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INFINITESIMAL ZARISKI CLOSURES OF POSITIVE
REPRESENTATIONS

ANDRES SAMBARINO*

Abstract

We classify the (semi-simple parts of the) Lie algebra of the
Zariski closure of a discrete subgroup of a split simple real-algebraic
Lie group, whose limit sets are minimal and such that the limit
set in the space of full flags contains a positive triple of flags (as
in Lusztig [23]). We then apply our result to obtain a new proof
of Guichard’s classification [17] of Zariski closures of Hitchin rep-
resentations into PSL4(R).

1. Introduction

Let us consider the vector space R? equipped with its canonical or-
dered basis € = {e1,...,eq} and let GL4(R) be the group of invertible
matrices. A minor of g € GL4(R) is the determinant of a square matrix
obtained from g by deleting some lines and columns from it. Minors
appear naturally when one considers the exterior powers of RY. Indeed,
theses spaces carry also a natural basis

/\k8={6i1/\"'/\eikZ’i1<"'<’ik}

defined from &, and the coefficients of A¥g in this basis are the k x k
minors of g.

As introduced by Schoenberg [25] and Gantmacher-Krein [13], a ma-
trix is totally positive if all its minors are positive.! If g € GL4(R) is
such a matrix, then, since all its entries are positive, it preserves the
sharp convex cone of R?

Ce = {(z1,...,24) : x; > 0},

consisting on vectors all of whose entries in € are non-negative. By the
preceding paragraph more is true: the same holds for every exterior
power of g,
k —
(AN"g)(v1 A--- Awvg) = gur A -+ A gug,

replacing € by AFE.

*The author was partially financed by ANR DynGeo ANR-16-CE40-0025.
Received January 14, 2021.
'Let us convene throughout the paper that 0 is not a positive real number.
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862 A. SAMBARINO

An application of the classical Perron-Frobenius Theorem implies
then that AFg has a unique attracting fixed line in the interior of this
cone,

(1.1) g4k € int Cprre,

and the collection (g+,k)‘li is an attracting complete flag? of g. If we
denote by € the complete flag

& = (span(e; @ --- @ ek))cli
then the inclusion (1.1) readily implies that the lower triangular matriz
ity sending € to (9+,k) has positive minors (except those that are forced
to be zero by the virtue of being lower triangular). Such a semi-group
will be denoted by Usq. If one is more familiar with upper triangular
matrices then one should replace & by & = (span(eq@®- - -EBed_kH))(li to
obtain an analogous Usq. The subspace of positive flags is then defined
by .

Fs0=Usp-€=Usp-E&.
The pair of flags (€, €) uniquely determines the (ordered) decomposition
RY = @D.ce Re, so F5p is actually defined by the pair (8 8) and a
pinning (see §5).

The above (very quick) picture has been generalized to the real points
of an arbitrary (Zariski-connected) reductive split real-algebraic group
G by Lusztig [23]. We refer the reader to §5.1 for the precise definitions
and we reuse the notation Fg = F as the complete flag space of G and
F-o for the subset of positive flags associated to a pair of fixed opposite
Borel subgroups B and B (and a pinning). Let us say that a triple of
pairwise transverse flags (z,y, z) is positive, if there exists g € G such
that g-z = [B],g-2=[B] and g-y € Fs.

Le us consider more generally a partial flag Fy of G, these are indexed
by subsets of the set of simple roots A, with Fao = F. An element g € G
is prozximal on Fy if it has an attracting fixed point on JFy, i.e. there
exists g4 g € Fyp fixed by g and an open neighborhood V of g, ¢ such that
gV C intV. In this situation one has ),y 9"V = {g+¢}. Elements
that are proximal on F are often called purely lozodromic.

If A < G is a discrete subgroup then its limit set on Fy is defined as

Larg = {9+6:9 € A proximal on Fy} C Fp.

A result by Benoist® [3] asserts that if A is Zariski dense, then L AQ 1S
non-empty and contained in any closed non-empty A-invariant set. We
will assume a slightly weaker version of this property. Let us say that

2Recall that a complete flag of R? is a sequence of vector subspaces (V;)¢ such
that dimV; =i and V; C Vi;1.

3(that holds when G is an arbitrary reductive real-algebraic Lie group of non-
compact type)
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Ly ¢ is minimal if the only closed A-invariant subsets of L g are either
the empty set or L, g itself.

Definition 1.1. Let A < G be a discrete group. We say that

- A has minimal limit sets if L ;5 is minimal for every o € A,

- Lp,a contains a positive lozodromic triple if there exists gy € A
proximal on F and zy € Ly o such that (g4, z0,9-) is a positive
triple.

Recall that a reductive Lie algebra h splits as the sum h = b B
3(h) where 3(h) is its center and by = [b,h] is semi-simple. Recall
also that, as g is split, it contains a special conjugacy class of sub-
algebras isomorphic to sly(R) called the principal sly(R)’s, see §2.1.1 for
the definition.

The main purpose of this paper is to prove the following.

Theorem A. Let G be the real points of a Zariski connected, simple
split, real-algebraic group and A < G a subgroup with reductive Zariski
closure H, minimal limit sets and such that La Ao contains a positive
lozodromic triple. Then bhss is either g, a principal sl2(R), or Intg-
conjugated to one of the possibilities listed in Table 1.

We would like to stress the fact that only one positive (loxodromic)
triple in the limit set Ly a is required.

Table 1. The statement of Theorem A, if a simple split
algebra g is not listed in the first column then the only
possibilities for b, are g or a principal sl3(R). The nota-
tions eg,fs and go refer to the split real forms of the
corresponding exceptional complex Lie algebras. Ob-
serve that there are two non Int so(n, n)-conjugated em-
beddings so(n,n — 1) — so(n,n) that stabilize a non-
isotropic line

g Bss ¢ tBss = g

slo, (R) sp(2n,R) defining representation
sl (R) so(n,n+1) Vn defining representation
2n+l g2 ifn=3 fundamental for the short root
50(3,4) g2 fundamental for the short root
so(n —1,n) Vn >3 stabilizer of a non-isotropic line

so(n, n) 50(3,4) if n=14 fundamental for the short root

’ . stabilizes a non-isotropic line L and is
g2ifn =4 fundamental for the short root on L+

e6 fa Fix(invg) (see Example 3.3)
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The use of Lusztig’s positivity to study discrete groups seems to have
originated in Fock-Goncharov’s [11] work, where the notion of posi-
tive representation of a surface group was introduced. A similar ap-
proach simultaneously originated in Labourie [22]. Both works focus on
understanding a special connected component of the character variety
X(m S, G) = hom(m S, G)/G, for a closed connected orientable surface
S of genus > 2 and a center-free split simple group G, introduced by
Hitchin [18]. These Hitchin components are defined as those compo-
nents that contain a discrete and faithful representation 7.5 — G such
that the Zariski closure of p(mS) is a principal PSLy(R) in G.

Combining [11] and [22], together with Guichard [16], one has the
following geometric characterization of Hitchin representations. Recall
that the Gromov boundary of ;S is homeomorphic to a circle and
carries a m S-invariant cyclic order.

Theorem 1.2 ([11, 16, 22|). A representation p : mS — G lies in a
Hitchin component if and only if there exists a continuous equivariant
map & : Om S — F sending cyclically ordered triples to positive triples

of flags.

In this paper we deal with a weaker notion than the one required in
the above result. We replace 7S with any discrete group acting on a
Gromov-hyperbolic space and relax the “order preserving” condition.

If X is a proper Gromov-hyperbolic space and ' < Isom(X) is a dis-
crete subgroup, then we denote by dXr its limit set on the visual bound-
ary of X. It is a compact -invariant subset and I is non-elementary if
O0Xr contains at least 3 points. If this is the case, 0Xr is characterized
by being the smallest non-empty I-invariant closed subset of X, and
I necessarily contains a non-abelian free subgroup. We refer the reader
to Ghys-de la Harpe [14, Chapitre 8] for these and other general facts
we will require. Unless I is convex co-compact, the limit set X need
not be an intrinsic object associated to the group structure of I'.

We will consider the following representations.

Definition 1.3. Let X be a proper Gromov-hyperbolic space and
' be a non-elementary discrete isometry group. A representation p :
I — G is partially positive if there exists a p-equivariant continuous
map € : 0Xr — F such that for every pair z # z in 90X, there exists
y € OXr such that (£(z),£(y),€(2)) is a positive triple.

It is implicit in the definition that distinct pairs of O X are mapped
to transverse flags.

Recall from Knapp [20, Chapter B.1] that a finite dimensional real
Lie algebra [ is a semi-direct product [ss @, Rad [, where [ss is semi-
simple and Rad [ is solvable. The second main result of this paper is the
following.
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Theorem B. Let X be a proper Gromouv-hyperbolic space, I < Isom X
a non-elementary discrete subgroup and p : I — G a partially positive
representation. Denote by L the Zariski closure of p(I'). Then the semi-
simple part Iy is either g, a principal sl3(R), or Int g-conjugated to one
of the possibilities listed in Table 1.

The challenge here is to show that L,r)a = £(0Xr) and that for
every o € A, it projects surjectively to every L) (5} under the natural
projection F — F,y.

Let us remark that, in contrast with Theorem A, we do not require the
Zariski closure of p(I') to be reductive. We emphasize this by stating
the following consequence of Theorem B, recall that a discrete group
acts strongly irreducibly on R¥ if it does not preserve a finite collection
of non-trivial subspaces.

Corollary 1.4. Assume that g = sl,(R),sp,,(R), so(n,n + 1) or
g2. Let X be a proper Gromov-hyperbolic space, I < Isom X a non-
elementary discrete subgroup and p : I — G a partially positive repre-
sentation, then its corresponding action on R™,R?", R?"*! or R7 respec-
tively is (strongly) irreducible.

Theorem B together with Theorem 1.2 give a new proof of the fol-
lowing classification result by Guichard (the argument is postponed to
86). As before, gy is the split real form of the corresponding complex
exceptional Lie algebra and Gy = Int gs.

Corollary 1.5 (Guichard [17]). Let p : mS — PSL4(R) be a repre-
sentation in the Hitchin component. Then p(mS) is contained in the
identity component of its Zariski closure, and these are: either PSLy4(R),
a principal PSL2(R) or conjugated to one of the following:

- PSpy,(R) if d = 2n for alln > 1,
- PSOp(n,n+1) ifd=2n+1 for alln > 1,
- the fundamental representation for the short root of G if d =T7.

Corollary 1.5 plays a central role in Corollary 11.8 of Bridgeman-
Canary-Labourie-S. [5] and in the recent work by Danciger-Zhang [10],
allowing the authors to reduce the general problem to the group PSO(n,
n+1).

1.1. Final remarks. It is unclear whether all possibilities stated in
Theorem B might actually occur. When I' = m1.S (S as above) then
Hitchin’s Theorem [18] implies this is actually the case. However, a
recent result by Alessandrini-Lee-Schaffhauser [2] provides many exam-
ples of locally rigid positive representations of groups with torsion.

1.2. Organization of the paper. In §2 we recall some facts on repre-
sentation theory of real reductive Lie algebras of non-compact type. In
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83 we introduce the Hasse diagram of a representation of such a Lie alge-
bra, this is nothing but the usual Hasse diagram of a partially order set
(here to be the restricted weights of the representation with their nat-
ural partial order). We introduce maps between diagrams and notably
study the existence of a surjective map between two Hasse diagrams.
There is a case by case proof that is postponed to appendix §A.

In §4 we study Zariski closures of discrete groups verifying a coherence
condition with respect to the position of their eigenspaces, and relate
these to maps between Hasse diagrams of the Zariski closure and the
ambient group. The key point is Proposition 4.10 that, in light of the
previous section, classifies Zariski closures of these groups, provided it
is reductive.

Section 5 begins by recalling total positivity introduced by Lusztig
(23], we prove then that groups whose limit sets contains a positive
loxodromic triple verify the coherence condition studied in §4. This
proves Theorem A. Theorem B is also proved in this section. In §6
we focus on the SLy(R) situation and prove Guichard’s classification
(Corollary 1.5).

The paper is written rather linearly so one has the following diagram
representing dependence between sections:

§A

§1 — 82 — 83 — §4 — 85 — §6

Acknowledgments. The author would like to thank Olivier Guichard
and Maria Beatrice Pozzetti for enlightening discussions and careful
reading of this article. He would also like to thank the referees for
careful reading and improving the exposition of the paper.

2. Review on Lie theory

2.1. Semi-simple Lie algebras. Let g be a semi-simple real Lie alge-
bra of the non-compact type and fix a Cartan involution o : g — g with
associated Cartan decomposition g = €@ p. Let a C p be a maximal
abelian subspace and let ® C a* be the set of restricted roots of a in g.
For a € ® let us denote by

9o = {u€g:a,u] =ala)uVa € a}

its associated root space. One has the (restricted) root space decompo-
sition g = go ® P ce 9o, Where go is the centralizer of a.

Fix a Weyl chamber a* of a and let ®* and A be, respectively, the
associated sets of positive roots and of simple roots. One has that
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® =&t U —d* and that if & € ®* then, upon writing
a= Z kyo,
ocEA
every coefficient k, is a non-negative integer. The height of « is ht(a) =

Yoo ko
Let us denote by (-,-) the Killing form of g, its restriction to a, and
its associated dual form in the dual a* of a. For x,% € a* define

oY)

The Weyl group of ®, denoted by W, is the group generated by, for
each o € ®, the reflection 7, : a* — a* on the hyperplane o,

ra(x) = x = (x; ¥)a.
It is a finite group with a unique longest element wy (w.r.t. the word
metric on the generating set {r, : @ € A}). This longest element sends
at to —at.

Recall that the Dynkin diagram of the root system @ consists on a
graph whose vertices are the elements of A and such that a, 8 € A are
joined by (ca, B)(B, ) edges. If two simple roots are joined by more than
one edge then an arrow is added pointing to the shortest (in norm (-, -))
root. One speaks indistinctively of the Dynkin diagram of g, ® or of A.

We will require the following notion:

Definition 2.1. An element of A is extremal if it is connected to
exactly one root in the Dynkin diagram of .

The root systems of type D and E have 3 extremal roots, while the
others only have two.

2.1.1. Some sly’s of g. For a € ® let ty, hy € a be defined such that,
for all v € a and all ¢ € a*, one has

a(v) = (v, ta) and p(ha) = (¢, ).
These two vectors are related by the simple formula hy = 2to/(ta,ta).

Recall that for z € g, one has [z,0(z)] = (z,0(z))te. Thus, for each
a € ®1 and x, € g, there exists y, € g—o such that

€ =(8 l%) = Xa
f=13) »a
h =((% 0 1) ha
is a Lie algebra isomorphism between sl3(R) and the span of {Xqa, Ya, ha }-
Let us fix such a choice of x, and y, from now on.
One says that g is split if the complexification a ® C is a Cartan

subalgebra of g ® C. Equivalently, g is split if the centralizer 3¢(a) of a
in & is trivial.
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Assume that g is split. Following Kostant [21, §5], consider the
dual basis of {t, : 0 € A} relative to (-,-): (€4,t3) = dap, and let
€@ = scn €s € a. The element €y is the semi-simple element of a
3-dimensional simple subalgebra of g. Such a subalgebra, or any of its
Int g-conjugates, will be called a principal sly(R) of g.

Let us denote by n = @ .o+ ga-

Theorem 2.2 (Kostant [21, Thm 5.3]). Let g be a split Lie algebra
and consider an element
e= Z AaXo € N

acdt

Then e lies in a principal slo(R) if and only if ay # 0 for all o € A.

2.2. Reductive groups. A Lie algebra g is reductive if every adg-
invariant subspace of g has an ad g-invariant complement. It is a stan-
dard fact (see Knapp [20, Chapter 1. §7]) that such an algebra splits
as

g= 3(9) D gss»

where ggs = [g, g] is semi-simple and 3(g) is the center of g.

A reductive Lie group (see for example Knapp [20, Chapter VIL. §2.])
G is a 4-tuple (G, K,o, (-, )), where K is a compact subgroup of G, o is
a Lie algebra involution of g and (-,-) is a o-invariant, Ad G-invariant
non-degenerate bilinear form on g such that:

- ¢ is a reductive Lie algebra,

- the Lie algebra £ of K is the set of fixed points of o,

-ifp={x e€g:0(xr) =—z} then £ and p are (-,-)-orthogonal and
(+,-) is positive definite on p,

- the map K x p = G, (k,z) — kexpz, is a surjective diffeomor-
phism.

- every automorphism of the form Ad(h), for h € G, of the complex-
ification g ® C is of the form Ad(z) for some z € Int(g ® C).

Given a reductive group G and a maximal abelian subspace a C p,
one can form, as in the semi-simple case, a restricted root space decom-

position
=009 P o
acdy

where go = {z € g: [a,2] = a(a)zVa € a}.

The relation between the restricted roots ®4 and the restricted roots
of gss is as follows: the elements of &4 can be obtained by considering
the restricted root space decomposition of ggs relative to ass = a N gss
and extending these roots to a as being zero on a N 3(g).
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2.3. Basic facts on representation theory of semi-simple Lie
algebras. Let g be a semi-simple Lie algebra over R without compact
factors. We record here some standard facts about irreducible real rep-
resentations of g, see for example Humphreys [19].

The restricted weight lattice is defined by

N={pea:{pa)eZVac d},

it is spanned by the fundamental weights: {w, : 0 € A} where w, is
defined by

(wa', ,8) = dadoﬂ

for every o, 8 € A, where d, =1 if 20 ¢ ®* and d, = 2 otherwise. The
set M, of dominant restricted weights is defined by M, = NN (a™)*.

Given x, € 1 one says that x > v if x — 1 has non-negative integer
coefficients in A. A subset 7 C I is saturated if for every x € m and
a € ® the string

X — i i between 0 and (x, @)

is entirely contained in 7. Such a set is necessarily W-invariant. We say
that 7 has highest weight p € 7 if for every x € m one has p > x. One
has the following lemma, see Humphreys [19, §13.4 Lemma B].

Lemma 2.3. Let 7 be a saturated set of weights with highest weight
W, then every x € M4 with p > x belongs to .

Let ¢ : g — sl(V) be an irreducible representation. The sub-algebra
¢(a) is self-adjoint for an inner product of V and thus the space V
decomposes as a sum V = Gaxel'l(a&) VX, where

VX={veV:d¢(a)v=x(a)vVa € a}
are the common eigen-spaces, called restricted weight spaces, and
M) = {x € a": VX £ {0}

is called the set of restricted weights of ¢. It is a W-invariant set.
The multiplicity of x € M(¢) is denoted by my(x) and defined as the
dimension of its restricted weight space, my(x) = dim VX. We will often
omit the subscript and write m(y) if there no ambiguity in ¢.

Proposition 2.4 (See Humphreys [19, Proposition 21.3]). Let (V, ¢)
be an irreducible representation of g. Then the set [1() is saturated with
highest weight x¢. In particular, for x € MN(¢) and o € P, the elements
of N(¢) of the form x + ia, i € Z form an unbroken string

X +ia, i€ [-rq]

andr —q = (x, ).
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The unique maximal element x, of I1(¢) from Proposition 2.4 is called
the the highest restricted weight of ¢. By definition, for every a € a*
one has xe(a) = A\1(¢(a)), the spectral radius of ¢(a). The restricted
weight space associated to xg is

(2.2) Vi=VX ={veV:g¢nv={0}}

To simplify notation, for a € &1, we let §, = g_,, then one has the
following.

REMARK 2.5. The subspaces of the form ¢(gg,)---&(§s,)V " with
Bi € A (repetitions allowed) that do not identically vanish are in direct
sum. Indeed, such a space is contained the restricted weight space

associated to
J4
Xs — Y Bi
i=0

Every weight of ¢ is obtained in this fashion, moreover, by construction
every weight x € (¢) can be written as x = x4 — B0 — -+ — B¢, with
B; € A, in such a way that all the partial sums

X=X¢—Bo—-—B; je[L,4]
are weights of ¢.

Example 2.6. Let us treat the example of the defining representation
¢ of slg(R), i.e. the identity representation ¢ : slg(R) — slz(R). A
Cartan subspace is

a = {diag(a1,--- ,aq) : a; € R and Zai =0}.

A set of simple roots is A = {8;}¢"!, where for each i € [1,d — 1] one
lets Bi(a) = a; — ai;+1, and the associated Weyl chamber is a* = {a €
a:a; > a1, ¢ € [[l,d 1]]}

The highest weight of the representation ¢ is x4 € a* such that for
all @ € at one has y4(a) is the spectral radius of ¢(a) = a. By the
choice of a* one has x4 = wpg, : a — a;. The remaining weights
of ¢, i.e. the elements of a* describing the eigenvalues of a € a, are
N(¢) = {ei(a) = ai}‘li_l. We find them algorithmically from wg, and A
by means of Proposition 2.4 and Remark 2.5 as follows:

1) Consider the simple roots o that are not orthogonal to x4 (equiv-
alently such that (x,,0) # 0). In this case only o = f3; works,
giving (x4, 1) = 1 by the very definition of x4 = @wg,, so the ;-
string through x, has length 1 which yields that x2 = w, — 81 :
a — a1 — (a1 — az) = ap is a weight of ¢.

2) We now consider the roots o with (x2,0) # 0. By linearity of (,)
on the first coordinate one sees that only 81 and (32 work in this
case, with values —1 and 1 respectively. The first one gives that
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X2 + B1 is a weight (which we already new), and the second one
gives x3 = (wg, — B1) — B2 : a > ag is a weight of ¢.
3) one repeats the procedure to obtain the other weights.

3. Hasse diagrams for representations

If ¢ : g — gl(V) is an irreducible representation of a real semi-simple
Lie algebra g without compact factors, then its set of weights carries
the partial order > previously defined: x > v if the coefficients of x — ¢
in A are non-negative integers.

One defines then the Hasse diagram of the representation ¢ as a graph
whose vertices are the elements of 1(¢), and one draws an edge between
x and v if and only if x — ¥ € A. Because of the non-symmetry of >,
the edge should be a directed arrow, however we prefer to forget the
arrow and draw ¢ below x. It is also convenient to label the edge with
the simple root y — .

These Hasse diagrams carry a natural grading or levels defined by

the function
level (de — Z kaa) =1+ Z k.
oceA

By means of Remark 2.5 one can draw the Hasse diagram of a given
representation level by level, starting from it’s highest weight and in-
ductively checking, for a given weight x € (@) the set of simple roots
o € A such that ¢(g,)VX = {0}. This in turn can be directly computed
from the root system ® using Proposition 2.4: one computes (x, o) and,
since all lower levels of the diagram are assumed to be known, one knows
whether x + o (down one level) belongs to (@) or not.

It is more convenient then to define the Hasse diagram as depending
only on the type of the root system @, and of a given dominant weight
X € M4 that will play the role of the highest weight of an irreducible
representation.

Definition 3.1. The Hasse diagram of a root system of type L and
a given dominant weight x € N will be denoted by f}{;

Example 3.2. For example, the Hasse diagram of a fundamental
weight w,, where o is such that 20 ¢ A, has

- solely w, at the first level,

- only w, — o at the second level,

- the forms w, — o — 3, for every 8 € A neighboring ¢ in the Dynkin
diagram of the given root system, at the third level.

The remaining levels can become quickly very complicated.
Figure 1 depicts the Hasse diagrams of the exceptional root system

Gy for both its fundamental weights, the Dynkin diagram is added to
the picture together with the corresponding set of weights in each case.
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B
o
«
o
o (o]
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/X °
o o B
: N2 ° :
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. ... . . . N . ... .
N7, °
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o «@
a o
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o
Mg, (wg) HE, — H2 Mg, (wa)
3 o

Figure 1. Hasse diagrams for fundamental weights of
(extremal) roots of Ga, together with the corresponding
weight sets (in black).

3.1. Maps between diagrams. Given two root systems of types J
and L, consider a function f : AL — Aj). We will define a diagram map
with labeling f, in short a diagram map, between two Hasse diagrams
as a function T/ : 9{; — S{i, such that if 1,1 € 9{')‘( then

Yo — ¥1 € AL implies TV (vo) — T/ (¥1) = F(vo — ¥1) € Ay.

Such a map is thus order preserving, level and labeling equivariant.
We say that T/ is surjective if it is set-wise surjective. If this is the
case, then necessarily f is surjective and both diagrams have the same
total number of levels.
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Let us emphasize that the function f is merely a set-wise function,
no condition on the associated function between the Dynkin diagrams
is required.

Example 3.3. Consider the following Dynkin diagrams that carry a
non-trivial involution, invy : A — A say,

- the middle point symmetry in Ay: INCOAE

D o),

- the middle axis symmetry in Eg: o—o—i—o—o
N—7

The quotient by the orbits of invy provides a labeling
- f : AA2n+1 - ABn’
- f : ADn — Acn,
- f : AE(; — AF4)

which induces surjective maps between the Hasse diagrams of the fun-
damental weight w, of a given simple root and the fundamental weight
of f(o). Figure 9 in the appendix depicts the Eg case for one of the
extremal roots.

Not every example comes from the fixed point set of an involution,
as the fundamental representation sta : g2 — sl7(R) of the real split
Lie algebra gy shows. This is depicted in Figure 2.

The existence of a surjective map between Hasse diagrams is of course
very restrictive as the following lemma shows.

Lemma 3.4. Consider two irreducible reduced root systems of types
J and L. Assume there exists

- f: AL — Aj such that f(a) is extremal for every extremal o € Ay,
- for every extremal o a surjective diagram map T/ 9{;‘1 — f}{fzf(a)
with labeling f.

Then, besides f = identity, the only possibilities for J, L, and f are
listed in Table 2.

Proof. The proof is a case by case verification. In Appendix A we
draw the Hasse diagrams for the fundamental weights of the extremal
roots of all irreducible reduced root systems and the non-existence ver-
ification is also proven. q.e.d.

To end this section we remark that when L = Dy, in spite of the appar-
ent symmetry of the B3’s given in Table 2, these correspond to different
cases. If one considers the complex algebras so(7,C) and so(8,C), then

the labelling o—{) corresponds to the representation so(7,C) — so(8,C)
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o o
B1 «
[e] [e]
B2 B
[e] [e]
B3 - 7 «
[e] — [e]
Ba «
[e] [e]
Bs B
[e] [e]
Be «
o o
Ko HE,
0—0——0—0 o==)
B Be g @

Figure 2. The surjective map i}fg“ — 9{230

(51
Table 2.
L J | fibers of f
Aay B Vn | olosee
Gy ifn=3 Figure 2
A2n-1 Con N2
B3 G2

Dnl Byifn=4 w<

o=
Bpro1Vn >3 | oo »—{)

N~

2

)

N—7

that stabilizes a line in C®, whilst the labelling o—\{ corresponds to the

fundamental representation of so(7,C) associated to the short root of
Bs. This is an irreducible representation with image in s0(8,C) called
the spin representation, see Fulton-Harris [12, Lecture 20, Ex. 20.38].
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(e} (o] o] (o]
B 8 8 o
(o] (] (o] (]
B B2 Ba Ba
(o] (] (o] (]
o @ o « « ﬁ
< | =
A
(e} o] — (o] o] o] —_— 0 (e}
Y / o Y / Y /
o o [a%
(o] (] (o] (]
B B2 Ba Ba
(o] (] (o] (]
B 8 8 o
(e} (o] o] (o]
D B: D ;
H2 HE H HE:
’ [e3 ’ «
B8 N\, B P 85\, A

Figure 3. The surjective maps f}{g’z — 9{2&; and
D B:
Hey = Ha

4. Discrete subgroups satisfying a coherence condition w.r.t.
eigenspaces

4.1. Review on Lie group representations. Let G be a reductive
real algebraic Lie group. If ¢ : G — GL(V) is a rational representation
then we denote by ¢ : g — gl(V) the induced representation on its
Lie algebra and we speak indistinctively of highest restricted weight,
restricted weight spaces, etc of ¢ and .

One has the following proposition from Tits [26, Theorem 7.2] that
guarantees existence of representations of G, the reader may also check
Abels-Margulis-Soifer [1, Theorem 6.3] We say that ¢ is prozimal if
dim V't =1 (recall Equation (2.2)).

Proposition 4.1 (Tits [26]). For every o € A there ezists an irre-
ducible prozimal representation of G whose highest restricted weight is
lws for somel € Z>1. If g is split then one can choose | = 1.

Definition 4.2. For each o € A, we will fix and denote by ¢, : G —
GL(V,) a representation given by the above proposition.

Recall the definition of root spaces g, from §2. For a € ¢+ we
let §o = g-a, # = @,co+ Ja and we consider the opposite minimal
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parabolic subalgebras b = go®n and b = gy @#. The minimal parabolic
subgroups are denoted by B and B and defined as the normalizers in
G of b and b respectively. The groups B and B are conjugated. The
complete flag space of G is defined by F = G/B. The G-orbit of

(IB,[B]) e 7 x 5

is the unique open orbit of G and is denoted by F @,
If (¢,V) is a proximal irreducible representation, then we let 9 C A
be the set of simple roots non-orthogonal to x4,

9 ={o €D (xs,0) #0}.
Consider also the parabolic subgroup Py whose Lie algebra is defined

by
= P wo P 9.

sed+U{0} oE(A—1)
The group Py is the stabilizer in G of the line V.

Definition 4.3. We will say that 1, or Py, is the type of the stabilizer
of V7T,

We also consider an opposite parabolic subgroup Py whose Lie algebra

o= P 1.0 P o

oed+U{0} ce(A—D)

It is conjugated to the parabolic group P;y. We denote the flag space
associated to ¥ by Fy = G/Py. The G orbit of the pair ([Py],[Pys]) is
the unique open orbit for the action of G in the product Fy x F;y and

is denoted by 3'(2)
One has a ¢- equlvariant algebraic map

q)=q)d—):3‘~19—)lp(V)
defined by ®;(g[Py]) = #(g)V*. The ¢(a)-invariant complement
vo= P v
x€N(¢)—{xs}
is stabilized by Py, giving also a map & = (i>q-5 : Fig = P(V*) defined

by ®(g - [Ps]) = ¢(g)V~, where we have used the natural identification
between P(V*) and Grgimv_1(V) given by Ry — ker .

is

4.2. Jordan-Kostant-Lyapunov’s projection and Benoist’s limit
cone. Recall that every element h € G can be uniquely written as a com-
muting product h = hehgsshy, where he is conjugate to an element in K,
hss is conjugate to an element in exp(a®) and h, is unipotent. The
Jordan-Kostant- Lyapunov projection A\ = Ag : G — a™ is defined such
that hgs is conjugated to exp (A(h)).
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If A C G is a discrete subgroup, then its limit cone is denoted by £,
and is defined as the smallest closed cone that contains {A(g) : g € A}.
One has the following fundamental result by Benoist. Recall that a,, =
an gss.

Theorem 4.4 (Benoist [3, Théoréme 1.2]). Let A < G be a Zariski
dense subgroup. Then the limit cone L is convex and the intersection
L Nags has non-empty interior in agg.

4.3. Coherent subgroups. For g € GLy4(R) let us denote by

A(g) = (M(9),-- -, Aalg)) € a*

its Jordan projection. By definition, the coordinates of A(g) are the
logarithms of the modulus of the eigenvalues of g, counted with mul-
tiplicity and in decreasing order. If A1(g) > A2(g) we say that g is
prorimal. Equivalently, the generalized eigenspace associated to the
greatest (in modulus) eigenvalue of g is 1-dimensional. We will denote
by g, € P(R?) this attracting eigenline and by g_ its g-invariant com-
plementary subspace.

A discrete subgroup A < PGL4(R) is prozimal if it contains a proximal
element. One defines then its limit set by

LY = {g; : g € A proximal}.

Recall from the introduction that L% is minimal if the only closed
A-invariant subsets of L% are {0, L} }.

Lemma 4.5. Let A < PGL4(R) be prozimal with minimal LY. If A
acts totally reducibly in R¢ then span Lﬁ is an irreducible factor of A.

Proof. Let g € A be proximal and V' an irreducible factor. If v € V
does not lie in g— then ¢"(R-v) — g+. Consequently, since V is closed
and g-invariant, if g+ € V one concludes V' C g—. Thus, g+ necessarily
belongs to an irreducible factor of A, W say. The subset L'Z NnPW)
is then non-empty, closed and A-invariant. Minimality completes the
proof. q.e.d.

Definition 4.6. A discrete subgroup A < PGL4(R) is coherent if

- there exists a proximal gy € A such that A2?gg is proximal and the
eigenline associated to Ay(go) belongs to span LY,
- the limit sets L% and L'Zz A are minimal.

Example 4.7. The typical example of a coherent group are the so-
called (1,1,2)-hyperconvex representations from Pozzetti-S.-Wienhard
[24].

The main feature of coherence one should keep in mind is that, neces-
sarily, the generalized eigenspace Va2(go) of go associated to A2(go) is one
dimensional, and both lines (go)+ and V2(go) lie in the same irreducible



878 A. SAMBARINO

factor of A on R?. This will be further explained in the proof of the
following Lemma.

Lemma 4.8. Let A < PGL4(R) be a coherent subgroup with reductive
Zariski closure H and let h = Lie(H). Then there exists a unique o € Ay
such that for every g € A one has

(M(9)) = M(g) — Aalg).

Moreover dim b, = 1.

Proof. By Lemma 4.5 the representations H| span L'Z and H|span L% A
are irreducible. Let x; and xs be their highest restricted weights,
then 2y, — xo verifies that for all g € A one has 2x; — x2(An(g)) =
Mi(g) = Ma(g).

Denote by {Wz}’lc the irreducible factors of A enumerated so that
W, = span Lﬁ. For g € A with A?g proximal, denote by Va(g) either
the eigenline associated to A2(g) if g is proximal, or the 2-dimensional
Jordan block associated to Ai(g) otherwise. One readily sees that, in
both situations, the vector space V2(g) necessarily intersects one of the
W,;’S.

We can identify L% A as a subset of Gry(R?) and thus consider the
closed A%A-invariant subsets

Li={PeLl,,: PnW; # {0}}.

The intersections L; N L; are also invariant and closed so by minimality,
each intersection is either empty or L'ZQ A+ However, the element gg
from the definition of coherence is proximal with A%gg proximal, so its
attracting line (A%gp)4 € L'ZZA is go @ Va(go) € Grz(R?%). This latter
plane is, by assumption, contained in W; — span Lﬁ, which yields

- L1 =L A2A and

- all intersections Ly N Lj, for j > 1, are empty.

We conclude that V5(g) C spanL{ for every g € A with proximal A%g.

Applying §2.3 to H|span L'Z together with the preceding paragraph,
one has that for every g € A there exists oy € Ay such that ay(A(g)) =
A1(g) — A2(g). Since the limit cone £ has non-empty interior on aNhss,
(Benoist’s Theorem 4.4) and Ay is a finite set, there exists an open sub-
cone ¥ C Lp and a root o € Ay such that for every v € ¥

o(v) = (2x1 — x2)(v)

Since both functions are linear and coincide on an open set, they must
coincide and o is the required root. The same argument gives uniqueness
of 0. The fact that b, is one dimensional follows from the fact that, for
every g € A, up to conjugation, one has h,V+ = VX177 is the eigenspace
associated to A2(go), which is one dimensional. q.e.d.
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Definition 4.9. Let G be a reductive group and A a discrete sub-
group. Then A is totally coherent if for every o € A the subgroup ¢, (A)
is coherent.

The following is the main result of this section.

Proposition 4.10. Let G be a real-algebraic simple group and A < G

a totally coherent discrete subgroup with reductive Zariski closure H.

Then bgs is simple split. Moreover, there exists a surjective function

f:Ag = Ay and, for every a € Ay, a surjective map with labeling f
between the diagrams

T o) - HY

NaT f(a)’

for some ng € Z>1. If v is extremal then f(a) is extremal, if moreover
rank hss > 1, 2a ¢ ® and £, = 1 then ny = 1.

Proof. Let us denote by ¢ : H — G the representation induced by the
inclusion of H in G and by ¢ : h — g its derivative.

Since A is totally coherent, applying Lemma 4.8 to each representa-
tion ¢, of G provides a function f : Ay — Ay such that for every g € A
and o € A4 one has

(4.1) F(@)(M(9)) = o(Aa((9)))-

Consider then a € Ay and the associated fundamental representation
b : G = GL(V). Since H is reductive, Lemma 4.5 implies that W =
span Lga A is an irreducible factor of doH. Let ¢ : h — gl(W) be the
representation of ) defined by ¢ = ¢,(¢h)|W and x4 € My(¢) its highest
restricted weight.

As stated in Remark 2.5 every element x € My(¢,) is of the form

(4'2) X = Lo Z kso,
o€,

where k, € Z> for every o. Define then function T/ : My(¢a) — My by

T(x)=xs— Y kef(0),
oy
if x is as in Equation (4.2). For every x € MNy(¢,) and B € &, one has
(TF(%),8) = (x4: 8) — D ko(f(0),B) € Z,

o€y

so T/(x) is indeed a weight of h, moreover T/ is level preserving. Ob-
serve also that for every g € A one has, by Equation (4.1), that

T/ () (Au(9)) = x(Aa(z9)),
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so that for every v € £ one has T/(x)(v) = x(wv). Thus, for every
veELpand w € VT () one has

$(v)w = x(w)w = (T (x)(v)) w.

Since £ has non-empty interior in ap 45 (Theorem 4.4) and My(¢q) is
finite, there exists an open sub-cone ¥ C L such that for every u € ¥
the eigenvalues T/ (x)(u), for x € My(¢a), are pairwise distinct. This is
to say, the decomposition

V = @ vy

Xeng(¢a)

consists, for every u € %, on eigenspaces associated to pairwise distinct
eigenvalues of ¢(u). Thus, intersecting with W and since % is open, we

obtain that
w= @ wnv'®
Xeng(¢a)

is the weight space decomposition of ¢. Thus T/ has values in My ()
and is moreover surjective onto this set.

Since G is simple, @, is injective and thus, since any weight of @, (¢h)
is contained in My(¢), ¢n(thss) is simple and thus b, is. Consequently,
[ is surjective and, since dim(hs) (o) = 1 for every a (Lemma 4.8), b
is split.

From surjectivity of T/, and since there is only one weight of ¢, of
level 2 (the weight £, — «, recall Example 3.2) one has that for every
B € Ay—{f(c)} the linear form x4—f is not a weight, hence (x4, 3) = 0
and thus x4 = na@y(y) for some n, € Z5;.

Let us assume from now on that « is an extremal root of Ay, so that
the only weights of level 3 of ¢, are {,w, — a — B for a unique root
B € Ay, and £,w, — 2a (only if £, > 2 or if 2a € ®). This implies that
the only weights of level 3 of ¢ are n,wy () — f(a) — f(B), and possibly
Naf(a) — 2f ().

Hence (n,wy () — f(a),0) = 0 for every o € Ay — {f(a), f(B)} from
which f(a) is an extremal root of Ay. Moreover, either

- f(a) = f(B) i.e. for every o € Ay — {f(a)} one has

0= (na@s(a) — f(@),0) = =(f(a),0)
and thus hss has rank 1,
- or f(a) # f(B). In this case, if one assumes moreover that £, = 1
and 2a ¢ ®, then nawyq) — 2f(a) ¢ My(¢) and hence ny, = 1.
This completes the proof. q.e.d.

4.4. Classification of Zariski closures of totally coherent groups.
Throughout this section, g is a simple split real Lie algebra, G is a real-
algebraic Zariski connected Lie group with Lie algebra g and A < G is
a totally coherent discrete subgroup with reductive Zariski closure H.
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The purpose is to classify the pairs (hgs, @) where ¢ : s — g is the
representation induced by the inclusion H C G. By Proposition 4.10 b,
is simple split.

One begins by the following:

Corollary 4.11. If hss has rank 1 then it is a principal sl2(R) of g.

Proof. Consider a € A and let us compose the inclusion of hgs with
a fundamental representation ¢, of g. Throughout the proof of Propo-
sition 4.10 it is stablished that the highest weight space V' of ¢, is
also the highest weight space of some non-trivial irreducible factor of
®a(thss), of highest weight nawy (), for some ny € Z>1, and a function
f 1 Ag = Ap, necessarily constant in this is case.

There exists then a non-zero f € t(hss) N 1. Consider w € V' =
Vi) Since V™¥f() is the highest weight space of the representa-
tion ¢ : hss — gl(W),

0 # ¢(f)v € V@i (@) ¢ ylawa—a,

Additionally, we compute ¢4 (f)v upon writing f = 3> 4+ boys. To
this end, consider the set R, of positive roots with non-vanishing coef-
ficient on « (in the basis A) and its complement RC on &,

Ra = {,8 €ot: (wa118> - 0}
RE = {8 € ot : (w,,B) =0}
By Proposition 2.4, if € Rg one has £y, — B & M(¢y), 50 du(ys)v = 0.
However, again by Proposition 2.4, if § € R, then £y, — B € M(da),
giving ¢a(yg)v # 0.
Thus,

VieFa=e 3 g0 (flu =Y by(dalys)v)

ocedt

=Y bo($a¥o)v) + Y bo(dalye)v)

oc€Ra UERE

= Z ba (¢Q(YU)U) .

c€Ry

Since the weight spaces V@a=8 are in direct sum for distinct 3 € ®,,
one concludes bg = 0 for all 3 € R, — {a} and b, # 0.

The same argument applied to the remaining fundamental represen-
tations ¢,, for o € A, give that f = )7 __, byo and that b, # 0 for
all o € A. Kostant’s Theorem 2.2 asserts then that h is a principal
5[2(R) qed

If the rank of b, is at least 2 then, since the fundamental repre-
sentations of g verify £, = 1 for all « € Ay, Proposition 4.10 pro-
vides a surjective function f : Ay — Ay such that the image of an
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extremal root is an extremal root, and for every a € Ay a surjective
map T/ : HE, — Hh £(0) between the corresponding Hasse diagrams.

Applying the Table 2 given by Lemma 3.4 one concludes at once the
following Corollary.

Corollary 4.12. If rankbhss > 2 and bhss # g, then the only possi-
bilities for ¢ : hss — @ are, up to Int g-conjugation, the ones listed in
Table 3.

Table 3. Statement of Corollary 4.12

g Bss $:hss — 9
slons1(R) so(n,n+1) Vn defining representation
goifn=3 fundamental for the short root
slo, (R) sp(2n,R) defining representation
50(3,4) g2 fundamental for the short root
so(n—1,n) Vn >3 stabilizer of a non-isotropic line
50(3,4) ifn=4 fundamental for the short root

so(n,n) — - — -
=4 stabilizes a non-isotropic line L and is
82 fundamental for the short root on L+
e6 fa Fix(invg) (Example 3.3)

5. Total positivity

Throughout this section G denotes the real points of a Zariski con-
nected real-algebraic simple split group.

5.1. Lusztig’s total positivity. Let us fix, for each simple root o € A,
algebraic group isomorphisms z, : R — expg,, ¥, : R — expg, and
hy : R — exp(R - h,) so that

o8) = azo(t), (19) = yo(t), (§, 1) = ha(t),

defines a morphism SL2(R) — G (recall §2.1.1 on the existence of such
morphisms). The collection O = {:cg : 0 € A} is called a pinning of G
and two pinnings are conjugated by G.

Let it = @ co+ §o- Denote by U = expn and by U = exph the
unipotent radicals of B and B respectively. Let A = expa and let M be
the centralizer in K of exp a, one has

(5.1) B = MAU.

Let wp € W be the longest element and consider a reduced expression
wo = ry - 71 as a product of reflections associated to simple roots. Let
us denote, for each r; the associated simple root by o, € A. The number
N equals |97, but we will not require this fact.
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Consider the maps O : (Rso)Y — U and ¥O : (R5o)Y — U defined
by
W(ay,- -+ ,an) = T4, (an) - T4y, (a1),
(5.2) O(ar, -+ ,an) = Yo, (an) - - ¥o,, (a1)-
We summarize several results from Lusztig [23, §2] in the following
theorem.
Theorem 5.1 (Luzstig [23, §2]). The images Uso — ¥O((R>0)")

and Usg = \ilo((R>0)N) are semi-groups independent of the chosen
reduced expression of wg. The product

G>0 = Us0AUso = U0 AU
is also a semi-group and every element g € G~ has a unique expression

of the form g = uitv with 4 € Usg, t € A and v € Us,.

_ Even though we omit the pinning notation on the semi-groups U,
U.(o and G-, they do depend on the pinning O. For example, fixing
the pinning on SL,(R)
((1){) i—).’l:i(t) =id+tei,i+1, S IIl,d—l]],

where e; ; is the n X n matrix consisting of vanishing entries except
at (i, 7), whose entry equals 1, gives the semi-group SL,,(R)~ of totally
positive matrices mentioned in the Introduction. However one may con-
sider other pinnings. We list below four possibilities for the unipotent
semi-groups Usq in SL3(R) corresponding to different pinnings:

0 1 z+z zy
Usg = {( 1 31/) :z,y,zGR>o},

1 —(z+2) —x1
Ugg={< (1 ) yy>!$ayaZ€R>0},
1

. 1 z+4+2z —zy
Ugg = {( 1 —1y ) :z,y,zER>0},

1 —(z+2) =
US&:{( (1 )—Z,):z,y,zGRw}.
1

5.2. Positivity of flags. The positive semi-group G- determines a
special subset o C F defined by

3'->0 = G>0 . [B] = (]>0 - [B] = U>0 - [B]
Let us say that an ordered triple (1, z2, z3) € F2 is in general position

if for all 1 < ¢ < j < 3 one has (z;,z;) € F@). Then one has the
following.

Proposition 5.2 (Lusztig [23, Prop. 8.14]). The subset F~q is a
connected component of

{z € F: ([B],,[B]) is in general position}.
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In particular it is an open subset of F.

One then defines positivity on triples of flags as being G-equivariant,
consequently the notion will not depend on the pinning:

Definition 5.3. A triple of flags in general position (z,y, z) is positive
if there exists g € G such that gz = [B], gz = [B] and gy € F-o.

5.3. Simply laced G. Recall that g is simply laced if for every pair
o,a € A one has (0,a) = (a,0) (recall the definition of (,) in Equa-
tion (2.1)). Equivalently, the Dynkin diagram of g does not contain a
double or triple arrow. Moreover, G is called algebraically simply con-
nected if every finite covering from a real algebraic group onto G is
trivial, equivalently the group G¢ of C-points of G is simply connected
in the topological sense.

Proposition 5.4 (Lusztig [23, §3.1 and Prop. 3.2]). Assume that G
is simply laced and algebraically simply connected. Let ¢ : G — GL(V)
be an irreducible real representation, then there ezists a basis B, of V
such that

- each element of By is contained in a restricted weight space of ¢,

- for every g € Gsq, the map ¢(g) : V. — V has positive entries on
the basis Bg.

5.4. Theorem A for simply laced G. We devote this section to the
proof of Theorem A when G is simply laced and algebraically simply
connected. We prove that a discrete subgroup verifying the hypothesis
of Theorem A is totally coherent.

Corollary 5.5. Let G be simply laced and algebraically simply con-
nected, and A a subgroup with minimal limit sets and such that Lp a
contains a positive loxodromic triple. Then A is totally coherent.

Proof. For o € A consider the fundamental representation ¢, : G —
GL(V) and the ¢,-equivariant map & : Fioy = P(V) from §4.1. Let
also A? : GL(V) = GL(A%V) denote the second exterior power represen-
tation.

By minimality one has that

‘I’(LA,{U}) = LEU(A>-

Moreover, since the only second level weight of ¢, is w, — o (recall Ex-
ample 3.2), the representation A%2¢, of G is proximal, though it may be
reducible. Denote by % : G — GL(V’) the G-irreducible factor contain-
ing the highest weight of A2¢,. It contains the attracting points of A%g
for every g € G proximal on F. Let ¥ C A be the type of the stabilizer
in G (recall Definition 5.9) of V¥ A V®2~?. The limit set Ly 4 is also

minimal and one has @, (L A,g) =L so the latter is thus minimal.

P
A2¢0(A)
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Finally, consider gy € A proximal on F and zy € Lja so that
(9040, 90_) is a positive triple. We can assume that go, = [B] and
go_ = [B] so that ®(go,) = V* and &(go_) = V"~ (recall notation from
§4.1). We want to show that V=~ belongs to span ®(L, (,})-

Let g € G5 be such that

®(z0) = (g [B]) = do(9) - ®(g04)-

Consider then the 2-dimensional subspace Py, = ®(g0.) ® ¢+(9)®(g0,.)
and let £;, € P(V') be the intersection

lyy =Py NV

Since G is simply laced, Lusztig’s Proposition 5.4 applies to give that
b (g) has positive coefficients in Bj, . In particular, if v € V* — {0}
the vector ¢, (g)v has positive coefficients in B;_. The line £;, is thus
not contained in any subspace spanned by a partial sum of weights in
M(¢s) — {ws}, i.e. £z, is not contained in any ¢4(go)-invariant subspace
of V~. Consequently, the sequence ¢, (go™)-£z, approaches, as n — +00,
the ¢, (go)-invariant subspace of V~ associated to the top eigenvalue of
#(go)|V~, which is V=27, This completes the proof. g.e.d.

Corollary 5.5 together with subsection §4.4 give thus the following.

Corollary 5.6. Let G be simply laced and algebraically simply con-
nected, and let A < G have reductive Zariski closure H, minimal limit
sets and such that Ly A contains a positive lozodromic triple. Then
bhss is either g, a principal sl2(R) or Int g-conjugated to the possibilities
listed in Table 4.

Table 4. Statement of Corollary 5.6

g Bss $:hss > g
ol (R) so(n,n+1) Vn defining representation
2ntl goifn =3 fundamental for the short root
(o, (R) sp(2n,R) defining representation
so(n—1,n) Vn >3 stabilizer of a non-isotropic line
50(3,4) if n=14 fundamental for the short root

so(n,n) e - — -
=4 stabilizes a non-isotropic line L and is
92 fundamental for the short root on L+
es fa Fix(invg) (Example 3.3)

5.5. Descent. The purpose of this section is to briefly explain how to
bypass the simply-laced hypothesis in Corollary 5.5. We use a standard
technique called descent. It consists on observing that every simple split
Lie algebra g is the fixed point set of an automorphism 3 : g — g of
a simply laced split simple Lie algebra g. One requires also that the
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action of s on the simple roots of g is such that if a, 3 € A; are in the
same -orbit then (o, ) = 0. See Table 5.

Table 5.

type of g | type of g | orbits of 3
A2n—1 Cn

Dn Br-1| oo “’_{)

D, G,

)
Es Fu D

N—7

With these considerations, one has the following proposition from
Lusztig.

Proposition 5.7 (Lusztig [23, §8.8]). Let G be algebraically simply
connected. Then there ezists a simply laced, simply connected, simple
split group G and a rational representation v : G — G together with an
equivariant map ® : Fg — F; such that

2((F6)50) < ((5¢)50)-
We can now conclude the proof of Theorem A.

Corollary 5.8. Let G be the real points of a real-algebraic, Zariski
connected, simple split group. Let A < G be as in Theorem A. Then the
semi-simple part hss is either g, a principal sla(R) or Int g-conjugated
to the possibilities listed in Table 3.

Proof. By passing to a finite cover we can assume that G is simply
connected, the pre-image of A under this covering has again minimal
limit sets and its limit set on F contains a positive loxodromic triple.
From Proposition 5.7 one finds a simply-laced G and a rational rep-
resentation ¥ : G — G such that YA is partially positive. Applying
Corollary 5.6 to ¥A gives the required result. q.e.d.

5.6. Partially positive representations preserve type. Recall that
G is the real points of a real algebraic, Zariski connected, simple split
group.

Let X be a proper Gromov-hyperbolic space and I < Isom(X) a
non-elementary discrete subgroup, then one has the following facts from
Ghys-de la Harpe [14, §8.2]:

i) the action of ' on the visual boundary of X has a smallest closed

l-invariant subset denoted by 0Xr, the N-action on 0Xr is thus
minimal;
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ii) every v €T is either
- of finite order (called elliptic),
- prozimal, i.e. has two fixed points y_, v € 0Xr such that for
every z € 0Xr — {v_} one has y"x — y4 as n = +o0,
- parabolic, i.e. has a unique fixed point z., € 0Xr and every x €
O0Xr converges to ., under the iterates " as n — 400 (some
points will drift away from ., before coming back though).
iii) The attracting points of proximal elements are dense in 9 Xr.

Let us fix throughout this subsection a partially positive representa-
tion p : [ — G with continuous p-equivariant map & : 0Xr — F. We
begin by showing that it is type preserving. Recall from Equation (5.1)
the definition of unipotent radical.

Proposition 5.9. If v € T is prozimal then p(7) is prozimal on F
with attracting flag £(7v+) and repelling flag £(v—). If h € T is parabolic
then there erists k € N>y such that p(h*) belongs to the unipotent radical
of &(zp,), moreover, there exists an open set O C F such that h"z —
&(zp) for every z € O.

Proof. We divide the proof into Lemmas 5.10 and 5.11 below. q.e.d.

Let M be the centralizer in K of expa, as g is split this is a finite
group. For o € A, let us denote by ¢ = ¢, : G = SL(V) and by
®:F > P(V), ®:F — P(V*) the corresponding ¢-equivariant maps
(recall §4.1).

Lemma 5.10. For every prozimal v € T, q_ép('y) is prozimal with
attracting line ®&(v+) and repelling hyperplane ®E(y-).

Proof. By passing to a finite cover we can assume that G is alge-
braically simply connected. In view of Proposition 5.7 we can also as-
sume that G is simply laced and thus make use of Lusztig’s canonical
basis Bj (Proposition 5.4).

By conjugating p we may assume that £(y4) = [B] and that £(y-) =
[B]. Since p(v) fixes both complete flags £(74) and £(7-), it can be
written as

(5.3) p(7) = my(y) exp(ay)
for a unique a, € a and m,(,) € M.

The composition ®¢ : 0Xr — P(V) is a continuous ¢p-equivariant
map. By the assumptions £(v4) = [B] and £(y-) = [B], one has

(y) =V and ®¢(v )=V = fH V¥
x€N(¢)—{wo}
respectively.
By definition there exists z € 0Xr distinct from 4 and - and
g € Gso such that &(z) = g€(v+). Lusztig’s Proposition 5.4 states, in
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particular, that if v € V* is non-zero then ¢,(g)v = 3
ce > 0 for all e.

Additionally, Equation (5.3) implies that ¢p(y) is the commuting
product of a matrix diagonal in B; and a finite order element. Let us

ecB; Ce® with

denote thus by Qe(7) the (possibly complex) eigenvalue of _q_ﬁp('y) of the
vector e € By and let p1(¢p(y)) be the spectral radius of ¢p(7).

If k is the order of m, ), then q_ﬁ(p('y)k) is diagonal in B, so that
Q6(7)F € R and one has for all n € N

1 7 nk Qe(’)’) nk
5.4 —_— v) = —=] cee.
(5.4) m(&p(ﬂ)nk(aﬂp(v )(gv) eg;;;d (M( (W))) e

Since vz — 74, equivariance implies ¢p(7")(gV ) — V*. Conse-
quently, given that ce > 0, Equation (5.4) yields

Qe ()| < 1 (dp(7))

for every e except the one in V' and thus the spectral radius of ép(7)
is (only) attained on V*. Consequently ¢p(7) is proximal and ®&(vy..)
is the attracting point of ¢p(y). g.e.d.

Lemma 5.11. Let h € I be parabolic with fized point x}, then there
exists k € N>1 such that p(h*) belongs to the unipotent radical of &(zp,),
moreover, there exists an open set O C F such that h"z — &(xp) for
every z € 0.

Proof. Again we can assume that G is simply laced and algebraically
simply connected and make use of Lusztig’s canonical basis B; (Propo-
sition 5.4). We assume moreover that &(z) = [B] and that [B] = £(z0)

for some auxiliary point zp € @Xr. One has then ®¢(z) = V. Let us
write

(5.5) p(h) = my,p) exp(an)un
where mj, € M has finite order, commutes with exp a;, € A and normal-
izes up € U.

Since every element of e € B belongs to a restricted weight space
Vye of #, we can order B o S0 that e > f if xe > X¢, (the order between
elements lying in the same weight space, or between weight spaces of
the same level, is not relevant for the following). The elements of A -
U are upper triangular in By, so if k is the order of m, ) then the
transformation ¢p(h¥) is upper triangular in B;.

Let us denote by u; = exp Ay (q_ﬁp(hk)) the spectral radius of ¢p(h*)
and by V,,, the sum of Jordan blocks of #p(h*) associated to u;. Since
¢ has values in SL(V') (because G is simple) one has u; > 1.

By Equation (5.5) and the definition of B, the intersection V,,, "B,
is a basis of V,,,. Denote by 7 : V' — V), the projection parallel to the
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vector space spanned by the remaining elements of B;. If £ € P(V) is
not contained in ker 7 then one has

(5.6) dp (q_sp(h)kn -, IP(V/J'I)) —0

as n — 00.

By definition, there exists x € X — {zp,20} and g € G- such
that £(z) = g - [B]. As before, if v € V' is non-zero then ¢(g)v has
positive coefficients in Bz. This implies, in particular, that ®¢(z) =
¢(g)V* kerm. Since h"z — x), one has ¢p(h)"(®€(z)) — ®&(xp), which
combined with Equation (5.6) gives ®¢(z) € V). In particular,

S(p(h*)v = .

Additionally, since h ! is also parabolic with fixed point z},, the above
argument applied to h~! gives that v € VT belongs to the eigenspace
associated to the spectral radius of ¢p(h*). However ¢p(h~*)v = p; v
so the spectral radius of ¢p(h~*) is ,ul_1 < 1. Since the spectral radius
of any element is at least 1, we obtain x; = 1 and that q_bp(h)’c is upper
triangular on Bz with 1’s in the diagonal, i.e. p(h*) € U.

Considering z € 0Xr — {zn} and g € G- as before; one has that
®¢(z) = ¢(g)VT does not belong to a ¢p(h)-invariant subspace. Con-
sequently, since ¢p(h)"®E(z) — ®€(xp), the same holds on a neighbor-
hood of ®¢(z) and the lemma is proved. q.e.d.

The following is an immediate consequence of Proposition 5.9.

Corollary 5.12. If p : I — G is partially positive then it has minimal
limit sets.

Proof. Indeed, Proposition 5.9 readily implies that the limit set L,(r) a

= £(0Xr) and moreover that L, , = pa(f(aXr)), where p, : F —
F (o} is the canonical projection. q.e.d.

5.7. Proof of Theorem B. Corollary 5.12 together with Theorem A
would complete the proof of Theorem B provided the Zariski closure
of p(I') where reductive. The purpose of this subsection is thus to by-
pass the’reductive Zariski closure’ assumption. Consequently, Proposi-
tion 5.15 below and Theorem A prove Theorem B.

We begin by recalling the following lemma. It is a well known fact
that the reader may check in Guéritaud-Guichard-Kassel-Wienhard [15,
§2.5.4] or in Benoist’s lecture notes [4].

Lemma 5.13. Let A be a group and let p € hom(A, G) have non-
solvable Zariski closure L. Let [ = h @ Ry(h) be a Levi decomposition of
the Lie algebra of L as a semi-direct product, with b reductive and R, (h)
its unipotent radical. Then there exists n € hom(A,G) whose Zariski
closure has Lie algebra by and a sequence (gn) € G with gnpg,* — 7.
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As in Guéritaud-Guichard-Kassel-Wienhard [15, §2.5.4], we say that
7 is the semi-simplification of p (regardless its Zariski closure is reduc-
tive and not necessarily semi-simple, and regardless of any uniqueness
issues). We will also require the following slight modification of [15,
Proposition 4.13] whose proof works verbatim.

Proposition 5.14 ([15, Proposition 4.13]). Let A < Isom X be non-
elementary and let p : A — G be a representation with a continuous
equivariant map £ : 0XA — F. Assume that £ is

(i) transverse, i.e. for every x #y one has (£(z),€&(y)) € F?, and

(ii) dynamics preserving, i.e. for every prozimal v € A the image p(7y)
is prozimal on F with attracting flag £(v,.).
Then the semi-simplification n : A — G of p also has a continuous
n-equivariant map satisfying both these conditions.

We proceed now to the main step.

Proposition 5.15. If p : [ — G is partially positive then its semi-
simplification n has minimal limit sets and contains a positive lozo-
dromic triple.

Proof. By continuity of the Jordan projection and Proposition 5.9,
one has that n(v) is purely loxodromic for every proximal vy € I', and
that for every parabolic h € T there exists k = kj such that n(h)* is
unipotent.

Proposition 5.14 gives a n-equivariant continuous transverse map &, :
0Xr — JF such that for every proximal v € I the flags £, (v+) and &,(v-)
are respectively the attracting and repelling flags of 1(y). The limit set

Lyr),a = &/(0Xr)

is thus minimal, and since every element of 7(I) is either purely loxo-
dromic, unipotent (up to a finite power) or elliptic, for every o € A the
limit set L, r) (»} is the projection of L, ) a} to F(,) and is thus also
minimal.

In order to find a positive loxodromic triple in &,(0Xr), we observe
that for every proximal v € I one has gné,(v+) — &y(74+) as n —
oco. Indeed, for every o € A the line ®,(gn - £,(7)) is the eigenline of
b0 (gnp(7)g; ') associated to its spectral radius

A1 (G0 (90p(Mn 1)) = M (65 (0())) = M (65 (n(7)))-

Consequently, any accumulation point of {(I>a (gn -§p('y))} is an eigenline
associated to A1 (¢4(n(7))); since ¢,(n(7)) is proximal, this eigenline is
o, (fn (7+)) .

By assumption, there exists z € X such that (£,(v4), p(2), &p(v-))
is a positive triple of flags. By Proposition 5.2, F¢ is an open subset of
F, thus, since attracting points of proximal elements are dense in 90X,
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there exists a proximal h € I such that (&,(v+),&,(hy),&(y-)) is also
a positive triple.

We claim that (&,(v+),&,(hs),&,(7-)) is a positive triple. Indeed,
let us assume with out loss of generality that &,(v+) = [B] and that
&,(7—) = [B]. One has the convergence

gn - (fp(')’+)a§p(h+)a£p(')’—)) — ([B],fr)(h+), [B])

and the triple g, - (€,(7+),€5(h4),&p(7-)) is positive by definition. We
may then also assume that for every n, gn-€,(hy) € gn-F>o. The limit
&n(hy) of the sequence gy, -§,(h4) lies thus in the topological closure F-o.
Proposition 5.2 states that every element in the topological boundary
of F¢ is not transverse to either [B] or [B]. However, as was observed
earlier, &,(h,) is both transverse to [B] and [B] and thus necessarily
lies in Fs, the topological interior of Fsg. q.e.d.

To wrap up the proof of Theorem B, we observe that the Zariski
closure of p(I') and that of its semi-simplification 7(I") have the same
reductive part h (Lemma 5.13), and Proposition 5.15 permits to apply
Theorem A to 7, giving the desired conclusion.

5.8. Hyperconvexity. To end this section we record the following re-
mark that will be useful in Bridgeman-Pozzetti-Wienhard-S. [6].

REMARK 5.16. Assume that 0 X is homeomorphic to a circle, and
that a partially positive p : [ — G verifies the extra condition that £
sends positive ordered triples on dX to positive triples of flags. Then
for every o € A and z,y, z € 0X pairwise distinct one has

(®€(z) B PE(Y)) N D2y, &(2) = {0}

Here we interpret & r2¢,6(2) as a dimV; — 2-dimensional subspace
of V. In the language of Pozzetti-S.-Wienhard [24], the remark states
that the curve ®£(0Xr) is (1,1, 2)-hyperconvex.

Proof. We can assume that G is simply laced and algebraically simply
connected. We may also assume that &(z) = [B], £€(z) = [B] and that
&(y) = gé(z) for a g € Usg. We mimic now the proof of Corollary 5.5.
Since @, (g) has positive coefficients in the basis B, , the intersection
of the plane

Py = 9¢(z) ® BE(y) = PE(z) @ do(9)BE(z) =V @ do(g)V™

with V7, is not contained in any partial sum of restricted weight sub-
spaces, in particular it is not contained in

> VX=3,25 £(2)
XEN(¢o)—{ws,mws—0}

as required. q.e.d.
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6. Group level

Let us consider now a non-elementary discrete subgroup I' < Isom(X)
of a proper Gromov-hyperbolic space X, a simple split G and the space

hom> ([, G) = {p : I = G partially positive}.

In view of Proposition 5.9, if p € hom>(Il',G) and v € T has infinite
order, then the elliptic component m,.y € M (as in Equations (5.3)
or (5.5) according to the type of ) is well defined. Once such v €T is
fixed, we get a continuous map homs (I, G) = M,

P = Mp(y),

and since M is finite, this map is locally constant. Its image is thus an
invariant of the connected component of hom> (I, G) containing p.

Let us consider p € hom> (F,SLd(R)) and denote by H the Zariski
closure of p(I'), we will use the above map to decide if p(I) is contained
in Hp, the identity component of H.

Lemma 6.1. The center of H is contained in {£id}.

Proof. Consider an element z in the center of H and a proximal v € T".
The attracting line &(y4+) of p(y) is invariant by z, let a € R be the
eigenvalue of z on &(v4+). The set {gy+ : g € T} is dense in dXr.
Additionally, g7y, is the attracting line of gyg~! and one sees that the
eigenvalue of z on £(g74) is also a. By Corollary 1.4 H acts irreducibly
on R? so {£(g74) : g € T} spans RY, giving that z is a homothety.

q.e.d.

Thus Hp is (conjugated to) one of the groups in Table 6 below.

Table 6. Identity component of the Zariski closure of p(I')

- SLd(R)’

- a principal SLy(R),

- Spy,(R) if d = 2n for all n > 1,

-SOp(n,n+1)ifd=2n+1 for all n > 1,

- the fundamental representation for the short root of Gy if d = 7.

Observe that for every infinite order v € I the elliptic component
my(y) € MM H. This latter finite group is nothing but the centralizer in
K of exp ay, so if m(,) € Ho then p(v) € Ho.

Definition 6.2. A discrete and faithful morphism pg : ' = SL4(R)
that factors as
I — SLy(R) ™ SLy4(R),

where 74 is a principal embedding, will be called principal.* Let us fix

4This is usually referred to as Fuchsian in the literature.
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9, a connected component of hom (I, SL4(R)) that contains a principal
representation.

Corollary 6.3. Assume I is torsion-free. Then for every p € §) the
group p(T) is contained in the identity component of its Zariski closure.

Proof. Observe that the group

M= Mm(su(m) - {T(_"l —01)’7(‘1)9)}

is contained in all groups in Table 6. If p € $) has Zariski closure H, then
for every v € ' — {id} one has m,.,y € M C Hy and thus p(y) C Hy.
q.e.d.

p(7)

Finally, let S be a closed connected orientable surface of genus > 2
and let p : mS — PSL4(R) belong to a Hitchin component. Assume
first that p lifts to a representation p : m S — SL4(R). Then Theo-
rem 1.2 assures that p € $(m .S, SL4(R)) and Corollary 6.3 implies that
the Zariski closure of p is the projectivisation of a group in Table 6.
The following lemma completes thus the proof of Guichard’s classifica-
tion (Corollary 1.5).

Lemma 6.4. Every Hitchin representation p : m1S — PSLy4(R) lifts
to a representation with values in SL4(R).

Proof. Culler’s Theorem 4.1 in [9] implies that every Hitchin repre-
sentation lifts provided one of them does. Additionally, if n : mS —
PSL2(R) is discrete and faithful, then n(71S) is in particular torsion-free
so [9, Corollary 2.3] implies that 7 lifts to a representation in SLa(R),
giving the desired lemma. q.e.d.

REMARK 6.5.

e The case of Hitchin representations with values in SOy(n,n) has
been treated by Carvajales-Dai-Pozzetti-Wienhard [8, Corollary
7.10].

e The above argument for Hitchin representations in SL4(R) also
applies to the cusped Hitchin representations studied by Canary-
Zhang-Zimmer [7].

Appendix A. The Hasse diagrams for extremal roots

In this appendix we prove Lemma 3.4. To this end we compute
the Hasse diagrams for the extremal roots of irreducible reduced root
systems and compute, in a case by case manner, the existence/non-
existence of surjective level preserving maps between them. Let us sim-
plify notation and denote, for a simple root z € Aj of some root system
J, by S{i the Hasse diagram f}{fzr for the fundamental weight .
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Most of the situations are ruled out by the following simple facts. If
f: AL — Ay is surjective and T/ : S{CLX — 9{}(0) is a surjective diagram
map with labeling f then:

- rank J <ranklL,

- both K" and f}{}(a) have the same total amount of levels,

- if x is the only vertex at a given level, then the number of arrows
pointing downwards in K" is greater than that of T/(x) in f}{}( a)’
to show non-existence of such f, it sufficient to find one extremal
root of L whose Hasse diagram does not surject to any diagram of
J (for extremal roots).

We refer the reader to the corresponding figures for the labeling of
simple roots for each Dynkin diagram.

Lemma A.l. Leaving aside the case f = identity, one has the fol-
lowing.

- Type A: The only surjective diagram map T/ : 9{2;1 — f}{i with x
extremal are
-d=2n and J = B,, and z =  for all n and moreover Gy
and z =« if d = 6,
-d=2n-1,J=C, and z = .
- Type B: The only surjective diagram maps T7 : 3{5" — 9{; with z
extremal isn =3 and J = Gy and =z = a.
- Type C: There is no surjective diagram map T/ : S{E" — f}{i with x
extremal.
- Type D: The only surjective diagram maps T/ : 9{2" — f}{i with x
extremal are
- J=B,_1 withz = for alln,
- moreover one has J = B3 with x = a and J = Gy with
r=aifn=4.

Proof. Observe that all Hasse diagrams 3{21", 9{2" (Figure 4) and
%g" (Figure 5) consist on exactly one arrow exiting each vertex. By

restricting the total amount of levels given by the existence of T/ to-
gether with the fact that rankJ < n (in each case) one completes the
proof. A similar argument works for f}{gl" (see also Figure 3). q.e.d.

We now treat the type E family, we will show that there is no surjec-
tive diagram map from J{Ek for k = 6, 7 or 8 to any other Hasse diagram
) with extremal z, except for HE — HF4 (as shown in Figure 9).

Lemma A.2. There is no surjective map T{ from S{Ek fork=6,7
or 8 onto any of 9{2" R f}{ﬁ", f}{g", f}{(ﬁ:“, for n < 8 nor onto 3{22 or
HEC2,
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Figure 4. Hasse for extremal roots of A, (left) and B, (right).
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896 A. SAMBARINO

|s
o
B2 )
o o
Ba o

NN fYAY

4

o
s NE NE LN
Bs 7 \g 3/
o o o o
Bs B B
13/\‘32 ‘346

Bs

Be

B2

\'3‘" A N

(o]
1
1
1
1

B3

@y UP to level 10 Ig 9{,576 up to level 7

B8 B2 Bs &

-—--0

HE

Figure 6. Hasse for extremal roots of the E family.

Proof. The non-existence of such map comes from the fact that HE
has too many levels (compared to the fact that n must be smaller than
k), observe that Figure 6 depicts 9{5" up to levels 9, 10 and 11 respec-

tively for £k = 6, 7 or 8. The case 3{52 is readily discarded since it has
7 levels.

We now treat S{i for J = A, B,,, C, and z = 3. Since these diagrams
consist on only one arrow pointing downwards at each level, from Figure
6 one sees that if such a T/ existed then necessarily

f(B2) = f(o) = f(B) = f(Bs) = f(Ba).
Since f is surjective, the above equalities imply that J has rank < k—4,
that is n < k — 4 < 4. However %24 has 5 levels, %g‘* has 9 levels and

9{24 has 8 levels, but HE has at least 9 levels (actually at least 17 as
seen in Figure 9).
Finally, from Figure 8 one sees that 9{22 has 14 levels but Figure 9

shows that HE has at least 17 levels. q.e.d.
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Figure 7. Hasse for extremal roots of the E family, continued.

Lemma A.3.

- There is no surjective map T/ from J{Ek k=6,7 or 8 onto 9{5",
HCn, HOn ~ HOn HE (j =6, 7 or 8), Hat™", (if k=17 or 8)
HeE 2 (if k=8).

- There is no surjective map TY from 9{57 or 9{58 onto 3{5"', 3{51’

(j=6,7 or8), Hg* and HEL.

Proof. In S{Ek the first level with more than one exiting arrow is at
least 4, however the diagrams appearing in the first item have 2 exiting
arrows at the third level. Similarly the first level with more than one
exiting arrow in HE” or HE* is at least 5, but the diagrams listed in the
second item have earlier multiple exiting arrows. q.e.d.

The E family is thus achieved with the next Lemma.
Lemma A.4. There is no surjective map T/ from U{E’C for k €
{6,7,8} onto HP".

Proof. Since in 9{2" there is only one arrow starting at each node

for every level up to n — 2, if such a T/ exists then one must have
n—2 = k — 3. However, by looking at the levels after the first rhombus
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Figure 8. Hasse for extremal roots of F4 (left) and G2 (right).

in Figure 6 one sees that

f(B) = f(o) = (B3),

thus n < k — 2, which is a contradiction with n =k — 1. q.e.d.
We now deal with F4 and Gs.
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Lemma A.5.

- Let © be an extremal root of F4. Then, other than f =id, there is
no surjective map TS from 9{54 to any other Hasse diagram i}fi
for extremal z.

- Let x be a root of I's. There, other than f = id, there is no
surjective map T/ from i}fg’* to any other Hasse diagram i}fi for
extremal z.

Proof. Follows easily since the other reduced root systems with rank J
<4 and < 2 respectively do not have enough levels. q.e.d.
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