ € Vi) =1
and this minimum is realized in the dual space of the Cartan algebra
{d—1,d-3,...,3—d,1—d)t:t eR}

of t;(PSL(2, R)).

The proof of Theorem A consists in a deeper understanding of the set D,
for a given p € Hitchin(X, d), and its relative position with respect to V.

3 Proposition 1.2 actually holds on a much more general setting, see Sect. 1.4.
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Eigenvalues and entropy 891

Fig. 1 The set D, when af; is a strict subspace of a*

Denote by G = G, the Zariski closure of p(71X). The group G is neces-
sarily semisimple.* Choose a Cartan subalgebra ag C a and a Weyl chamber
aJGr C a™. Consider the restriction maprt : a* — ag;, definedbyrt(¢) = ¢lag.
Observe that, since the vector space spanned by {A(py) : y € m1X}1is ag,
the entropy of a given linear form ¢, is the entropy of rt(¢).

Remark 4.10 and Proposition 4.11 below imply that rt(D,) is strictly con-
vex. Since || |lq is Euclidean one can (and will) identify the space ag; with a
subspace of a*. Namely, denote by pg : a — ag the orthogonal projection,
then

ag={pe€a’:p=9pops}

The set D, is hence a convex set, whose intersection with ag; is strictly
convex (see Fig. 1).

The second important step in the proof of Theorem A is the following
theorem, its statement arose from an insightful discussion between the second
author with Bertrand Deroin and Nicolas Tholozan.

Theorem B For every p € Hitchin(X, d) and o € Il one has hg = 1.

Theorem B states that the simple roots o always belong to 9D, regardless
of p € Hitchin(X, d). Let us explain how this implies Theorem A.

4 Ttis reductive, since it acts irreducibly on R4 (Labourie [27, Lemma 10.1]) and has no center,
since moreover Vy € w1 X, p(y) is proximal (see Benoist [6]).

@ Springer



892 R. Potrie, A. Sambarino

Proof of Theorem A Let Aq be the convex hull of I1, denote by int Ayy its
relative interior and consider p € Hitchin(X, d). Since D, is convex and
IT C 9D, one has Af; C D,. Hence, Proposition 1.2 and the computations
in Example 1.3 give

hx(p) = min{llgllex : ¢ € Dy} < min{ll@llex : ¢ € An} = 1.

If hx(p) = 1, then the intersection 3D, N int Ap is non-empty, thus
int Af; C 3D ,. Moreover, since D, is closed one has App C 3D,

Since D, N ag; is strictly convex, the only possibility is for af; to be
1-dimensional, i.e. the Zariski closure of p has rank 1.°> Moreover, ag =
{d—1,d—-3,...,1—d)t:t € R}. Since a purely loxodromic matrix does
not commute with a one-parameter compact group, G, is simple and actually
its Lie algebra is isomorphic to s[(2, R) (recall the classification of rank 1
real-algebraic simple Lie groups). Hence, the group G, is a finite covering of
PSL(2, R). Since G, is linear the connected component of the identity (G ),
is isomorphic to PSL(2, R). Since p can be connected to a Fuchsian repre-
sentation, for every y € w1 X there exists a path, through purely loxodromic
matrices, from p(y) to a diagonalizable matrix with eigenvalues of the same
sign. This implies that p(y) has all its eigenvalues of the same sign and hence
belongs to (G )o. This completes the proof. |

In fact, Theorem B and the last proof provide a rigid upper bound for the
entropy of each linear form in the interior of the dual cone (a™)*. Indeed, if
@ € int(a™)* then it is a linear combination of elements in IT with (strictly)
positive coefficients, i.e. the half line R - ¢ intersects int Ayy. Notice that hﬁ
is the only number such that

h%¢ € 9D,.

The upper bound of p — hfﬁ is hence the number c(¢) such that c(¢)p € Ap
(see Fig. 2).

Corollary 1.4 Consider ¢ € int(at)*, then for all p € Hitchin(Z, d) one
has hﬁ < ¢(¢), and equality only holds if p is Fuchsian.

In particular, considering the linear form ¢4 (a) = (a1—aq)/2 = (O_ 0i)/2,
one has h%“’ < 2/(d —1). Also, notice that | (a) = a; = %Z?;ll(d —Jj)oj
therefore one also has c(p;) = 2/(d — 1).

5 A recent classification of possible Zariski closures of a Hitchin representation, obtained by
Guichard [19], implies directly that G is isomorphic to PSL(2, R). In our present situation a
direct proof of this fact is possible and easy, so we include it for completeness.
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Eigenvalues and entropy 893

Fig. 2 The simple roots
force the linear form in D,
closest to the origin, to be
below a certain affine
subspace

In [38, Corollary 3.4] a similar inequality is proved, namely ozh‘,ﬁ‘ <2/(d-
1), where « is the Holder exponent of Labourie’s equivariant flag curve (see
below) for a visual metric on dr1 £ (induced by a choice of a hyperbolic metric
on X). These two rigid inequalities are different in nature: while equality in
Corollary 1.4 implies that a totally geodesic copy of H? is preserved, [38,
Corollary 3.4] states that equality in ah‘z' < 2/(d — 1) recognizes a specific
representation in t;(PSL(2, R)).

It is interesting to remark that the same argument shows the existence of lin-
ear forms whose entropy is bounded from below (when defined). For example:
(1+¢&1)o] — Zg g;o; for small enough ¢; > 0 works.

Furthermore, the special shape of 9D, actually provides a ‘simple’ criterion
to determine the rank of the Zariski closure of a Hitchin representation. Observe
that A is a (d — 1)-dimensional simplex. Let F;y C Ap be a k-dimensional
face and denote by int Fy its relative interior.

Corollary 1.5 Consider p € Hitchin(X, d) and assume that (int Fi)NaD,, #
@, then rank(G,) < dima — k.

Proof As in the proof of Theorem A, the fact that (int Fx) N 9D, # @ implies
that i, C 9D,. Since 9D, is a closed analytic submanifold of a (Proposition
4.11), one concludes that the affine space Vg, spanned by Fy is contained in
0D,.

Recall that D, N a’ép is strictly convex, thus a’&p is transverse to a k-
dimensional affine space. Hence dim a¢, +k < dim a. This finishes the proof.
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894 R. Potrie, A. Sambarino

1.2 Theorem B: Finding a suitable Anosov flow

The proof of Theorem B is based on the following (SRB)-principle (Corollary
2.13): If ¢ is a C!** Anosov flow on a closed manifold X, and A : X — R
denotes the infinitesimal expansion rate in the unstable direction, then the
reparametrization of ¢ by A” has topological entropy equal to 1.

The proof of Theorem B goes by finding, foreachi € {2,...,d — 1}, an
Anosov flow whose periodic orbits are indexed in [ X], such that the total
expansion rate along the periodic orbit [y] € [ X] is given by

f M= oi_1(A(py)).
[v]

In Hitchin(X, d) our construction only works locally, i.e. on a neighborhood
of the Fuchsian locus, nevertheless the construction is global in the Hitchin
components of the groups Gz, PSp(2k, R) and PSO(k, k + 1). Analyticity
of the entropy function will allow us to conclude Theorem B in the whole
component Hitchin(X, d).

A basic tool for understanding Hitchin representations is Labourie’s [27]
equivariant flag curve. Let .Z be the space of complete flags of R?, then
given p € Hitchin(X, d) there exists an equivariant Holder-continuous map
. =¢(p):dm X — Z.One denotes by ¢; (x) the i-dimensional subspace of
R4 associated to Z(x).

This equivariant map is a Frenet curve, i.e. for every decomposition n =
di+---+dr <d(d € N),and x1, ..., xx € dm X pairwise distinct, the
subspaces ¢4, (x;) are in direct sum, and moreover

k
Jim GP £y () = G ().
This condition implies that one can recover ¢ from ¢ and we shall sometimes
call ¢ the Frenet equivariant curve of p too.

The existence of this curve guarantees that each py is diagonalizable,
indeed, if Y4 and y_ are the attracting and repelling points of y on dm X,
then fori € {1, ..., d} one has that

Li(ys, v=) = Gi(yy) N &a—i+1(y-)

is a py-invariant line, and its associated eigenvalue has modulus * ¥, The
Frenet condition implies that the projective trace of ¢, i.e. {1(dmX), is a
C'-submanifold of P(R?).

Denote by ?m T = {(x, y) € Bmi )2 x = y}. We prove in Proposition
5.4 that the function ¢; : %7 % — P(R?) defined by
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Eigenvalues and entropy 895

Ci(x, y) = Gi(x) N La—it1(y),
provides a C!** submanifold of P(R?), namely
LD = {6i(x,y) : (x,y) € 3*m Z).
Moreover wheni =2, ...,d — 1, the tangent space Ty, (x,y) Li) splits as
hom(¢; (x, y), €i—1(x, y)) & hom(¢; (x, y), £i+1(x, ).

Consider now the bundle IEfO over L; whose fiber Mf;) (x,y)at{;(x,y) con-
sists on the elements of ¢; (x, y), i.e.

ML (x, y) = {v € £i(x, y) — {0} /v ~ —v.

The fiber bundle IN:lp is equipped with the action of p(;r1X) and with a com-
muting R-action, defined on each fiber by

5,’ (v) = e .

Theorem C There exists a neighborhood U of the Fuchsian locus on
Hitchin(X, d), such thatif p € U thgn,for everyi € {2,...,d — 1} withi #
(d+1)/2, the action of p(m1X) on F’p is properly discontinuous and cocom-
pact. The flow ¢ induced on the quotient F; = p(m E)\Ffo is a C'*® Anosov
flow, whose unstable distribution is given by E;' = hom(¢;(x, y), £;—1(x, y)).

Theorem C is the statement of Corollary 6.3. Sections 5 and 6 are devoted
to its proof.

Example 1.6 Whend = 3 the representation p preserves a proper open convex
set @ C P(R?) and the map ¢5 is a 2-fold covering from the annulus 3 to
the Mobis strip P(R?) — Q (see Barbot [1]). If moreover p € Hitchin(Z, 3)
is Fuchsian, then 1> (py) = O for all y € 7 X, hence each v € M% V4, v=)
is fixed by py. Thus, the action of p(71X) on ?; is not proper. A similar
situation occurs ford = 2k — 1 and i = k.

Remark 1.7 The neighborhood U of Theorem Cis explicit. Fori € {2, ...,d—
1} denote by
U; = {p € Hitchin(XZ, d) : £, Nkereg; = {0}}

(Uy and U, are uninteresting since a®™ Nkerg; = a™ Nkerey = {0}). This
is an open set (Corollary 4.9) that contains the Fuchsian locus except when
d =2k —1and i = k. Theorem C is proved for U = ﬂi#(dﬂ)/z U;. Notice
that the case Hitchin(X, 3) needs to be treated separately, we do so in Sect. 7.
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896 R. Potrie, A. Sambarino

Assume from now on that d # 3 and thati # (d + 1)/2. Let U be the
neighborhood provided by Theorem C and consider p € U. Since ¢' is a
C!'** Anosov flow, one can consider the expansion rate A" : F; — R, along
the unstable distribution E;* defined by

9
AW(x) = —
(x) o7

1 K .
. ; /(; log det(dxd);—l-lez{l)ds
=

(for any k > 0, see Sect. 2.2). Corollary 6.3 states that if y € 7 X then
/ A =oi_1(A(py)),
Y

i.e. if one reparametrizes ¢’ with A“, then the period of the periodic orbit []
is oj—1 (A (pY))- ,

Corollary 2.13 states that the reparametrization of ¢’ by A" has topological
entropy 1. Since the topological entropy of an Anosov flow is the exponential
growth rate of its periodic orbits, one concludes

| = iy e8] € [mX]: 0im1(A(py)) < 5}
= l1mm

§— 00 Ky

_ 1,0i—-1
= ho ",

The unstable distribution of the inverse flow v +— ¢itv, is hom(¢; (x, y),
li+1(x,y)), so the same argument proves that hgi = 1. Finally, observe that
even though i # (d 4+ 1)/2, we have achieved all possible simple roots.

One concludes that for all o € I1, the function p — h{ is constant equal 1
on the open set U. Since Hitchin(X, d) is an analytic manifold (Hitchin [23]),
Corollary 4.9 implies that this map is analytic on Hitchin(X, d), hence, it is
globally constant. This finishes the proof of Theorem B.

1.3 Further consequences

Labourie [27] observes that if p € Hitchin(X, d) and its equivariant Frenet
curve {1 : dm X — P(R?) is of class C™ then one can recover the flag curve
by means of its derivatives, namely

=00t et

where g“l(i) is the i-th derivative of ¢| in an affine chart. He also remarks that
there is no reason for ¢; to be of class C°°, we prove in Sect. 8 the following
theorem.
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Eigenvalues and entropy 897

Theorem D Let p be a Hitchin representation such that {1 is of class C*,
then p is Fuchsian.

1.4 Historical comments

A slightly different version of the set D, was introduced by Burger [13] for
product representations p = p; X p2 : ' = G| x G2, where G; is a sim-
ple rank 1 group, and p; : ' — G; is convex cocompact. It is also dual
to Quint’s [34] growth indicator function, defined for a Zariski-dense sub-
group of a real-algebraic semisimple Lie group. Quint’s definition involves
the Cartan projection (instead of the Jordan projection) and with his defini-
tion Proposition 1.2 holds for any such subgroup (Quint [34]). The relation
between our definition and his, established in [35], (is only known to) holds
for a Anosov representation of a hyperbolic group with respect to a minimal
parabolic subgroup.

The statement of Theorem B arose from a discussion between the second
author with Bertrand Deroin and Nicolas Tholozan. Using random walk tech-
niques, they prove [16] that if p, n € Hitchin(X, d) and o € I1 then

o (py) -

su > 1.
yeriz 0(MY)

Their theorem suggested that Theorem B should be true and it is quite possible
that their method also provides a proof.

The construction of the flow ¢/ = (¢! : Fi) — Ffo),eR is analogous to
the construction of the geodesic flow of a projective Anosov representation
in [12], this construction is explained in Sect. 3. The advantage of consider-
ing this variation is that one can guarantee further regularity of the objects
on consideration, which is needed to apply the Sinai—Ruelle-Bowen Theo-
rem. The geodesic flow of a projective Anosov irreducible representation was
introduced in [36] under the terminology of convex representations.

2 Reparametrizations and thermodynamic formalism

Let X be a compact metric space, ¢ = (¢;);<r a continuous flow on X without
fixed points and V a finite dimensional real vector space. Consider a continuous
map f : X — V, and denote by p(7) the period of a ¢-periodic orbit t. The
period of t for f is defined by

p(@)
/ f= /0 F(sx)ds,

forany x € 7.
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We say that amap U : X — V is C! in the direction of the flow ¢, if for
every x € X, the map ¢t — U (¢;x) is of class C!, and the map

X —

ot

U(¢rx)
0

=

is continuous. Two continuous maps, f, g : X — V are Liv§ic-cohomologous
if there exists a map U, which is C! in the direction of the flow, such that for
all x € X one has

0
Fx) —glx) = —

97 U(¢ix).

=0

Notice thatif this is the case then [ fdm = [ gdm for any ¢-invariant measure
m. In particular, f and g have the same periods.

If f : X — Rispositive, then f has a positive minimum and hence for every
x € X the function k7 : X x R — V, defined by ks (x,1) = [y f(¢sx)ds,
is an increasing homeomorphism of R. Thus there is a continuous function
ar: X x R — R that verifies

ap(x,kr(x, 1) =krx,ar(x, 1)) =t, (1)

for every (x,1) € X x R.

Definition 2.1 The reparametrization of ¢ by f : X — R.o, is the flow
v o= wf = (Y¢)ser on X defined by i (x) = qﬁo,f(x,,)(x), for all t € R and
x € X.If f is Holder-continuous, we say that v is a Holder reparametrization
of ¢.

By definition, the period of a periodic orbit 7 for ¥/ is the period of t for
f. Denote by M? the space of ¢-invariant probability measures on X. The
pressure of a continuous function f : X — R, is defined by

P(f) = P(§. ) = sup h<¢,m>+/xfdm,

meM?

where h (¢, m) is the metric entropy of m for ¢. A probability measure m, on
which the least upper bound is attained, is called an equilibrium state of f.
An equilibrium state for f = 0 is called a measure of maximal entropy, and
its entropy is called the topological entropy of ¢, denoted by hop(¢h).

Lemma 2.2 ([36, Lemma 2.4]) Let f : X — R.q be a continuous function.
Assume the equation

P, —sf)=0 s eR,
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has a finite positive solution h, then h is the topological entropy of /. In
particular the solution is unique. Conversely if htop(l//f ) is finite then it is a
solution to the last equation.

2.1 (Metric) Anosov flows and vector valued potentials

We will now define metric Anosov flows. The transfer of classical results from
axiom A flows to this more general setting is provided by Pollicott’s work
[33], and references therein.

As before ¢ denotes a continuous flow on the compact metric space X. For
& > 0 one defines the local stable set of x by

Wo(x)={ye X :d(dx,¢y) <e Vt>0
and d(¢sx, ¢;y) — Oast — oo}

and the local unstable set by

W) =1{yeX:dg_x,¢_y) <e ¥t >0
and d(¢p—;x,¢p_;y) — 0ast — oo}.

Definition 2.3 We will say that ¢ is a metric Anosov flow if the following
holds:

— There exist positive constants C, A and ¢ such that for every x € X, every
y € W] (x) and every ¢t > 0 one has

d (@i (x), ¢ (y)) < Ce™

and such that for every y € W/ (x) one has

d(@—1(x), $—4(y)) < Ce™.

— There exists § > 0 and a continuous map v : {(x,y) € X x X : d(x,y) <
8} — R such that v(x, y) is the unique value such that W2 (¢,x) N W7 (y)
is non empty, and consists of exactly one point.

A flow is said to be rransitive if it has a dense orbit. From now on we will
assume that ¢ is a transitive metric Anosov flow.

Theorem 2.4 (Livsic [30]) Consider a Hilder-continuous map f : X — V,
ifft f = 0 for every periodic orbit T, then f is LivSic-cohomologous to 0.
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Consider a Holder-continuous function f : X — R with non-negative
periods and define its entropy by

1
hy =limsup—log#{r periodic :/f fs} € [0, oo].
S T

§—>00

Clearly, the entropy of a function only depends on the periods of the function,
therefore two LivSic cohomologous functions have the same entropy. One has
the following lemma.

Lemma 2.5 (Ledrappier [29, Lemma 1]+ [36, Lemma 3.8]) Consider a
Holder-continuous function f : X — R with non-negative periods. Then
the following statements are equivalent:

— the function f is LivSic-cohomologous to a positive Holder-continuous
function,

— there exists k > 0 such that fr f > kp(z) for every periodic orbit T,

— the entropy hy € (0, 00).

Denote by Holder® (X, V') the space of Holder-continuous V —valued maps
with exponent . For f € Holder® (X, V) denote by || f|lco := max | f| and

up If(p)— f(@l
d(p,q)*

one then defines the norm of f by || flla = [ flloo + K.

The vector space (Holder* (X, V), | |lo) is a Banach space and LivSic’s
theorem implies that the vector space of functions Liv§ic-cohomologous to 0
is a closed subspace. Denote by Livsic® (X, V) the quotient Banach space, and
by [ ]z the projection.

Denote by Livsicy (X, R) the subset of Livsic* (X, IR) consisting of func-
tions LivSic-cohomologous to a positive function.

Kf=

Lemma 2.6 ([35, Lemma 2.13]) The entropy function h : Livsic{ (X) —
R.o, defined by f +— hy, is analytic.

Consider now a Holder-continuous map f : X — V, and denote by .Z
the closed cone of V generated by the periods of f

{/ f:t periodic} .

Assume its dual cone, defined by £ = {9 € V* : ¢|.Z; > 0}, is different

from {0}. The entropy of ¢ € Zj’f is defined by h‘;ﬁ = hyo . The following
lemma is now direct using Lemma 2.5 (see also Sambarino [37, Lemma 3.2]).

@ Springer



Eigenvalues and entropy 901

Lemma 2.7 If there exists ¢ € .Z * with finite entropy then it belongs to the
interior of .Z* If this is the case, any linear form ¢ € .;Sf* has finite and
positive entropy if and only if it belongs to the interior of 3 /

We will assume from now on that there exists a linear form in .i”}k with
finite entropy.

In view of the last lemma, one considers the open subset of Livsic® (X, V)
defined by

Livsict (X, V) = {[f1 : 3¢ € ZF with h‘;i € (0, 00)}.

Lemma 2.8 The map Livsic§ (X, V) — {compact subsets of P(V)} defined
by

f = P(Zy),

Is continuous.

Proof Recall that the space M? of ¢-invariant probability measures is compact.
Moreover, since ¢ is Anosov, periodic orbits viewed as invariant probability
measures® are dense in M? (c.f. Anosov’s closing lemma, see Sigmund [40]).
Consequently, the set

ﬂ@:{/fdm:meJVW’}

is compact and generates the cone .£r. Moreover, f +— X is continuous.
In order to show that its projectivisation is also continuous, we need to show
that 0 ¢ X, but since ¢(f) is LivSic-cohomologous to a positive function,
there exists k£ > 0 such that ¢( f fdm) > k for all m € M?. This finishes the
proof. O

Summarizing one obtains the following:

Corollary 2.9 Consider fy € Livsic% (X, V) and ¢ € int .,Z’;, then the

entropy function defined by f +> h(fc is analytic on a neighborhood U of
fo such that ¢ € int f}“for all f € U.

We say that f € Livsic% (X, V) is non-arithmetic on V if the additive group
generated by its periods is dense in V. Consider the set

Dy={peV*:P(—po f) <0}

1
% Toa periodic orbit T one associates the invariant probability measure 7 > ﬁ
p(t
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It follows from the definition of pressure that Dy is convex, and thatif ¢ € D ¢
thentg € Dy forallr > 1.

Proposition 2.10 ([35, Propositions 4.5 and 4.7]) The set Dy coincides with
the set {¢ € XJT : h‘; € (0, 11}, its boundary 3Dy coincides with the set

{¢e$;:hji=1},

and is a codimension 1 closed analytic submanifold of V. If moreover f is
non-arithmetic on 'V, then Dy is strictly convex.

2.2 SRB measures and reparametrizations

In this subsection we recall some classical results in the Sinai-Ruelle-Bowen
theory and reinterpret them in the context of reparametrizations. It is common
in the literature to state this type of results under a C2-hypothesis. We shall
explain how those results work in the C!T®-context.

Assume from now on that X is a compact manifold and that the flow ¢ is
C!. We say that ¢ is Anosov if the tangent bundle of X splits as a sum of three
d¢,-invariant bundles

TX =E'® E'® EY,

and there exist positive constants C and ¢ such that: E is the direction of the
flow and for every ¢ > 0 one has: for every v € E*

ldgsv]l < Ce™"vll,
and for every v € E
ldp—vl < Ce™v].

If ¢ is an Anosov flow let A¥ : X — R be the infinitesimal expansion rate
on the unstable direction, defined by

A = i l Kl det(d E"d
(x) = 97 < Jo ogdet(dy ;15| E")ds
=0

for some « > 0.

Remark 2.11 Notice that by definition, if t is a periodic orbit then
/ A" =logdetd, ¢, E”,
T
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for any x € t. Moreover, it is a direct consequence of LivSic’s Theorem 2.4
that the LivSic-cohomology class of A does not depend on «, hence it will not
appear in the notation.

Theorem 2.12 (Sinai—Ruelle-Bowen [11]) Let ¢ be a C'T* Anosov flow on
a compact manifold X, then P(—\") = 0.

This is statement is proved in Bowen—Ruelle [11, Proposition 4.4] assuming
¢ is C2. Let us now give some hints on why the proof carries on in the C!T-
setting. The C2-hypothesis in [11] appears for three reasons:

— In order to guarantee that the function x +— E"(x) is Holder-continuous.
This holds for C!T® Anosov flows too (see for example Katok—Hasselblatt
[25, Proposition 19.1.6]).

— In order to show that # — logdet(d,¢;|E*) is C'. By using our function
AY this is no longer necessary as long as we show that the volume lemma
holds for A“.

— To prove the volume lemma ([11, Lemma 4.2]) relating the function they
define with the rate of decrease of the volume of Bowen balls. This can be
proved in our context, for the function A”, by following the same scheme
as [25, Proposition 20.4.2].

Theorem 2.12 together with Lemma 2.2 give immediately the following
corollary.

Corollary 2.13 Let ¢ be a C'** Anosov flow, then the topological entropy of
the reparametrization of ¢ by A" is 1.

In Sect. 8 we make use of the following well known result. Denote by
A% : X — R the infinitesimal expansion rate of the inverse flow (¢—;);cRr.

Theorem 2.14 (Sinai—Ruelle-Bowen [11]) Let ¢ be a C'T* Anosov flow on
a compact manifold X, then ¢ preserves a measure in the class of Lebesgue if
and only if \* and A° are Livsic-cohomologous.

3 Projective Anosov representations

The main purpose of this section and Sect. 4 is to extend several results from
[36] and [35] to the Anosov representations setting. We present here some
general results from [12] on projective Anosov representations. These repre-
sentations are a basic tool to study general Anosov representations (introduced
by Labourie [27]), as we shall see in the next section. A more explanatory and
detailed exposition on this class of representations is Labourie [27], Guichard—
Wienhard [21], [36] and [12].
Let I" be a word hyperbolic group.
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904 R. Potrie, A. Sambarino

Definition 3.1 A representation p : I' — PGL(d, R) has transverse maps
if there exist two continuous p-equivariant maps (§,&*) : o' — P(RY) x
P((R%)*) such that if x # y then £(y) @ ker £*(x) = R¢

In order to define the Anosov property for a representation with transverse
maps, we need to recall the Gromov geodesic flow of I'. Gromov [18] (see also
Mineyev [32]) defines a proper cocompact action of ' on 3°T" x R, which
commutes with the action of R by translation on the final factor. The action of
I' restricted to 32T is the diagonal action.

There is a metric on 92" x R, well-defined up to Hélder equivalence, so
that I' acts by isometries, every orbit of the R action gives a quasi-isometric
embedding and the traslation flow on the R-coordinate acts by bi-Lipschitz
homeomorphisms. This flow on UT = 82T x R descends to a flow ¢ on the
quotient UT" = 3°T" x R/ T'. This flow is called the geodesic flow of T

If p has transverse maps, the equivariant maps (¢, §*) provide two fiber bun-
dles over UT", denoted by E and © respectively, whose fibers at (x, y, 7) € UT
are respectively u(x Y, t) = &(x) and (E)(x y,t) = ker&*(y). The diagonal
action of I" on E and © is properly discontinuous (because it is on UI") and
one obtains two vector bundles E and © over UI'.

The geodesic flow of I on UT extends to & and © by acting trivially on
the fibers. This flow induces a flow on the respective quotients. Denote by
Y = (Y)ser the induced flow on the bundle E* ® ©.

The representation p is projective Anosov if it has transverse maps and the
flow ¢ is contracting to the past, i.e. there exist C, ¢ > 0 such that for all

€ E* ® ® and ¢ > 0 one has

IY—rw| < Ce™wl,

where | || is a Euclidean metric on the bundle E* ® ©.

For g € PGL(d, R), denote by A;(g) the logarithm of the spectral radius
of some lift g € GL(d,R) of g, with detg € {—1, 1}. We say that g is
proximal if the generalized eigenspace of g of eigenvalue with modulus e1 ()
has dimension 1. Such eigenline, denoted by g, is an attractor for g on
P(R?), and its g-invariant complement g_ (i.e. R? = g, @ g_) is its repelling
hyperplane. The following lemma is standard (see Guichard—Wienhard [21,
Lemma 3.1]).

Lemma 3.2 Let p be a projective Anosov representation, then for every non-
torsion y € I', the element p(y) is proximal on P(RY), its attractive line is
&(y4+) and its repelling hyperplane is ker £*(y_).

The equivariant maps are unique, since they are continuous (in fact Hélder-
continuous [12, Lemma 2.5]) and uniquely defined on a dense set of 9I".
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Denote by L, = §(3I") and by L’; = £*(9I"). If p is irreducible, these are
the limit sets (on P(R?) and P((R%)*) respectively) of p(I"), introduced by
Guivarc’h [22] and Benoist [2]. Denote by

L = (£, £%)(°T) = {(x,y) € L, x L} : RY =kery @ x}.

Consider the tautological bundle ur p over L(z), whose fiber at (x, y) is
defined by

Mp(x,y) ={(v.¢):vex,pey and ¢()=1}/(v,9) ~ —(v,¢).
The bundle UT o 1s equipped with a flow 5'0 = ((75,” ) defined by

oL (x,y, (0, 9) = (x,y, (v, e ")),

that commutes with the natural action of p(I'). It is a consequence of the
following theorem that the action of p(I") on UI",, is properly discontinuous
and cocompact. The induced flow ¢” on the quotient UI', = p(F)\Uf‘ p 18
called the geodesic flow of p.

Theorem 3.3 (Bridgeman—Canary—Labourie—Sambarino [12, Section 4]) Let
p be a projective Anosov representation,_then there exists a p-equivariant
Holder-continuous homeomorphism E : UT" , — UT, which is an orbit equiv-
alence for the respective geodesic flows. The geodesic flow of p is a transitive
metric Anosov flow and its stable and unstable laminations are given by (the
induced on the quotient of)

W* (x0. 0. (v0, 90)) = {(x0. y. (v0, 9)) : y € L —{x0}, ¢ € y. p(vo) = 1)

and

W"(x0, yo, (v0, 90)) = {(x, Yo, (v, 90)) : X € L, —{yo}, v € x, po(v) = 1}.
Periodic orbits of ¢* are in bijective correspondence with conjugacy classes

of primitive elements of I (i.e. not a positive power of some other element
in I"), namely, if y is such an element then its associated periodic orbit is the

projection of (y4, y—, (v, ¢)), for (any) ¢ € £*(y-) and v € &(y4).
Since & () is the attracting line of p(y) (Lemma 3.2), one obtains
Y (Vi v— (. 9) = (v, v, (1P v, 711V,

Consequently, the period of such periodic orbitis A1(py).
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Hence, since the flows ¢ and ¢ are Holder orbit equivalent, there exists
a Holder-continuous positive function f, : UI' — R such that for every
non-torsion y € I', one has fy fo = A1(py). Such f, is unique up to LivSic-
cohomology.

Theorem 3.4 (Bridgeman—Canary—Labourie—Sambarino [12, Proposition
6.2]) Let {p, : ' — PGL(d,R)},ep be an analytic family7 of projective
Anosov representations. Then u +— [ f,, 11 is analytic.

The entropy of p is the topological entropy of the geodesic flow ¢*, and
can be computed by

ho— i 08HIYI € [T A (py) < 5} € (0, 00)
p — hm .

§—>00 Ky

4 General Anosov representations

The concept of Anosov representation originated in Labourie [27] and is further
developed in Guichard—Wienhard [21].

Let G be a real-algebraic semisimple Lie group. Let K be a maximal com-
pact subgroup of G and t the Cartan involution on g whose fixed point set
is the Lie algebra of K. Consider p = {v € g : tv = —v} and a a maximal
abelian subspace contained in p.

Let X be the set of roots of a on g, consider a™ a closed Weyl chamber,
T the set of positive roots associated to a™ and IT the set of simple roots
determined by X . To each subset 6 of I one associates a pair of opposite
parabolic subgroups Py and Py of G, whose Lie algebras are, by definition,®

=000 Pad P o

acxt ae(ll-0)

and

=00 Pos.® P o

aext ae(ll-0)

where (0) is the set of positive roots generated by 6 and

ge ={weg:[v,w] =a@wVYv € al.

7 We are assuming this family is far from the singular set of projective Anosov representations.
8 Note that we use the opposite convention than Guichard—Wienhard [21], our Py is their Pyc.
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Let W be the Weyl group of ¥ and denote by ug : a — a the longest
element in W : i.e. uq is the unique element in W that sends a™ to —a™. The
opposition involution i : @ — a is the defined by i = —ug. Every parabolic
subgroup is conjugated to a unique Pg, in particular Py is conjugated to Pio)
where

i(0) ={xoi:a €6}

Denote by %y = G/Py. The set Fjp) x Fp possesses a unique open
G-orbit, which we will denote by 529(2) .

Example 4.1 If G = PGL(d, R) then a = {(ay,...,aq) € R :ap 4+ -+
aq = 0}, a Weyl chamber is

t={a,....,ag) €aar > > ayl,

the set of positive roots associated to a* is ¥* = {a > a; —a; : 1 <
i < j < d} and the simple roots are [1 = {0; : i € {1,...,d — 1}} where
oj(a) = a; — a;+1. The opposition involution is i(a) = (—ay, ..., —ay). The
parabolic group P is the stabilizer of a complete flag, and 9’&2) is the space of
pairs of flags in general position, i.e. ({V;}, {W;}) € ,/(2) ifV;®Wy_i =R
for every i.

LetI" be a word hyperbohc group and consider arepresentation p : ' — G.
Consider the trivial bundle UT" x 99( ). and extend the geodesic flow of I to
this bundle by acting trivially on the second coordinate. Passing to the quotient
one obtains a flow ¢ on the bundle F\(ljf‘ X Z, (2)) — UT.

The representatlon p is (Pg, G)-Anosov if there exists a p-equivariant sec-
tion (&g, &i(0)) : ur — ﬁ ) , invariant under the geodesic flow of I" and such
that its image is a hyperbohc set for ¢ whose stable distribution is the tangent
space to {-} x ().

Denote by HAy (I', G) the space of (Py, G)-Anosov representations of I".
Labourie [27] and Guichard—Wienhard [21] proved that this is an open subset
of the space hom(I", G).

From the definitions one obtains that a representation is projective Anosov
if and only if itis (P, PGL(d, R))-Anosov, where P is the stabilizer of a line
in R?. This follows from the following remark (see [12, Proposition 2.11] for
a proof).

Remark 4.2 Consider a decomposition RY = ¢ @ V, where £ is a line and V
a hyperplane, then the tangent space T;P(R?) is canonically identified with
hom(¢, V).
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Projective Anosov representations are useful to study general Anosov repre-
sentations, as Theorem 4.4 below shows. Let {wy } <1 be the set of fundamental
weights of IT.

Proposition 4.3 (Tits [41]) For each a € 11 there exists a finite dimensional
proximal® irreducible representation Ay : G — PGL(V,), such that the
highest weight x of Ay is an integer multiple of the fundamental weight w,.
All other weights of Ay are of the form

Xa_a_znﬁﬁ

Bell

where ng € N.

Inother words, if g € G thenA1(Ay(g)) = kqwy(A(g)), Wwhere A : G — a™
is the Jordan projection of G.

Theorem 4.4 (Guichard—Wienhard [21, Lemma 3.18 4+ Theorem 4.10]) Con-
sider p € HAy (I, G), then for every a € 6 the composition Aqy o p : I’ —
PGL(V,) is projective Anosov.

Let

ag = ﬂ ker o

aell-0

be the Lie algebra of the center of the reductive group Py N Py, where Py is the
opposite parabolic group of Py. Consider also py : a — ag the only projection
invariant under the group Wy = {w € W : w fixes pointwise ag}. Note that, if
a € 0 then wy, = wy o py, (see for example Quint [34, Lemme 2.2.3]). Define
A G — agby kg = pgoA.

Corollary 4.5 Consider p € HAe(', G), then there exists a Holder-
continuous map fg : Ul — ay, such that for every non-torsion conjugacy
class [y] € [I'] one has

f £8 =2 (py).
[¥]

Moreover, if {py}uep is an analyticfamilylo on HAy (T, G), then u — [fg“]L
is analytic.

9 Le. Ay (G) contains a proximal matrix.
10 We are assuming this family is far from the singular set of HAg (T, G).
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Proof For'! each o € 6 the representation A o p is projective Anosov (Theo-
rem 4.4), hence Theorem 3.3 guarantees the existence of a Holder-continuous
function f7' : UI' — R such that for all non-torsion y € I" one has:

» f;;x =M (Agp () = kgwa (L(pY)).
Y

Note that, since @ € 6 one has wy (A(py)) = wu(Xg(py)) (recall w, =
wg © pe), and observe that the set of fundamental weights {wy }qcp 1S a basis
of aj. Hence, there exists fg : UT" — ay such that, for all @ € 0 one has

kawa (f) = f3.

Theorem 3.4 finishes the proof. O

4.1 Limit cones

Let A a discrete subgroup of G. The limit cone of A (introduced by Benoist
[2]) is the closed cone generated by {A(g) : g € A} and is denoted by ZA.

Proposition 4.6 Consider p € HA¢(I", G). Then £}, does not intersect the
walls ker « for every o € 0 Ui(0).

Example 4.7 The proposition is optimal in the following sense: If p : m1 X —
PSO(3, 1) C PSL(4, R) is a quasi-Fuchsian representation then it is projective
Anosov. Its limit cone is the Weil chamber of the Cartan algebra of PSO(3, 1),
which does not intersect the walls ker o and ker o3 but is contained in the wall
ker os.

Proof Assume first that p : I' — PGL(d, R) is projective Anosov. We have
to show that its limit cone does not intersect the walls ker oy and ker oy_1.

Consider a non-torsion element y € [I'. Recall that if v € &(y) then
p(y)v = £ PY)y_ and that *2(PY) is the spectral radius of p (y)| ker £*(y_).
Consider a Euclidean metric {|| || ,} ,eur on the bundle E*®®. This metric lifts
to a p-equivariant family of norms indexed on UT‘ still denoted by {|| || »} pelr

Consider p = (y—, y4,1) € ljf‘ ¢ E(yy) > Rand w € ker&*(y-),
then

lp @ wlig_,p < Ce ™ llp @ wlp.

1T The first statement is proved in [35], under the stronger hypothesis that p (I") is Zariski-dense.
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Since ¢_,p = y "p and the norms are equivariant, one has [¢ ®
Wllg_,,p = lo(¥y™")e ® wll,, consequently

eﬂ(?nz(p}/)*?xl(py))”(p ® UJ||p < Ce*nIVIC”(p ® w”p

Hence

A(py) — r2(py) -
b4

’

for a ¢ > 0 independent of y. Finally, Theorem 3.3 implies the existence of
M > m > 0 such that for every non-torsion y € I" one has

A(py)
b4

M >

>m

These two equations give £, ) N ker o1 = {0}. Since .Z), is i-invariant and
04—1 = 01 oi, we obtain ., Nkeroy_1 = {0}.

Assume now that p is Py-Anosov. Consider o € 6 and recall that Ay o p
is projective Anosov (Theorem 4.4). The proof finishes by applying the last
paragraph to Ay o p, and by recalling that for all g € G one has

a(A(8) = A1 (Aag) — 12(Agg)-
O

If p € HAg(T', G) more information is given on the closed cone of ay
generated by {Ag(py) : y € I'}. Denote this cone by fg = ,,Sffg (where fg is
given by Corollary 4.5), denote its dual cone by gg f={pe a; : goli”pg * >
0}. For ¢ € fg * define its entropy by

o 1. log#{lyl € [T'] : (Ao (py)) < s}
h? = lim .

p §—>00 Ky

The following remark is direct from Lemma 2.7.
Remark 4.8 A linear form ¢ belongs to int .,%p@* if and only if hﬁ € (0, +00).

Corollary 4.9 The function HAy(I', G) — {compact subsets of P(ag)} given
by p — P(Zg) is continuous. Consider py € HAg(I', G) and ¢ € int Zpeo*.
Then the function

¢
o= h o
is analytic in a neighborhood U of pg such that ¢ € int Zpg ¥ foreveryp € U.
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Proof Follows from Corollary 4.5, Lemma 2.8 and Corollary 2.9. O

We say that p € HAg(I', G) is non-arithmetic on ag if the group generated
by {Ag(py) : y € I'} is dense in ay. In the language of Sect. 2, this is to say
that the function f g is non-arithmetic on ay.

Remark 4.10 Benoist’s theorem [4, Main theorem] asserts that if A is aZariski-
dense subgroup of G, then the group generated by {A(g) : g € A} is dense in
a. Hence, if p € HAp(I', G) is Zariski-dense, then it is non-arithmetic on ag.

If p € HAy (T, G) denote by Dg =D 1o The following is a direct conse-
quence of Proposition 2.10.

Proposition 4.11 Consider p € HAg(I", G), then the set

0 __ o0* . _
0D% = {9 e 20" hY = 1),

is a codimension 1 closed analytic submanifold of aj. If moreover p is non-
arithmetic on ag, then the set @% ={pe .,iﬂpa ¥ hY% < 1} is strictly convex.

5 The i-th eigenvalue

Let X be a closed orientable surface of genus > 2 and denote by I' = m X.
Consider a Prj-Anosov representation p : I' — PSL(d, R) and denote by ¢ :
ol — .Z its equivariant map. We will say that ¢ is a Frenet curve if for every
decompositionn = d;+---+dy <d(d; € N),and xy1, ..., x; € oI pairwise
distinct, one has that the spaces ¢y, (x;) are in direct sum, and moreover

k
lim @D ¢a, (xi) = (),
1

(xi)—>x

where ¢; (x) is the i-dimensional space of the flag ¢(x).

Theorem 5.1 (Labourie [27, Theorems 4.1 and 4.2]) Consider p €
Hitchin(X, d), then p is Pr-Anosov and ¢ is a Frenet curve.

There is a nice converse to this statement due to Guichard [20].

Denote by Gry(R?) the Grassmanian of k-dimensional subspaces of RY.
The Frenet condition implies that if d; + d» < d where dy, d» € N, then the
function ¢ = ¢y, 4, : (0T)? = Gry, 44, (R?) defined by
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Gi(z)

A

Fig. 3 The i-th eigenvalue

Ca; (x) @ Car(y) ifx #y
§d1+d2(x) ifx = y

L(x,y) = { 2)

is (uniformly) continuous.

Labourie [27] actually provides an even stronger transversality condition
which he calls Property (H): given x, y, z € dm; X pairwise distinct then for
everyi € {1,...,d} one has

Sa-i+1(9) @ (Ca-i+1(2) N &) B G2 (x) = RY.
By combining [27, Proposition 8.2, Lemma 8.4, Lemma 9.1] one obtains:

Theorem 5.2 (Labourie [27]) The Frenet curve of a Hitchin representation
verifies Property (H).

For eachi € {1, ..., d} consider the map ¢; : I — P(RY) defined by
(Fig. 3)

Li(x,y) =&i(x) N Ea—it1(y).

With this definition, Property (H) can be expressed as follows: For x, z, ¢ €
a1 X pairwise distinct one has:

Camiv1 (D) ® Li(x,2) @ ¢i_a(x) =R?
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Remark 5.3 Note that each ¢; is Holder-continuous and that for all non-torsion
y € I', theline ¢; (y4, y—) istheeigenline of p(y) whose associated eigenvalue
has modulus ¢ (??) Observe also that £ (x, y) = ¢ (x) only depends on x.

Fori e {2,...,d — 1} let

Ej(x,y) =hom({;(x, y), £i—1(x, y))

and

Ej(x,y) =hom(¢;(x, y), Liy1(x, y)).

Notice that these bundles are Holder-continuous on both variables. The purpose
of this section is to prove the following proposition.

Proposition 5.4 Consider p € Hitchin(X,d) and 2 < i < d/2, then the
space

LY = {€i(x,y) : (x,y) € T}

is a C'* submanifold of P(R?). The tangent space to Li) atli(x,y) is canon-
ically identified with E} (x, y) @ E} (x, y).

This proposition implies the same statement foralli € {1, ...,d — 1} since
£1(x,y) = ¢1(x) is C! by the Frenet property,'? and for i > d/2 one has
CiCx,y) =La—it1(y, x).

5.1 Proof of Proposition 5.4

Since p is Pri-Anosov, the map ¢; : 92T — P(R?) is Holder-continuous. Let
us prove that, except on special cases, it is injective. Indeed, notice thatif i = 1
(resp. i = d) one has that £1(x,y) = ¢{1(x) (resp. £4(x,y) = ¢1(y)) and if
d = 2k — 1 then £ is not injective neither: £ (x, y) = €x(y, x).

Lemma 5.5 The map £; : 3°T — P(R?) is injective for every i ¢ {1, (d +
1)/2, d}.

Proof Assume firstthat2 <i < (d 4+ 1)/2. Thus,2 < i < d/2. Observe that,
sincei +1 <d, one has ¢;(x) N & (y) = {0} for every (x, y) € 92T. Thus, if
li(x,z) = 4¢i(y, 1) thenx = y.

12' And indeed, the tangent space can be expressed in terms of the function ¢, and therefore it
i Cl+a
is C .
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Hence, we need to show that if
Li(x,z) = Li(x,1)

then z = ¢. Butif x, z, f are pairwise distinct then Property (H) (Theorem 5.2)
implies

Ca—it1(t) ® Li(x,2) ® Ci_a(x) = RY,

this contradicts the fact that ¢;(x, z) = £;(x,t) C &4—i+1(¢). Finally, if i >
(d+1)/2thend —i + 1 < (d 4+ 1)/2. The equality £; (x, y) = £g—i+1(y, X)
together with the last paragraph gives injectivity. This finishes the proof. O

We need the following technical lemma.

Lemma 5.6 Consider a k-dimensional vector subspace W of R%, and con-
sider an incomplete flag {Vg_j+; 1 i € {0, ..., k}}, suchthat W@V _; = R4,
Then dim W N Vy_y4i = 1.

Proof When i = 1 the lemma follows easily. Assume now that the space
V! = W N V4_i4; has dimension i. Applying the base step in the quotient
space R?/ V! finishes the proof. O

We can now compute the ‘partial derivatives’ of ¢;. Define the maps e, e} :
3°T — Gr(RY) by

el (x,y) = ¢i(x) N &i—it2(y)
and
e (x,y) =ey_i (v, x) = Gip1(x) N &a—iv1(y).

Notice that injectivity implies that ¢; (x, y) 4+ €; (x, z) has dimension 2 (i.e. the
sum is direct), we have the following:

Lemma 5.7 Fori ¢ {1,(d + 1)/2,d} and x, y, z pairwise distinct, one has
lim ¢;(x, 2) @ £i(x, y) = e (x, y),
=y

and lim;—, , £;(z,x) ® £;(y, x) = €] (y, x).

Proof The second statement follows from the first and the equalities ¢; (x, y) =
Ca—i+1(y, x) and ¢; (x,y) = ey_; (y, x). We will focus hence on the first
convergence.
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Since ¢;(x) N ¢g—i(y) = {0}, one has ¢y—ir1(y) = Ca—i(y) @ Li(x,y).
Sincei > 2onehas (d —i + 1) + 1 < d, and therefore the Frenet condition
implies

81(2) @ Ca—i+1(y) = £1(2) @ La—i(y) @ Li(x, y).

Intersecting with ¢; (x) one has

(€1(2) ® La—i+1(y) N i (x) = (£1(2) B a—i(y) @ £i(x, y)) N & (x).

Since ¢ is a Frenet curve Lemma 5.6 implies that the left hand side of the
equality has dimension 2 and also implies that dim (&1 (z) & {q—;i (¥)) N&i(x) =
1. Since ¢; (x, y) € & (x) we conclude that

(€1(2) ® Ca—i+1(y) N &i(x) = ([¢1(2) © La—i (W] N & (x)) B Li(x, y). (3)

Given ¢ > 0, consider § > 0 from uniform continuity of I3 (Eq. (2)). If
d(z,y) < 8 then &1(2) ® Cg—i+1(y) is e-close to {y_i12(y), hence the left
hand side of Eq. (3) is e-close to e} (x, y).

Moreover, if d(z, y) < §onehasthat {1 (z)@D¢z—;(y)ise-closeto fg—i+1(2).
Thus (¢1(z) ® La—i(¥)) N &i(x) is e-close to £;(x, z). Furthermore ¢; (x, z) N
£i(x,y) = {0} since z # y, hence the right hand side of Eq. (3) is e-close to
li(x,z) ®Li(x,y). Thus, Eq. (3) implies that

dGrz(Rd)(ey()h y)v zl' (x9 Z) @ Z(x’ }7)) < 28'

O
Using Lemmas 5.5 and 5.7 we can finish the proof of Proposition 5.4
For2 <i <d — 1, denote by £ (x, y) = & —1(x) ® {z—;(y) and note that
Li(x,y) DL (x,y) = R4, Consider now the affine chart of P(RY) defined by
this decomposition, i.e. fix v € £;(x, y) and consider the map ¥ : £ (x, y) —
P(R?) defined by

w— R(w + v).

This map identifies £7 (x, y) with P(RY — P(e: (x, y))).

Denote by w;(a, b) € £} (x, y) the point defined by ¥ (w; (a, b)) = £;(a, b).
This map may only be defined near (x, y), but this is not an issue. Observe that
OV (x, D) BE (x, y)) is the straight line defined by 0 and w; (x, z). The same
holds for 9 ' (¢; (z, y)®{;(x,y)). Lemma 5.7 implies that the set At Lf;) has
partial derivatives. Moreover, these partial derivatives are Holder-continuous
since they can be expressed in terms of the maps .
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This implies that ¢ ~! Lfo is C!* (near 0), and that its tangent space at 0 is

97 e (x, y) @0 (el (x, ) = Lim1(x, ) @ Liv1(x, p).

We conclude that Lfo is C!** and that its tangent space at £;(x, y) is
E!(x,y) ® E*(x, y) (see Remark 4.2). This finishes the proof. O

6 Theorem C: The Anosov flow associated to ¢;

Let p € Hitchin(X, d), denote by I' = w1 X and consider the manifold Li)
provided by Proposition 5.4. Let Fi) be the tautological line bundle over Li)
whose fiber Mi)(x, y) at €; (x, y) consists on the elements of ¢; (x, y), i.e.

M. (x, y) = {v € €i(x, y) — {O}}/v ~ —v.

The fiber bundle ﬁ; is equipped with the action of p(I") and with a commuting
R-action, defined on each fiber by

5,’ (v) =e 0.

Recall that a is the Cartan algebra of sl(d, R) and that &; € a is defined
by €i(ay, ..., aq) = a;. The purpose of this section is to prove the following
theorem.

Theorem 6.1 Assume £, N kere; = {0}, then there exists a p-equivariant

Holder-continuous homeomorphism E Ffo — UT that preserves the orbits
of the respective flows.

Consequently the action of p(I") on E’; is prop’e:\r}y discontinuous and

cocompact and the quotient flow ¢’ on F; = p(l")\Fip is a change of speed
of the geodesic flow of I'. Moreover one has the following proposition.

Proposition 6.2 Assume £, Nkere; = {0}, then @' is a C'T* Anosov flow
whose unstable distribution E}' is given by (the induced on the quotient by)
hom(¥¢; (x, y), £i—1(x, y)). Consequently the expansion rate \* : Ffo — Ry
verifies that for every y € I' one has that:

/ 2 = i1 (Mpy)).
[v]

Lets prove Proposition 6.2 assuming Theorem 6.1.
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Proof Since ?jo is a C!*t® manifold and the action of p(r; ¥) on it is linear,
we obtain that FL = p(m; Z)\E; is C1* and so is ¢'.

Theorem 6.1 implies that ¢’ is Holder conjugate to a reparametrization of an
Anosov flow (i.e. the geodesic flow of I'), hence it is metric Anosov with respect
to the metric induced by the quotient: To prove this last assertion, the only
thing to check is the existence of local (strong) stable and unstable manifolds
since the uniform contraction and expansion follows from the fact that the
reparametrizing function is positive. The existence of local (strong) stable and
unstable manifolds follows from classical graph transform arguments.

The differential d¢! of ¢} preserves the distribution E! induced on the
quotient by hom(¥¢;(x, y), £;+1(x, ¥)). Along the periodic orbits, the local
unstable manifolds are tangent to £7'. Since the expansion of the local unstable
manifolds is uniformly exponential, it follows that there exists T such that for
all p in a periodic orbit one has

Ildo! |E (p)Il = 2.

Since periodic orbits are dense and E}' is continuous one concludes that E7 is
expanded uniformly in time. The symmetric argument gives uniform contrac-
tion of E7.

Finally, if y € I" thenrecall that ¢; (y4, y—) is the eigenline of py associated
to the eigenvalue of modulus exp A; (py). Hence one has

Y- Wilys, y-),v) = Uiy, v-), py (V) = &Ai(py)(ei(y+v Y=), V).

Thus, if one considers a I'-invariant Riemannian metric || || on Eé and
¢ € hom(£; (4, ), €1 (v4, y_)) one has that

||d¢7"x,-(py)(<p)ll =y - ¢l = llexp(ri—1(py) — Ai(py )l
= exp(oi—1(A(py)) el

Hence Remark 2.11 implies that, for x in the periodic orbit corresponding
to y one has

f A =log det(dxqﬁii(py)IEi”) =0;i-1(A(py)).
[v]

This finishes the proof. O

Notice that Corollary 4.9 implies that the map p +— P(.Z)) is continuous
on Hitchin(X, d) and hence

U; = {p € Hitchin(X, d) : £, Nkereg; = {0}}
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is an open set. If pg is Fuchsian, then
Lpy =g om =1d—1,d=3,....3=d, 1 —d)t :1 € Ry}.

Hence,ifi € {2,...,d — 1} withi # (d 4 1)/2 then .Z),, Nker &; = {0}. This
is to say, the Fuchsian locus is contained in the open set U = (), #d+1),2 Ui
One has the following corollary.

Corollary 6.3 (Theorem C) If p belongs to the neighborhood U of the Fuch-
sian locus, then Proposition 6.2 holds for p.

6.1 Holder cocycles

In this subsection we recall a basic tool of [36]. Consider a CAT(—1) space X
and denote by d X its visual boundary. For a discrete subgroup I' of Isom X,
denote by Lr its limit set on dX. Let UI" denote the space of parametrized
complete geodesics,

UT = {6 : (—o0, 00) — X : 0 is a complete geodesic with 6_,, 0o € Lr}.

The group I' naturally acts on LTf‘ and we denote by UI' = F\ljf‘ its
quotient. We will say that I is convex cocompact if the space UT is compact.
If this is the case we will naturally identify L with the Gromov boundary oI"
of I'.

We will now focus on cocycles for the action of I" on 92 = (a2 —{(x, x) :
x € 0I'}. The main references for this subsection are Ledrappier [29] and [36,
Section 5]. The usual setting is to consider cocycles on dI', however, it is
convenient to use 32" since our cocycles are naturally defined in this space.

Definition 6.4 A Holder cocycle is a function ¢ : I’ x 82I" — R such that

c(yoyr, x,y) = c(yo, vi(x, y)) +c(y1, x, y)

for any o, 1 € I' and (x, y) € 3°T, and where c(y, -) is a Holder map for
every y € I' (the same exponent is assumed for every y € I').

Given a Holder cocycle ¢ and a non-torsion y € I', the period of y for c is
defined by

pe(y) =c(y, v+, v-),

where y is the attractive fixed point of y on dI", and y_ is the repelling one.
The cocycle property implies that p.(y) only depends on the conjugacy class

VARSHINE
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Two Holder cocycles ¢, ¢’ are cohomologous, if there exists a Holder-
continuous function U : 3°T" — R, such that for all y € I" one has

C()/,X, y) - C/()/,X, y) = U()/X, )/)’) - U(X, Y)

Theorem 6.5 (Ledrappier [29]) Let ¢ be a Holder cocycle on 9°T, then there
exists a Holder-continuous function f. : UT' — R, such that for every non-
torsion [y ], one has

Je=pe(y).
[v]

Proof This is a slight variation from Ledrappier’s theorem, but the proof fol-
lows verbatim. Indeed, one can find an explicit formula for such f, as follows
(Ledrappier [29], p. 105). Fix a point 0 € X and consider a C* function
F : R — R with compact support such that F(0) = 1, F'(0) = F”(0) =0
and F(t) > 1/2if |t| < 2sup{dx(p,T -0) : p € X}.

We can assume that  — F(dx(0(t), p)) is differentiable on ¢ for every
6 e Ul and p € X.

Let A: Ul > Rbe

A@) = Y Fdx(6(0). yo))e e foet0), )
yel

The function f; : UT — R defined by

log A(¢6), 5)
t=0

0) =— d
fe®) == —

where (3,9 e UT is the parametrized geodesic s — 6(s + t), is ['-invariant
and verifies f[y] fe=cy,y—, vi). i

If ¢ is a Holder cocycle with non-negative periods, one defines the entropy
of ¢ by

he = lim SUP%IOg#{[y] €[I]: pe(y) <t} €10, o0].

—00
As in [36] one has the following reparametrizing theorem:

Theorem 6.6 ([36, Theorem 3.2]) Let ¢ be a Holder cocycle with non-negative
periods and h. € (0, 00), then the action of T on 3T x R defined by

)/(x, Y, t) = ()/X, vy, r— C(J/,X, y))
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is proper and cocompact. Moreover, the translation flow v = (Y;);ecr on
the quotient T\9°T" x R is Holder conjugated to a reparametrization of the
geodesic flow of I". The topological entropy of Vr is hc.

Proof The only difference between the actual statement of [36, Theorem 3.2]
is that the cocycle ¢ is defined on 32I" (as opposed to dT"), nevertheless the
proof follows verbatim provided Ledrappier’s Theorem 6.5. O

6.2 Proof of Theorem 6.1

Since .Z), Nker &; = {0} one has either ¢; € int £, or —¢; € int Z7. In order
to simplify notation assume ¢; € int.". Remark 4.8 states that if this is the
case then

K = lim log#{lyl € [m1Z]: Ailpy) =5} _ (0, +00).

§—>00 s

Consider a norm || || on R?. The Holder cocycle ¢ : 11 % x 3’112 — R,
defined by

oy - vl
c(y,x,y) =log ———,
vl
for any v € ¢;(x, y), has periods c(y, v+, y—) = Ai(py). Since hff € (0, c0)
the Reparametrizing Theorem 6.6 implies that the action of 71 = on 3271 £ xR
via c,

v,y =x, vy, t —c(y,x,y))

is properly discontinuous and cocompact, moreover, the translation on the R
coordinate is (conjugated to) a reparametrization of the geodesic flow of X
(for a (any) hyperbolization on X fixed beforehand). -

The proof of Theorem 6.1 is achieved by observing that the map Fi) —

9271 x R defined by
(£i(x, y),v) = (x, y,log|v])

is w1 X-equivariant for the cocycle ¢ (recall Lemma 5.5). This finishes the
proof.

7 Benoist representations

Let I be a hyperbolic group. A Benoist representation is a homomorphism
p: ' = PGL(n+1, R) such that p(I") preserves an open convex set 2 = 2,
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properly contained on an affine chart, and such that the quotient p(I")\€2 is
compact. Benoist [5] has proved that under these conditions, the set €2 is
necessarily strictly convex and its boundary is a C!** submanifold of P(R"*1).

The geodesic flow ¢ = (¢, : TH(p(M\Q) — T'(p(IM\RQ)):cr for the
Hilbert metric on p(I")\2 is a C!*t® Anosov flow (Benoist [5]). Denote by
@ € a* the functional ¢ = (¢ — &,4+1)/2. The topological entropy of ¢ is

log#{[y] € [I'] : (A (py)) < 5}
S

htop (@) = slifgo

Crampon [15] has proved that ip(¢) < n — 1, and equality only holds if
Q is an ellipsoid, or equivalently, the Hilbert metric is Riemannian.

Benoist representations are projective Anosov representations, they are
hence Py-Anosov where 6 = {o1,0,} C II. Consider the vector space
ap = ﬂfz_zl ker o;. Its dual space aj C a* is spanned by the fundamental
weights w(a) = ws, (a) = a; and

n
wy(a) = wg, (a) = Zai = —an41-
1

Denote by ¢“, ¢* € aj the linear forms defined by ¢* = nw; — w, and
¢’ = nw, — wy.

Consider the expansion rate A* : T'(p(I")\Q) — R of the geodesic flow
¢. A standard computation (for example Benoist [5, Lemma 6.5]) shows that
if y € I' is primitive then

/[ ]k” =) (i = 2)(py) = no1((py)) — 0a(t(py)) = 9" (o (pY)).
4 i=2

Corollary 2.13 and the last computation immediately imply the following.
Courollar); 7.1 Let p : I' = PGL(n + 1, R) be a Benoist representation, then
hy =h) =1.

Let L be the positive cone generated by {¢“, ¢*}. Consider ¢ € int L and
let c(¢) € Ry be such that c(¢)g is a convex combination of ¢“, ¢°.

Theorem 7.2 For ¢ € int L one has that hﬁ < c(¢) and equality holds if and
only if Q, is an ellipsoid.

Proof For a given p, we know that ‘D‘Z is a convex set (Fig. 4) whose boundary
contains ¢* and ¢°. This implies the inequality.

If equality holds then Proposition 4.11 implies that p is arithmetic in ag,
hence it is not Zariski-dense. Benoist’s Theorem [3, Theorem 3.6] implies that
Q2 is an ellipsoid. m|
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e+ _ (n=1)(e1—€nt1)
2 2

w1

Fig. 4 The set @‘Z for a Benoist representation

Notice that (n — 1) = ‘p”;rq’s, hence we obtain:

hgfn—l.

We end this section by observing that for n 4+ 1 = 3 one has ap = a and
@f) = D,. Moreover, since aj + a» + a3 = 0 one has ¢" = o1 and ¢* = 02.
Hence Theorem B is proved for Hitchin(X, 3).

8 Theorem D: Regularity of the Frenet curve

This section is devoted to the proof of Theorem D which states that if the Frenet
equivariant curve ¢ of a Hitchin representation p is C°°, then p is Fuchsian.

We divide the proof in two steps: Proposition 8.1 states that if ¢ is of class
C® and p belongs to a certain neighborhood of the Fuchsian locus then it is
Fuchsian; the proof is completed with Proposition 8.2 which proves that if ¢;
is of class C* then necessarily p belongs to this open set.

In both cases, the proof uses the regularity to show that a certain Anosov flow
preserves a volume form via a theorem of Ghys [17]. Hence, Theorem 2.14
applies and one obtains relations between the eigenvalues of a given element.
This idea is reminiscent of Benoist [5, Section 6.2].

Recall that U; = {p € Hitchin(X,d) : £, Nkerg; = {0}} and U =

mi;&(d—i—l)/z Ui.

Proposition 8.1 Let p be a Hitchin representation in the open set U. Assume
moreover that ¢ is of class C*°, then p is Fuchsian.
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Proof Since ¢ is C°°, one has that
o / (i—1)
i=0@HD-- D (6)

(Labourie [27]). The map ¢; is thus C*° and therefore the manifold Li) is C*.

Moreover, from the formula of the bundles £E* and E* we deduce that they
are smooth bundles too. Applying a result of Ghys [17, Lemme 3.3]'3 we
deduce that the flow ¢’ preserves a volume form and hence A* and A* are
LivSic-cohomologous (Theorem 2.14).

One concludes that for all y € 71X and i € {2,...,d — 1} one has
oi—1(A(py)) = oi(A(py)). This implies that aG, = Ory;(PSLQ2.R))> hence p
is Fuchsian.

Proposition 8.2 Let p € Hitchin(Z, d) be such that ¢y is of class C*°. Then
foralli e {1,...,d}withi # (d 4 1)/2 one has £, Nker &; = {0}.

Proof Consider 2 < i < (d + 1)/2 and consider the projective Anosov rep-
resentation given by A’p : m ¥ — PSL(A'R?). Its equivariant maps are
given by £ = A'g; 1 9m S — P(A'RY) and £* = Ay dm Y —
P((A'RY)*) (recall A~'R? is canonically isomorphic to (A'R%)*).

Equation (6) implies that§ (x) = R(v; A---Av;) wherev; € (f])(x). Since
¢y is of class C* we can compute &’ and one obtains (applying the product
rule and observing that all terms but one have repetitions)

') =R@i A--- Avi1 Avig).
Consequently, by Remark 4.2 the tangent space
Te (€ (dm1 2) = hom(§(x), &' (x)).

The geodesic flow of A’ p (recall Theorem 3.3) is a C> Anosov flow with C*
distributions, namely

E"(x,y, (¢, v)) =hom(§(y), &' ()
and E*(x, y, (¢, v)) = hom(§*(x), (§%)(x)).

A computation analogous to that of Proposition 6.2 gives

/ A" = 0i(A(py)) and / A= —04-i(A(py)) = 0i 0i(A(pY)).
(] (]

13 The result of Ghys only requires Cz-regularity of the bundles (see [17, Section 6]) to provide
a volume (contact) form invariant by the flow. This allows to reduce the required regularity for
the rigidity. Nevertheless, we do not know if this reduction is optimal.
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Since the distributions are smooth, Ghys’s result [17, Lemme 3.3] implies
that the geodesic flow preserves a volume form and hence A* and A* are LivS§ic-
cohomologous, this implies that for all y € m1 X and i # (d + 1)/2 one has

oi(A(py)) = 0; o i(A(py)),

hence forall j € {1,...,d} one has ¢;(A(py)) = —eq—j(A(pY)).
Since .%, C inta™ (Proposition 4.6) one deduces that .%, Nkere; = {0}
foralli # (d+1)/2. O
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