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Abstract We study special flows associated to Hitchin representations of a surface group,
namely the simple root flows. We introduce and discuss the Liouvlle geodesic current which
plays a singular role amongst all the natural invariant currents associated to such a represen-
tation. Finally, we discuss a rigidity result and a pressure metric associated to the first simple
root flow.
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1 Introduction

Anosov representations [15,20] from a hyperbolic group to a semi-simple Lie group are
characterized by their dynamical nature. In the context of projective Anosov representations,
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we [7] previously associated a metric Anosov flow to such a representation and showed that
the (thermo)dynamical properties of this flow yield in turn new structures on the deformation
space of these representations: entropy functions, (pressure) intersections and a pressure
metric.

In this paper, we focus on Hitchin representations of a surface group into PSLd(R). We
associate awealth of flows to aHitchin representation, and hence geodesic currents, entropies,
pressure forms etc., depending essentially on an element in the Weyl chamber.

Let us be more specific. If E is a real vector space of dimension d and S is a closed
surface, a representation ρ : π1(S) → PSL(E) is d-Fuchsian if it is the composition of a
Fuchsian representation into PSL(2,R) and an irreducible representation of PSL(2,R) into
PSL(E). A representation ρ : π1(S) → PSL(E) is a Hitchin representation if it may be
continuously deformed to a d-Fuchsian representation. Hitchin [17] showed that the Hitchin
component Hd(S) of (PGL(E)-conjugacy classes of) Hitchin representations into PSL(E)

is an analytic manifold diffeomorphic to R
(d2−1)|χ(S)|. Labourie [20] showed that a Hitchin

representation is a discrete, faithful quasi-isometric embedding and that the image of every
non-trivial element γ is diagonalizable over R with eigenvalues of distinct modulus:

λ1 (ρ(γ )) > λ2 (ρ(γ )) > · · · > λd (ρ(γ )) > 0.

Moreover, there are Hölder-continuous, ρ-equivariant limit curves ξρ : ∂∞π1(S) → P(E)

and ξ∗
ρ : ∂∞π1(S) → P(E∗) whose images are C1+α-submanifolds. This last feature is

very specific to Hitchin representations—see Sect. 3.2 (Theorem 3.2) and Guichard [14] for
details.

LetG(S) = ∂∞π1(S)2\
 be the space of distinct points in theGromov boundary ∂∞π1(S)
of π1(S). We say that a flow over G(S) is an R-principal bundle L over G(S) equipped with
a properly discontinuous and co-compact action of π1(S) by bundle automorphisms. The
R-action on the quotient space UL = L/π1(S) is a flow, which justifies the terminology.
Given a geodesic current ω, i.e. a π1(S)-invariant locally finite measure on G(S), we define
a pairing

〈ω | L〉 :=
∫
UL

ω ⊗ dt

where dt is the element of arc length given by the R action.
We focus on the simple root flows associated to a Hitchin representation ρ (see Sect. 3.3).

For each i ∈ {1, . . . , d − 1} there is a flow Lαi
ρ over G(S) such that if δγ is the geodesic

current with Dirac measure one on every (oriented) axis of an element conjugate to γ , then

〈
δγ | Lαi

ρ

〉 = Lαi (ρ(γ )) := log

(
λi (ρ(γ ))

λi+1 (ρ(γ ))

)
.

Equivalently, if we letUαi (ρ) be the quotient flowwith associated element of arc length dsαi
ρ ,

then the period of Uαi (ρ) associated to γ ∈ π1(S) is given by Lαi (ρ(γ )), the Lαi -length
function.

We also consider the Hilbert flow LH(ρ) associated to ρ which is determined, up to Hölder
conjugacy, by

〈
δγ | LHρ

〉
= L H (ρ(γ )) := log

(
λ1 (ρ(γ ))

λd (ρ(γ ))

)
,

for any non-trivial γ ∈ π1(S).
Potrie and Sambarino show that the entropy of simple root flows is constant and charac-

terize Fuchsian representations in terms of the entropy of the Hilbert flow.
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Theorem 1.1 (Potrie–Sambarino [32]) The topological entropy of a simple root flow is 1 for
all Hitchin representations. Moreover, a Hitchin representation ρ ∈ Hd(S) is d-Fuchsian if
and only if the topological entropy of the Hilbert flow is 2

d−1 .

One of the main constructions of our paper is to single out, amongst all geodesic currents
associated to a Hitchin representation, a specific asymmetric current called the Liouville
current ωρ . This Liouville current was introduced in [21] and characterized by the cross ratio
bρ of ρ as discussed in Sect. 4.1. If (t, x, y, z) are four points in cyclic order in ∂∞π1(S),
then

ωρ ([t, x] × [y, z]) = 1

2
log

( 〈u | 
〉〈v | �〉
〈u | �〉〈v | 
〉

)
.

where u, v, 
 and � are non zero elements in ξρ(t), ξρ(x), ξ∗
ρ (y) and ξ∗

ρ (z) respectively.
As a consequence of Labourie’s work on cross ratios for Hitchin representations [21], this

gives an embedding of the space of all Hitchin representations into the space of geodesic
currents.

Theorem 1.2 If ρ and σ are two Hitchin representations—of possibly different dimensions—
with the same Liouville current, then ρ = σ .

The Liouville current enjoys the following properties.

Theorem 1.3 If ρ is a Hitchin representation, then

(1) The current ωρ is the unique current—up to scalar multiplication—in the class of the
Lebesgue measure for the C1 structure on G(S) associated to the embedding (ξ, ξ∗).

(2) The measure ωρ ⊗dsα1ρ is—up to scalar multiplication—the unique measure maximizing
entropy for the flow Uα1(ρ).

(3) If μ is a geodesic current, then

i
(
μ,ωρ

) =
〈
μ | LHρ

〉
.

Our Liouville current is closely related to the symmetric Liouville currents defined by
Bonahon [1], when d = 2, and Martone–Zhang [26]. In fact, one may view their Liouville
currents as symmetrizations of our Liouville current.

We define the Liouville volume of a representation, by

volL(ρ) = i(ωρ, ωρ),

and establish the following volume rigidity result, which is motivated by work of Croke and
Dairbekov [12].

Theorem 1.4 If ρ, η ∈ Hd(S), then
⎛
⎝ inf

γ∈π1(S)\{1}

〈
δγ | LHρ

〉
〈
δγ | LHη

〉
⎞
⎠

2

� volL(ρ)

volL(η)
�

⎛
⎝ sup

γ∈π1(S)\{1}

〈
δγ | LHρ

〉
〈
δγ | LHη

〉
⎞
⎠

2

and equality holds in either inequality if and only if either ρ = η or ρ = η∗ where η∗ is the
contragredient of η.

When d = 3, we apply work of Tholozan [36, Theorem 3] to obtain a simpler volume
rigidity result.
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Corollary 1.5 If ρ ∈ H3(S), then

volL(ρ) � 4π2|χ(S)|.
Moreover, equality holds if and only if ρ is 3-Fuchsian.

We return to the themes explored in [7], by constructing a new, hopefully more tractable,
pressure metric on a Hitchin component. If ρ, η ∈ Hd(S), we define their Liouville pressure
intersection to be

Iα1(ρ, η) := 1〈
ωρ | Lα1

ρ

〉 〈ωρ | Lα1
η

〉
.

If ρ ∈ Hd(S), we define a function (Iα1)ρ : Hd(S) → R by letting (Iα1)ρ(η) = Iα1(ρ, η).
Using the thermodynamic formalism developed by Bowen [3], Ruelle [33] and Parry–

Pollicott [30] we show that (Iα1)ρ has a minimum at ρ, and its Hessian Pα1 at ρ is positive
semi-definite. We call Pα1 the Liouville pressure quadratic form. This construction is moti-
vated by Thurston’s version of the Weil–Petersson metric on Teichmüller space (see Wolpert
[37]) as re-interpreted by Bonahon [1], McMullen [27] and Bridgeman [5].

We show that Pα1 is non-degenerate, hence gives rise to a Riemannian metric, and apply
work of Wolpert [37] to see that it restricts to a multiple of the Weil–Petersson metric on the
Fuchsian locus.

Theorem 1.6 The Liouville pressure quadratic form Pα1 is a mapping class group invariant,
analytic Riemannian metric on Hd(S), that restricts to a scalar multiple of the the Weil–
Petersson metric on the Fuchsian locus.

The main tool in the proof of the non-degeneracy of Pα1 is that the Lα1 -length functions
of elements of π1(S) generate the cotangent space of the Hitchin component. More precisely,
if γ ∈ π1(S), let Lγ

α1 : Hd(S) → R be given by

Lγ
α1
(ρ) = Lα1 (ρ(γ )) = 〈

δγ | Lα1
ρ

〉
.

Theorem 1.7 If ρ ∈ Hd(S), then the set
{
Dρ Lγ

α1

}
γ∈π1(S)

generates, as a vector space, the cotangent space T∗
ρHd(S).

We can also give an interpretation of Iα1 in terms more reminiscent of the construction
in [7]. This interpretation generalizes to give pressure quadratic forms associated to other
simple roots. If T > 0 and i ∈ {1, . . . , d − 1}, let

Rαi (ρ, T ) = {[γ ] ∈ [π1(S)]\{[1]} | Lαi (ρ(γ )) � T
}
.

We then define an associated pressure intersection

Iαi (ρ, η) = lim
T →∞

1

#Rαi (ρ, T )

∑
γ∈Rαi (ρ,T )

Lαi (η(γ ))

Lαi (ρ(γ ))
.

The associated function (Iαi )ρ has a minimum at ρ, and we again obtain, by considering the
Hessian of (Iα1)ρ , a positive semi-definite quadratic pressure form Pαi . It is natural to ask
when Pαi is non-degenerate. In a final section, we observe that Pαn is degenerate onH2n(S)
at any Hitchin representation with image (conjugate into) PSp(2n), see Proposition 8.1.
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We recall that our original pressure metric from [7] was obtained as the Hessian of a
renormalized pressure intersection

J(ρ, η) = h(ρ)

h(η)
lim

T →∞
1

#R1(ρ, T )

∑
γ∈R1(ρ,T )

L1 (η(γ ))

L1 (ρ(γ ))

where L1 (ρ(γ )) = log λ1 (ρ(γ )), R1(ρ, T ) = {[γ ] ∈ [π1(S)]\{[1]} | L1 (ρ(γ )) � T } and
the spectral radius entropy h(ρ) is the exponential growth rate of R1(ρ, T ).

There are twomain advantages of the Liouville pressuremetric with respect to the pressure
metric defined in [7]. First, due to work of Potrie and Sambarino [32], we do not have to
renormalize the pressure intersection by an entropy. Second, the Bowen–Margulis measure
associated to the first simple root is directly related to the cross ratio of the representation.
We hope that these two facts will make the Liouville pressure metric more accessible to
computation. It follows from work of Zhang [38] and Theorem 1.4 that the Liouville volume
is non-constant onHd(S)when d � 3, so one cannot directly use the Hessian of intersection
to construct a metric, as Bonahon [1, Theorem 19] does to reconstruct the Weil–Petersson
metric when d = 2.

2 Dynamical background

In Sects. 2.1 and 2.2 we recall the thermodynamic formalism of Bowen and Ruelle [3,4,33],
which was further developed by Parry and Pollicott [30]. We then discuss geodesic currents
(in Sect. 2.3) and describe the relationship between contracting line bundles and flows (in
Sect. 2.4).

2.1 Basic definitions

Let X be a compact metric space and φ = {φt : X → X}t∈R be a topologically transitive,
metric Anosov flow on X . (Metric Anosov flows were first defined by Pollicott [31] who
called them Smale flows.) Let Oφ be the collection of periodic orbits of the flow φ and and
define

Rφ(T ) = {
a ∈ Oφ | �(a) � T

}
where �(a) is the period of a. The topological entropy of the flow φ is given by

h(φ) = lim
T →∞

log #Rφ(T )

T
.

If α > 0, let Holα(X,R) be the space of α-Hölder continuous functions on X .
If f ∈ Holα(X,R), let

� f (a) =
∫

X
f dδ̂a

where δ̂a is a φ-invariant measure supported on a with total mass �(a). Let

Rφ( f, T ) = {
a ∈ Oφ | � f (a) � T

}
and define

hφ( f ) = lim
T →∞

log #Rφ( f, T )

T
.
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If f is positive, we obtain a new flow φ f on X by reparametrizing φ by f . Concretely,
φ f is determined by the formula

φ
f

k f (x,t)
(x) = φ

f
t (x)

where k f (x, t) = ∫ t
0 f (φs x)ds for all x ∈ X and t ∈ R. Notice that if ds is an element of arc

length for the flow lines of φ, then f ds is an element of arc length for the flow lines of φ f .
The flow φ f is Hölder orbit equivalent to φ and if a ∈ Oφ = Oφ f , then � f (a) is the

period of a in the flow φ f . In this case, hφ( f ) is the topological entropy h(φ f ) of the flow
φ f .

We will say that f, g ∈ Holα(X,R) are Livšic cohomologuous if there exists U : X → R

such that for all x ∈ X one has

f (x) − g(x) = ∂

∂t

∣∣∣∣
t=0

U (φt x).

Recall that f and g are Livšic cohomologous if and only if � f (a) = �g(a) for all a ∈ Oφ .
Moreover, if f and g are positive, then φ f and φg are Hölder conjugate if and only if f and
g are Livšic cohomologuous (see Livšic [25]).

If Mφ is the space of φ-invariant probability measures on X and m ∈ Mφ , let h(φ,m)

be the metric entropy of m. Then, for f ∈ Holα(X,R), the topological pressure is

Pφ( f ) = sup
m∈Mφ

{
h(φ,m) +

∫
X

f dm

}
.

Ameasure that attains this supremum is called an equilibrium state for f and an equilibrium
state for the zero function is called a measure of maximal entropy.

If f ∈ Holα(X,R) is positive, Bowen [2, Theorem 5.11] (see also Pollicott [31, Theorem
9]) showed that the measure of maximal entropy for φ f is given by the Bowen–Margulis
measure for φ f

lim
T →∞

1

#Rφ( f, T )

∑
a∈OX

δ̂a

� f (a)

where δ̂a is the product of Dirac measure on the orbit a and the element of arc length on a in
φ f .

We make use of the following result of Sambarino [34, Lemma 2.4].

Lemma 2.1 Suppose that f ∈ Holα(X,R) is positive. If m−hφ( f ) f is the equilibrium state
of −hφ( f ) f , then

dm# = f dm−hφ( f ) f∫
f dm−hφ( f ) f

is the measure of maximal entropy of φ f .

If f, g ∈ Holα(X,R) are positive, we define their pressure intersection1 by

I( f, g) = lim
T →∞

1

#Rφ( f, T )

∑
a∈Rφ( f,T )

�g(a)

� f (a)
=
∫

gdm−h( f ) f∫
f dm−h( f ) f

. (1)

1 We emphasize the terminology pressure intersection which is meant to distinguish pressure intersection
from the intersection defined by Bonahon [1].
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The last equation follows from [7, Section 3.4]. We define the renormalized pressure inter-
section by

J( f, g) = hφ(g)

hφ( f )
I( f, g).

In [7, Cor. 2.5, Propositions 3.11 and 3.12], we used results of Parry–Pollicott [30] and
Ruelle [33] to prove the following.

Proposition 2.2 If φ is a topologically transitive metric Anosov flow on a compact metric
space X, then

(1) If f ∈ Holα(X,R) is positive, then the function J f defined by J f (g) = J( f, g) has a
global minimum at f. Therefore, Hess J f is positive semi-definite.

(2) If { ft }t∈(−ε,ε) ⊂ Holα(X,R) is a smooth one-parameter family of positive functions,
then

∂2

∂t2

∣∣∣
t=0

J( f0, ft ) = 0

if and only if, for every a ∈ Oφ , one has

∂

∂t

∣∣∣
t=0

hφ( ft )� ft (a) = 0.

(3) If { fu}u∈M and {gv}v∈M ′ are analytic families of positive α-Hölder functions
parametrized by analytic manifolds M and M ′, then J( fu, gv) is an analytic function
on M × M ′.

2.2 Expansion on periodic orbits

Assume now that X is a manifold and that φ is a C1+α Anosov flow with unstable bundle
Eu . Denote by λu

φ : X → (0,∞) the infinitesimal expansion rate on the unstable direction,
defined by

λu
φ(x) = ∂

∂t

∣∣∣∣
t=0

1

κ

∫ κ

0
log det

(
dxφt+s |Eu) ds

for some κ > 0.
We record the following observations (see [32, Section 2.2] for further discussion):

(1) If a ∈ Oφ , then

�λu
φ
(a) =

∫
a
λu
φ = log det

(
dxφ�(a)|Eu)

is the total expansion of φ along a.
(2) The Livšic-cohomology class of λu

φ does not depend on κ.

(3) If φ−1 is the inverse flow φ−1
t = φ−t , it follows from Livšic’s Theorem [25] that φ

preserves a measure in the class of Lebesgue if and only if λu
φ is Livšic cohomologuous

to λu
φ−1 .

We make crucial use of the following classical result of Sinai, Ruelle and Bowen.

Theorem 2.3 (Sinai–Ruelle–Bowen [4])Letφ be aC1+α Anosov flow on a compact manifold
X, then P(− λu

φ) = 0. Moreover, if φ preserves a measure in the class of Lebesgue, then this
measure is the equilibrium state of − λu

φ.
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Bowen and Ruelle state their result in the C2 setting, but the proof may be extended to the
C1+α setting by applying [16, Propositions 19.16 and 20.4.2].

2.3 Geodesic currents

Let � be a hyperbolic group which is not virtually cyclic. Let G(�) be the space of pair of
distinct points, whichwe think of as the space of oriented geodesics, on theGromov boundary
∂∞� of �:

G(�) := {(x, y) ∈ ∂∞� | x �= y}.
A geodesic current for � is a�-invariant locally finite measure on G(�). If γ is a primitive

infinite order element of � with attracting fixed point γ+ ∈ ∂∞� and repelling fixed point γ−
and δ(x,y) is the Dirac measure supported at (x, y) ∈ G(�), we define the geodesic current

δγ :=
∑
γ̂∈[γ ]

δ(γ̂−,γ̂+).

where [γ ] is the conjugacy class of γ in �. If α = γ n where α is primitive and n > 0, we let
δα = nδγ .

We let C(�) denote the space of geodesic currents on � and endow it with the weak-*
topology. When � = π1(S), for a closed surface S, we write G(S) and C(S) for G (π1(S))
and C (π1(S)).

Following Bonahon [1, Section 4.2], we define a continuous, symmetric, bilinear pairing,
called the intersection

i : C(S) × C(S) → R

so that if α, β ∈ �, then i(δα, δβ) is the geometric intersection number of the curves on S
representing α and β. Let DG(S) ⊂ G(S) × G(S) denote the space of pairs (x, y) and (u, v)
of oriented geodesics which intersect, i.e. so that x and y lie in distinct components of
∂∞π1(S) − {u, v}. We then define

i(μ, ν) =
∫
DG(S)/π1(S)

dμ ⊗ dν.

A geodesic current is symmetric if it is invariant by the involution ι : (x, y) �→ (y, x).
Bonahon [1] works entirely in the setting of symmetric geodesic currents. In fact, he defines
a geodesic current as a measure on the space Ĝ(�) = G(�)/ι of unordered pairs of distinct
points in ∂∞�. A geodesic current μ in our sense naturally pushes forward to a geodesic
current μ̂ in the sense of Bonahon. Moreover, if μ, ν ∈ C(S), then i(μ, ν) agrees with the
intersection, in the sense of Bonahon, of μ̂ and ν̂.

2.4 Contracting line bundles and flows

Gromov [13] defined a geodesic flowU(�) for a hyperbolic group�, which is well-defined up
to Hölder orbit equivalence, see Champetier [9] and Mineyev [28] for detailed constructions.
The closed orbits ofU(�) are in one-to-one correspondencewith conjugacy classes of infinite
order elements of �. There is a trivial Hölder R principal bundle L� = Ũ(�) over G(�)

equipped with a properly discontinuous action of � by bundle automorphisms, so that L�/�

equipped with the flow coming from the action of R is Hölder orbit equivalent to U(�).
Moreover, Ũ(�)may be parametrized as G(�)× R where the action of R is by translation in
the second factor. We will mostly be interested in the situation whereU(�) is metric Anosov.
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In [7, Section 5], we showed that, whenever a � admits an Anosov representation, U(�)

is indeed metric Anosov. In this paper, we will focus on the case where � = π1(S), in which
case U(�) may be taken to be the geodesic flow on the unit tangent bundle of a hyperbolic
surface Y homeomorphic to S, and will be denoted U(S), and L� may be identified with the
geodesic flow on the unit tangent bundle of the universal cover of Y , and will be denoted
U(S̃).

A flow over G(�) is a Hölder R-principal line bundle L over G(�) equipped with a
properly discontinuous action of � by Hölder bundle automorphisms, so that the quotient
flow on UL := L/� is Hölder orbit equivalent to the geodesic flow of �. In other words, one
may think of a flow over G(�) as a parametrization of the geodesic flow of �.

Given a geodesic current ω and a flow L over G(�), we define a pairing

〈ω | L〉 :=
∫
UL

ω ⊗ dt

where dt is the element of arc length onUL given by theR-action. Given a flow L the function
ω �→ 〈ω | L〉 from C(�) to R is continuous.

We observe that, for every non trivial element γ in �,
〈
δγ | L〉 is the length of the periodic

orbit associated to γ in UL, or, equivalently, the translation distance of the action of γ on the
fiber L(γ−,γ+). The map γ �→ 〈

δγ | L〉 is the length spectrum of L. If U(�) is metric Anosov,
then, by Livšic’s Theorem, the length spectrum determines the quotient flowUL up to Hölder
conjugacy.

LetM be a Hölder line bundle overU(�), equipped with a lift of the geodesic flow {ψt }t∈R
on U(�) to a Hölder flow {�t }t∈R onM by bundle automorphisms (i.e. the restriction of �t

is a linear automorphism from Mz to Mψt (z) for all z ∈ U(�) and all t ∈ R). We say that M
is contracting if there exist a metric ‖ · ‖ on M and t0 > 0 so that

‖�t0(u)‖ � 1

2
‖u‖,

for all u in M. Every such line bundle has a contraction spectrum γ �→ c(γ ), where if the
periodic orbit of U(�) associated to γ ∈ π1(S) has period tγ , then

‖�tγ (v)‖ = e−c(γ )‖v‖
for any vector v in a fiber over the periodic orbit. Again Livšic’s Theorem guarantees that
two line bundle with the same contracting spectrum are isomorphic.

The notions of contracting line bundles and flow are equivalent.

Proposition 2.4 Let � be a hyperbolic group whose geodesic flow is metric Anosov. Then

(1) Given a contracting line bundleM overU(�), there exists a flow over G(�) whose length
spectrum coincides with the contracting spectrum of M.

(2) Conversely, given a flow L over G(�), there exists a contracting line bundle over U(�)

whose contracting spectrum is the length spectrum of L.

Proof Given a contracting line bundle M over U(�), we construct a flow LM over G(�) by
the following procedure

(1) First, liftM to a line bundle M̃ over Ũ(�) and let {�̃t }t∈R be the lift of the flow {�t }t∈R
onM.

(2) We consider the corresponding R-principal line bundle L̂M over Ũ(�) equipped with an
action of � by bundle automorphisms; concretely the fiber of L̂M over (x, y, s) ∈ Ũ(�)
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is (M̃(x,y,s) − {0})/ ± 1, i.e. non-zero vectors up to sign, and the action of t ∈ R takes
[v] ∈ (̂LM)(x,y,s) to [etv].

(3) Let π : Ũ(�) → G(�). We define LM := π∗L̂M, that is the bundle whose sheaf of
sections are the sections of L̂M invariant by the flow: More explicitly, for all t ∈ R,
(x, y, s) ∈ Ũ(�) and [v] ∈ (̂LM)(x,y,s), we identify [v] with [�̃t (v)] and notice that the
quotient is a principal R-bundle over G(�).

The proof of [7, Proposition 4.2] generalizes immediately to yield the first part of our
proposition.

We now establish our second claim. Let L be a flow over G(�). Consider the trivial bundle
M̃ = L×R over L equipped with the trivial lift of the action of� given by γ (x, v) = (γ x, v).
Lift the flow {φ̃t }t∈R on L to the flow

�̃t (x, v) =
(
φ̃t (x), e−tv

)

on M̃. These two actions commute and we obtain a contracting line bundleM := M̃/� over
UL equipped with the quotient flow {�t }t∈R whose contracting spectrum agrees with the
length spectrum of L. ��

As an immediate consequence, the tensor product on principal R bundles gives rise to an
inner product, also called the tensor product,

(L0,L1) �→ L0 ⊗ L1,

on geodesic flows, which is equivalent to the tensor product of the corresponding contracting
line bundles. The length spectrum of the tensor product is then the sum of the two length
spectra and thus for any geodesic current μ ∈ C(�)

〈μ | L0 ⊗ L1〉 = 〈μ | L0〉 + 〈μ | L1〉
since any current may be approximated by linear combinations of currents associated to
group elements. Given a positive number t , which we may view as an element of Aut(R),
we can renormalise the action of R on the R-bundle L to obtain a new bundle Lt so that〈

μ | Lt 〉 = t 〈μ | L〉 .
One can check then that for a positive integer n,

Ln =
n︷ ︸︸ ︷

L ⊗ · · · ⊗ L.

3 Hitchin representations and their associated flows

In Sects. 3.1 and 3.2 we recall the definitions and basic properties of projective Anosov and
Hitchin representations. In Sects. 3.3 and 3.4 we use the techniques of Sect. 2.4 to construct
families of flows associated to such representations.

3.1 Projective Anosov representations

It will occasionally be useful to work in the more general class of projective Anosov rep-
resentations. A representation ρ : � → SL(d,R) with domain a hyperbolic group � has
transverse projective limit maps if there exist continuous, ρ-equivariant functions
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ξρ : ∂∞� → P(Rd)

and

ξ∗
ρ : ∂∞� → P((Rd)∗)

so that if x and y are distinct points in ∂∞�, then

ξρ(x) ⊕ ker ξ∗
ρ (y) = R

d .

Recall that a representation ρ : � → SL(d,R), with domain a hyperbolic group �,
gives rise to a flat R

d -bundle Eρ over U(�) and that the geodesic flow φ on U(�) lifts to
a flow ψρ parallel to the flat connection on Eρ . Explicitly, let Ẽρ = Ũ(�) × R

d and let
(ψ̃ρ)t (z, v) = (φ̃t (z), v) where φ̃t is the lift of the geodesic flow φt on U(�) to Ũ(�). The
group � acts on Ẽρ by the action of � on the first factor and ρ(�) on the second factor, and
the quotient is the flat bundle Eρ and the flow {(ψ̃ρ)t }t∈R descends to a flow ψρ on Eρ .

A representation ρ with transverse projective limit maps determines a ψρ-invariant split-
ting �ρ ⊕ �ρ of the flat bundle Eρ over U(�). Concretely, the lift �̃ρ of �ρ has fiber ξρ(x)
and the lift �̃ρ of �ρ has fiber ker ξ∗

ρ (y) over the point (x, y, t) ∈ Ũ(�). One says that ρ is
projective Anosov if the resulting flow on the associated bundle

Hom(�ρ,�ρ) = �ρ ⊗ �∗
ρ

is contracting.
Projective Anosov representations are quasi-isometric embeddings with finite kernel, see

[15, Theorem 5.3] and [22, Theorem 1.0.1] for Hitchin representations. The following result
is also a standard consequence of the definitions, see, for example, [7, Proposition 2.6]).

Lemma 3.1 If ρ : π1(S) → SL(d,R) is projective Anosov and γ ∈ π1(S) is non-trivial,
then ρ(γ ) is proximal with attracting line ξ(γ+) and repelling hyperplane θ(γ−). Moreover,
there exist positive constants B and C such that

log
λ1 (ρ(γ ))

λ2 (ρ(γ ))
� B�(γ ) − C

where �(γ ) is the reduced word length of γ .

3.2 Hitchin representations

If ρ : π1(S) → PSLd(R) is a Hitchin representation, it admits a lift ρ̃ : π1(S) → SL(d,R).
We will abuse notation and denote the flat bundle Eρ̃ associated to this lift by Eρ . (The flat
bundle depends on the choice of lift, but this choice will not matter for our purposes).

Labourie [20] showed that every Hitchin representation ρ admits a continuous
ρ-equivariant limit map ξ̂ρ : ∂∞π1(S) → Fd where Fd is the space of complete flags
in R

d . We summarize its crucial properties below.

Theorem 3.2 (Labourie [20]) If ρ ∈ Hd(S), there exists a unique ρ-equivariant Hölder
continuous map ξ̂ρ : ∂∞π1(S) → Fd such that

(1) If d = n1 + · · · + nk, where each nk ∈ N, and {z1, . . . , zk} ⊂ ∂∞π1(S) are pairwise
distinct, then

ξ̂ (n1)
ρ (z1) ⊕ · · · ⊕ ξ̂ (nk )

ρ (zk) = R
d .
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(2) The image ξ̂
(1)
ρ (∂∞π1(S)) is a C1+α manifold for some α > 0.

(3) The splitting
⊕d

i=1 M̃
i
ρ of Ẽρ into line bundles so that (M̃i

ρ)(x,y,t) = ξ̂
(i)
ρ (x)∩ξ̂

(n−i+1)
ρ (y)

descends to a splitting
⊕d

i=1M
i
ρ of Eρ into line bundles, so that Mi

ρ ⊗ (M j
ρ)

∗ is con-
tracting if i < j .

It is well-known that any exterior power of a (lift of a) Hitchin representation is projective
Anosov (see for exampleGuichard–Wienhard [15, Pop. 4.4]). Guichard has shown conversely
in [14] that the existence of such limit maps characterize Hitchin representations.

Proposition 3.3 If ρ ∈ Hd(S), ρ̃ : π1(S) → SL(d,R) is a lift of ρ, k ∈ {1, . . . , d − 1}, and
Ek ρ̃ : π1(S) → SL(�k

R
d) is the kth exterior power of ρ̃, then Ek ρ̃ is projective Anosov.

If ρ ∈ Hd(S), then

ξρ = ξρ̃ = ξ̂ (1)
ρ and ker ξ∗

ρ (x) = ker ξ∗
ρ̃ (x) = ξ̂ (d−1)

ρ (x),

i.e. ξ∗
ρ (x) is the projective class of linear functionals with kernel ξ̂

(d−1)
ρ (x). More generally,

if ρ ∈ Hd(S), we may choose for each x ∈ ∂∞π1(S) a basis {ei (ρ, x)} for R
d so that ξ̂ ( j)

ρ (x)
is spanned by {e1(ρ, x), . . . , e j (ρ, x)}. The limit maps for Ek ρ̃ are given by

ξEk ρ̃ (x) = 〈e1(ρ, x) ∧ · · · ∧ ek(ρ, x)〉
and

ker ξ∗
Ek ρ̃

(x) = 〈
e j1(ρ, x) ∧ · · · ∧ e jk (ρ, x) | 1 � j1 < j2 < · · · < jk, jk > k

〉
.

Onemay checkdirectly thatHom(�Ek ρ̃ , �Ek ρ̃ ) is contracting andhence thatE
k ρ̃ is projective

Anosov, by applying part (3) of Theorem 3.2.
If we apply Lemma 3.1 to the exterior product Ei ρ̃ of a (lift of a) Hitchin representation

we obtain:

Lemma 3.4 If ρ ∈ Hd(S) and i ∈ {1, . . . , d − 1}, then there exist Bi > 0 and Ci so that

log
λi (ρ(γ ))

λi+1 (ρ(γ ))
� Bi�(γ ) − Ci

where �(γ ) is the reduced word length of γ .

Lemma 3.4 can also be derived directly from part (3) of Theorem 3.2.

3.3 Flows for Hitchin representations

Theorem 3.2 provides several contracting line bundles over U(S) associated to a Hitchin
representation ρ ∈ Hd(S).

(1) The spectral radius line bundleM1
ρ .

(2) The simple root line bundlesMαi
ρ := Mi

ρ ⊗ (Mi+1
ρ )∗.

(3) The Hilbert line bundleMH
ρ := M1

ρ ⊗ (Md
ρ)

∗.

Proposition 2.4 shows that the associated flows

(1) The spectral radius flow U1(ρ) := L1ρ/π1(S).
(2) The simple root flows Uαi (ρ) := Lαi

ρ /π1(S).
(3) The Hilbert flow UH(ρ) := LHρ /π1(S).
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are all Hölder orbit equivalent to U(S). The corresponding length spectra are

(1) The spectral radius length L1 (ρ(γ )) := log (λ1 (ρ(γ ))).

(2) The simple root length Lαi (ρ(γ )) := log
(

λi (ρ(γ ))
λi+1(ρ(γ ))

)
.

(3) The Hilbert length LH (ρ(γ )) := log
(

λ1(ρ(γ ))
λd (ρ(γ ))

)
.

More generally, given any positive linear combination Lφ = a1Lα1 +· · ·+ ad−1Lαd−1 of
the simple root length functions, we can find a flow Uφ(ρ) so that the period of γ ∈ π1(S)
is given by

Lφ (ρ(γ )) = a1Lα1 (ρ(γ )) + · · · + ad−1Lαd−1 (ρ(γ )) .

(See the discussion in Sect. 2.4.)
Finally, we observe that, by Theorem 3.2 and [32, Proposition 6.2], the flow M1

ρ is
obtained as a pullback of a smooth line bundle over the C1+α-submanifold (ξρ×ξ∗

ρ ) (G(S)) of
P(Rd) × P

∗(Rd), so L1ρ inherits the structure of a C1+α-flow.
Potrie and Sambarino [32, Proposition 6.2] show that the unstable manifold Eu

ρ for L1ρ at

a point above (x, y) ∈ G(S)may be identified with Hom
(
ξ̂
(2)
ρ (x) ∩ ξ̂

(d−1)
ρ (y), ξ̂ (1)

ρ (x)
)
and

so the infinitesmal expansion rate λu
ρ of U1(ρ) has the property that

∫
γ

λu
ρds1ρ = Lα1 (ρ(γ ))

for all ρ ∈ Hd(S), where ds1ρ is the element of arc length of U1(ρ).
It follows that the reparametrization of U1(ρ) by λu

ρ is Hölder conjugate to Uα1(ρ). They
then apply results of Sinai, Ruelle and Bowen [4], to conclude that the entropy of Uα1(ρ)

is 1. They further show, with a more sophisticated argument in the general case, that all the
simple root flows have entropy 1.

Theorem 3.5 (Potrie–Sambarino [32, Theorem B]) If ρ ∈ Hd(S) and i ∈ {1, . . . , d − 1},
then Uαi (ρ) has topological entropy 1.

Remark One may also construct a flow Hölder conjugate to Uαi (ρ) by constructing, as is
done in Sambarino [34], a positive Hölder function on U(S) whose periods are given by
Lαi (ρ(γ )), see also Potrie–Sambarino [32].

3.4 The spectral radius flow of a projective Anosov representation

Proposition 2.4 implies that if ρ : � → SL(d,R) is projective Anosov, then the contracting
line bundle �ρ over U(�) gives rise to a spectral radius flow Lρ

1 over G(�) with quotient
U1(ρ) so that the closed orbit associated to γ ∈ � has period L1 (ρ(γ )) = log(λ1 (ρ(γ )).

The spectral radius flow U1(ρ) is Hölder orbit equivalent to U(�). In [7], we prove that,
up to Hölder conjugacy, the reparametrization function can be chosen to vary analytically in
a neighborhood of ρ.

Proposition 3.6 [7, Proposition 6.2] Let {ρu : π1(S) → SL(d,R)}u∈D be a real
analytic family of projective Anosov homomorphisms parameterized by a disk D about the
origin 0. Then, there exists a sub-disk D0 about 0, α > 0 and a real analytic family
{ fu : U(�) → R}u∈D0 of positive α-Hölder functions such that if γ ∈ �, then
� fu (γ ) = log λ1 (ρu(γ )).
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4 Liouville currents for Hitchin representations

In Sects. 4.1 and 4.2 we recall Labourie’s cross ratio, define our Liouville current and prove
that it determines the Hitchin representation. In Sect. 4.3 we establish relationships between
the Liouville current, Hilbert length LH, the Bowen–Margulis current μρ for Uα1(ρ), and
the equilibrium state m−λu

ρ
for the (negative of the) infinitesmal expansion rate on U1(ρ).

4.1 Labourie’s cross ratio

If V is a finite dimensional real vector space, let

P
(2) = P(V ) × P(V ∗) − {(L ,
) : L ∈ ker
}

and

P
(4) = {(L ,
, D, �) : L /∈ ker� and D /∈ ker
}.

Consider the cross ratio on P
(4) defined by

B(L ,
, D, �) = ϕ(u)

ψ(u)

ψ(v)

ϕ(v)
,

where ϕ ∈ 
, ψ ∈ �, u ∈ L and v ∈ D are all non-zero. Notice that the result does not
depend on the choices of ϕ, ψ, u and v. Labourie observes that B is the polarized cross-ratio
associated to a symplectic form on P

(2).

Proposition 4.1 (Labourie [21, Propositions 4.7, 5.4]) There exists a symplectic form � on
P
(2) so that if (L ,
, D, �) ∈ P

(4), then

B(L ,
, D, �) = e
∫

G∗�

where G : [0, 1]2 → P
(2) is a map such that the images of the vertices of [0, 1]2 are

(L ,
), (L , �), (D,
) and (D, �) and the image of every boundary segment is contained
in either P(V ) × {·} or {·} × P(V ∗).

Moreover, if ρ is Hitchin, the restriction of the symplectic form � to theC1+α-submanifold
(ξρ × ξ∗

ρ ) (G(S)) is non-degenerate.

Given ρ ∈ Hd(S), Labourie defined a cross ratio bρ on

∂∞π1(S)(4) = {(x, y, z, t) ∈ ∂∞π1(S)4 | x �= t, y �= z}
by setting

bρ(x, y, z, t) = B
(
ξρ(x), ξ

∗
ρ (y), ξρ(z), ξ

∗
ρ (t)

)
.

Labourie and McShane [23, Theorem 9.0.3] show that bρ(x, z, t, y) > 1 if (t, x, y, z) is
cyclically ordered in ∂∞π1(S).

Labourie [21, Theorem 1.1] proves that this cross ratio determines the representation and
has rank d . For any pair of (p + 1)-tuples of pairwise distinct points X = (x0, . . . , x p) and
Y = (y0, . . . , yp) in ∂∞π1(S), we define

χp(bρ)(X, Y ) = det
(
bρ(xi , y j , x0, y0)

)
i, j∈{1,...,p}.

Theorem 4.2 (Labourie [21, Theorem 1.1]) If ρ, σ ∈ Hd(S), then bρ = bσ if and only if
ρ = σ . Moreover, χd(bρ) ≡ 0 and χd−1(bρ) never vanishes.

123



Geom Dedicata (2018) 192:57–86 71

Labourie [21, Theorem 1.1] also shows that the facts that χd(bρ) ≡ 0 and χd−1(bρ)
never vanishes characterize cross ratios of Hitchin representations into PSLd(R) among all
π1(S)-invariant functions on ∂∞π1(S)(4) satisfying the basic properties of a cross ratio.

4.2 Liouville currents: basic definitions

Let ωρ be the geodesic current defined by

ωρ ([t, x] × [y, z]) = 1

2
logbρ(x, z, t, y) > 0

when (x, y, z, t) is a cyclically ordered 4-tuple in the circle ∂∞π1(S) and [x, y] denotes the
points between x and y in this cyclic ordering.

Proposition 4.1 implies that

ωρ ([t, x] × [y, z]) = 1

2

∫
ξρ([t,x])×ξ∗

ρ ([y,z])
�,

so ωρ is a measure on G(S) which is absolutely continuous with respect to the Lebesgue
measure obtained by identifying G(S) with the C1+α-manifold (ξρ × ξ∗

ρ ) (G(S)). We call ωρ

the Liouville current.
We observe that the Liouville current also determines the Hitchin representation.

Theorem 1.2 If ρ ∈ Hd(S) and η ∈ Hm(S), then ωρ = ωη if and only if ρ = η.

Proof of Theorem 1.2 Suppose that ωρ = ωη. By definition,

bρ(x, y, z, t) = ωρ([z, x] × [t, y]) = ωη([z, x] × [t, y]) = bη(x, y, z, t)

whenever (z, x, t, y) is cyclically ordered. Similarly, if (z, x, y, t) is cyclically ordered, then

bρ(x, y, z, t) = 1

ωρ([z, x] × [y, t]) = 1

ωη([z, x] × [y, t]) = bη(x, y, z, t)

(One may summarize these two observations, by saying that bρ(x, y, z, t) = bη(x, y, z, t)
whenever the pairs (x, z) and (y, t) have non-intersecting axes, i.e. y and t lie in the same
component of ∂∞π1(S) − {x, z}.)

Suppose that m > d . Let X = (x0, x1, . . . , xm−1) and Y = (y0, . . . , ym−1) be two
m-tuples in ∂∞π1(S) so that (x0, x1, . . . , xm−1, y0, y1, . . . , ym−1) is cyclically ordered.
It follows from the previous paragraph that bρ(xi , y j , x0, y0) = bη(xi , y j , x0, y0) for
all i, j > 0. Theorem 4.2 then implies that every (d + 1) × (d + 1) minor of(
bρ(xi , y j , x0, y0)

)
i, j∈{1,...,m−1} is zero, yet

det
(
bρ(xi , y j , x0, y0)

)
i, j∈{1,...,m−1} = det

(
bη(xi , y j , x0, y0)

)
i, j∈{1,...,m−1} �= 0

which is impossible. Therefore, we may assume that m = d .
By Theorem 4.2, it suffices to prove thatωρ determines the cross-ratio bρ(x, y, z, t) of any

4-tuple (x, y, z, t) ∈ ∂∞π1(S)(4). By the observations in the first paragraph, and symmetry,
it suffices to also consider the case where (x, y, z, t) is cyclically ordered.

Fix a cyclically ordered configuration (xd , yd , x0, y0) ∈ ∂∞π1(S)(4). Choose pairwise
distinct points {x1, . . . , xd−1} and {y1, . . . , yd−1} in ∂∞π1(S) so that (x0, x1, . . . , xd−1, y0,
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. . . , yd−1, xd , yd) is cyclically ordered. Let X = (x0, . . . , xd) and Y = (y0, . . . , yd). Theo-
rem 4.2 implies that

χd
(
(bρ)(X, Y )

) = det
(
bρ(xi , y j , x0, y0)

)
i, j∈{1,...,d}

= det
(
bσ (xi , y j , x0, y0)

)
i, j∈{1,...,d} = χd(bη)(X, Y ) = 0.

If i and j are not both d , then either (x0, xi , y0, y j ) or (x0, xi , y j , y0) is cyclically ordered,
so bρ(xi , y j , x0, y0) = bη(xi , y j , x0, y0). One sees that all the coefficients in the matrices
above agree except for the term where i = j = d , moreover, again applying Theorem 4.2,
we see that the minors

det
(
bρ(xi , y j , x0, y0)

)
i, j∈{1,...,d−1} = det

(
bσ (xi , y j , x0, y0)

)
i, j∈{1,...,d−1} �= 0

agree and are non-zero. It follows that, bρ(xd , yd , x0, y0) = bη(xd , yd , x0, y0). This com-
pletes the proof. ��
Corollary 4.3 The Liouville current is symmetric if and only if ρ = ρ∗.

Proof There is a natural identification of P(Rd) with P((Rd)∗), given by identifying v ∈ R
d

to the linear functional w → v · w. So, given a representation ρ ∈ Hd(S), ξρ∗ = ξ∗
ρ and

ξ∗
ρ∗ = ξρ . Therefore,

wρ∗([t, x] × [y, z]) = wρ([y, z] × [t, x]) = wρ

(
ι([t, x] × [y, z]))

whenever (x, y, z, t) is cyclically ordered. It follows that ωρ is symmetric if and only if
ωρ = ωρ∗ . Theorem 1.2 then completes the proof. ��
4.3 Liouville currents, equilibrium states and Bowen–Margulis measures

We define the current

μρ = lim
T →∞

1

#Rα1(ρ, T )

∑
[γ ]∈Rα1 (ρ,T )

1〈
γ | Lα1

ρ

〉δγ , (2)

where Rα1(ρ, T ) is the set of closed orbits of Uα1(ρ) of period at most T . As was discussed
in Sect. 2.1, the measure of maximal entropy forUα1(ρ) is the Bowen–Margulis measure for
Uα1(ρ), given by

μρ ⊗ dsα1ρ = lim
T →∞

1

#Rα1(ρ, T )

∑
[γ ]∈Rα1 (ρ,T )

1〈
γ | Lα1

ρ

〉 δ̂γ

where dsα1ρ is the element of arc length onUα1(ρ).Wewill refer toμρ as theBowen–Margulis
current for Uα1(ρ).

The following result is an enlarged version of Theorem 1.3 from the introduction.

Theorem 4.4 Suppose that ρ ∈ Hd(S), ωρ is its Liouville current, λu
ρ is the infinitesmal

expansion rate of U1(ρ) and μρ is the Bowen–Margulis current for Uα1(ρ).

(1) If γ ∈ π1(S), then i(δγ , ωρ) = LH (ρ(γ )) = 〈
δγ | LHρ

〉
.

(2) If μ ∈ C(S), then i(μ, ωρ) = 〈
μ | LHρ

〉
.

(3) The equilibrium state m−λu
ρ

for the Hölder potential −λu
ρ on U1(ρ) is a scalar multiple

of ωρ ⊗ ds1ρ where ds1ρ is the element of arc length on U1(ρ).
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(4) The equilibrium state m−λu
ρ

is a scalar multiple of μρ ⊗ ds1ρ .

(5) The measure of maximal entropy for Uα1(ρ) is a scalar multiple of ωρ ⊗ dsα1ρ .
(6) The Liouville current ωρ is a scalar multiple of the Bowen–Margulis current μρ .

Proof A standard computation, see for example [21, Proposition 5.8], shows that, for all
γ ∈ π1(S),

i(δγ , ωρ) = ωρ([γ+, γ−] × [x, γ (x)]) + ωρ([γ+, γ−] × [y, γ (y)])
= 1

2

(
logbρ(γ−, γ (x), γ+, x) + log bρ(γ−, γ (y), γ+, y)

)

= log
λ1 (ρ(γ ))

λd (ρ(γ ))

= L H (ρ(γ ))

=
〈
δγ | LHρ

〉

where x and y are in distinct components of ∂∞π1(S) − {γ−, γ+}.
Since every current is a limit of positive linear combinations of currents associated to

elements of π1(S) and the intersection function is continuous in the weak-* topology, we see
that

i(μ, ωρ) =
〈
μ | LHρ

〉

whenever μ ∈ C(S).
Sinceωρ is a measure on G(S)which is absolutely continuous with respect to the pullback

of the Lebesgue measure on the C1+α-submanifold (ξρ × ξ∗
ρ ) (G(S)), ωρ ⊗ds1ρ is in the class

of the Lebesgue measure on the C1+α manifold U1(ρ). Theorem 2.3 implies that ωρ ⊗ ds1ρ
is a scalar multiple of the equilibrium state m−λu

ρ
for −λu

ρ on U1(ρ), i.e.

m−λu
ρ

= ωρ ⊗ ds1ρ〈
ωρ | L1ρ

〉 . (3)

Since Uα1(ρ) is Hölder conjugate to the reparametrization of U1(ρ) by λu
ρ and Uα1(ρ)

has topological entropy 1, the equilibrium measure m−λu
ρ
is a scalar multiple of the pullback

of the measure of maximal entropy μρ ⊗ dsα1ρ for Uα1(ρ) to U1(ρ), see Lemma 2.1, i.e.

m−λu
ρ

= μρ ⊗ ds1ρ〈
μρ | L1ρ

〉 . (4)

Since, by Eqs. (3) and (4), μρ ⊗ ds1ρ is a scalar multiple of ωρ ⊗ ds1ρ , we see that μρ is a
scalar multiple of ωρ . Therefore, the measure of maximal entropy μρ ⊗ dsα1ρ for Uα1(ρ) is
a scalar multiple of ωρ ⊗ dsα1ρ . ��

As an immediate corollary, we obtain an expression for the intersection of two Liouville
currents.

Corollary 4.5 If ρ ∈ Hm(S) and η ∈ Hd(S), then

i(ωρ, ωη) =
〈
ωρ | LHη

〉
.

Remark Since symmetric geodesic currents are determined by their periods [29, Theorem 2],
our Liouville current ωρ pushes forward to Bonahon’s Liouville current on Ĝ(S), if d = 2,
and to the symmetric Liouville current defined by Martone and Zhang [26], if d > 2.
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5 Liouville volume rigidity

Recall that we define the Liouville volume of ρ ∈ Hd(S) by

volL(ρ) =
〈
ωρ | LHρ

〉

so Corollary 4.5 implies that

volL(ρ) = i(ωρ, ωρ).

In this section, we apply Corollary 4.5, an argument of Labourie [19, Lemma 5.1] and a
length spectrum rigidity result [7, Theorem 11.2] to obtain a Liouville volume rigidity result.

Theorem 5.1 If ρ, η ∈ Hd(S), then

volL(ρ)

volL(η)
�
(

inf
γ∈π1(S)−{1}

LH (ρ(γ ))

LH (η(γ ))

)2

.

Moreover, equality holds if and only if either ρ = η or ρ = η∗ where η∗ is the contragredient
of η.

Notice that, infγ∈π1(S)−{1} LH(ρ(γ ))
LH(η(γ ))

is finite and non-zero, since Hitchin representations
are well-displacing (see [22, Theorem 6.1.3]). However, if d > 2, it can be arbitrarily close
to 0 or ∞ (see Zhang [38]).

Proof Let K = infγ∈π1(S)−{1} LH(ρ(γ ))
LH(η(γ ))

so that if γ ∈ π1(S) − {1}, then
i(δγ , ωρ) = LH (ρ(γ )) � K LH (η(γ )) = K i(δγ , ωη).

Since ωρ and ωη are both limits of positive linear combinations of currents associated to
elements of π1(S), this implies that

i(ωρ, ωρ) � K i(ωρ, ωη) and i(ωη, ωρ) � K i(ωη, ωη).

Therefore, using the fact that i is symmetric,

volL(ρ) = i(ωρ, ωρ) � K i(ωρ, ωη) = K i(ωη, ωρ) � K 2 i(ωη, ωη) = K 2 volL(η).

Now assume that, in addition, volL(ρ) = K 2 volL(η), so

i(ωρ, ωρ) = K i(ωρ, ωη) and i(ωρ, ωη) = K i(ωη, ωη).

Since UH(ρ), UH(η) and Uα1(η) are all Hölder orbit equivalent to U(S), we may assume
that, up to Hölder conjugacy, there exist positive Hölder functions g : U(S) → R and
j : U(S) → R so that

dsHρ = gdsHη and jdsα1η = dsHη .

So, applying Corollary 4.5,∫
gdωη ⊗ dsHη =

∫
dωη ⊗ dsHρ = i(ωη, ωρ) = K volL(η)

and∫
(g − K ) dωη ⊗dsHη =

∫
g dωη ⊗dsHη − K

∫
dωη ⊗dsHη = K volL(η)− K volL(η) = 0.

(5)
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On the other hand, since LH (ρ(γ )) � K LH (η(γ )),∫
γ

(g − K ) dsHη = LH (ρ(γ )) − K LH (η(γ )) � 0

for all γ ∈ π1(S) − {1}.
Let f = (g − K ) j . We will apply the argument of [19, Lemma 5.1] to establish our

rigidity claim. If γ ∈ π1(S), then∫
γ

f dsα1η =
∫
γ

(g − K ) dsHη � 0.

Since measures supported on periodic orbits are dense in the space MUα1 (η)
of all flow

invariant probability measures on Uα1(η) (see Sigmund [35]), we see that
∫

f dμ � 0, (6)

for all μ ∈ MUα1 (η)
.

Since μη is a multiple of ωη, Eq. (5) implies that
∫

f dμη ⊗ dsα1η =
∫

(g − K ) j dμη ⊗ dsα1η =
∫

(g − K ) dμη ⊗ dsHη = 0, (7)

so

sup
μ∈MUα1 (η)

(
h(μ) −

∫
f dμ

)
� sup

μ∈MUα1 (η)

h(μ)

= h
(
μη ⊗ dsα1η

)

= h
(
μη ⊗ dsα1η

)
−
∫

f dμη ⊗ dsα1η

� sup
μ∈MUα1 (η)

(
h(μ) −

∫
f dμ

)

where the first inequality follows from inequality (6), the equality in the second line holds
because μη ⊗ dsα1η is the measure of maximal entropy for Uα1(η), the equality in the third
line follows from Eq. (7) and the final inequality holds by definition. Therefore,

P(− f ) = sup
μ∈MUα1 (η)

(
h(μ) −

∫
f dμ

)
= h

(
μη ⊗ dsα1η

)
−
∫

f dμη ⊗ dsα1η ,

so μη ⊗ dsα1η is the equilibrium state for − f . Since ωη ⊗ dsα1η is also the equilibrium state
for the zero function, [16, Proposition 20.3.10] implies that − f is Livšic cohomologuous to
a constant function A. However, A = 0 since∫

f dωη ⊗ dsα1η = 0.

It follows that for all γ ∈ π1(S),

LH (ρ(γ )) − K LH (η(γ )) =
∫
γ

f dsα1η = 0.

Therefore, LH (ρ(γ )) = K LH (η(γ )) for all γ ∈ π1(S).
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We recall that since ρ and σ are projective Anosov, Adρ and Ad(σ ) are also projective
Anosov (see [15, Section 10.2]). Since λ1 (Adρ(γ )) = LH (ρ(γ )) for all γ ∈ π1(S), [7,
Theorem 11.2] implies that K = 1 and either Adρ = Adη or Adρ = Adη∗. Therefore,
either ρ = η or ρ = η∗. (When d = 3, we could apply earlier results of Cooper–Delp [11]
or Kim [18]). ��

Weobtain the following corollary, stated in the introduction as Theorem 1.4, by symmetry.

Corollary 5.2 If ρ, η ∈ Hd(S), then

(
inf

γ∈π1(S)\{1}
LH (ρ(γ ))

LH (η(γ ))

)2

� volL(ρ)

volL(η)
�
(

sup
γ∈π1(S)\{1}

LH (ρ(γ ))

LH (η(γ ))

)2

and equality holds in either inequality if and only if either ρ = η or ρ = η∗.

If ρ ∈ H3(S), Tholozan [36, Theorem 3] showed that there exists a 3-Fuchsian
representation σ = τ3 ◦ σ0, where σ0 : π1(S) → PSL(2,R) is Fuchsian and
τ3 : PSL(2,R) → PSLd(R) is the irreducible representation, so that ρ dominates σ , i.e.
LH (ρ(γ )) � LH (σ (γ )) for all γ ∈ π1(S). Since ωσ = 2ωσ0 and i(ωσ0 , ωσ0) = π2|χ(S)|
(see Bonahon [1, Proposition 15]), Corollary 5.2 implies that
volL(ρ) � volL(σ ) = 4π2|χ(S)|.
Corollary 5.3 If ρ ∈ H3(S), then

volL(ρ) � 4π2|χ(S)|.
Moreover, equality holds if and only if ρ is 3-Fuchsian.

If ρ ∈ H3(S), then, see Choi–Goldman [10], there exists a strictly convex open domain
�ρ in RP

2 so that ρ (π1(S)) acts properly discontinuously and cocompactly on�ρ . It would
be interesting to explore the relationship between volL(ρ) and other notions of volume for
�ρ/ρ (π1(S)).

If σ = τd ◦ σ0 ∈ Hd(S) is d-Fuchsian, then ωσ = (d − 1)ωσ0 , so
volL(σ ) = (d − 1)2π2|χ(S)|. It is known that not every ρ ∈ Hd(S) dominates a Fuch-
sian representation, but one might still ask the following question.

Question Is it true that, for all d > 3,

volL(ρ) � (d − 1)2π2|χ(S)|
for all ρ ∈ Hd(S)? If so, does equality hold if and only if ρ is d-Fuchsian?

6 Pressure quadratic forms associated to simple roots

In [8, Section 3], we describe a general procedure for producing pressure metrics on defor-
mation spaces of representations based on the constructions in McMullen [27], Bridgeman
[5] and [7]. The first step in the process is to associate a flow to each representation. One
then defines an associated pressure intersection and renormalized pressure intersection. Fun-
damental properties from the thermodynamic formalism, as summarized in Proposition 2.2,
then guarantee that the Hessian of the renormalized intersection gives rise to a non-negative
quadratic form on the tangent space to the deformation space. The resulting quadratic form
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may or may not be positive definite and the analysis of its degeneracy is typically the most
difficult step in this procedure.

Recall that, in Sect. 3.3, we associated a family Uαi (ρ) of simple root flows to a Hitchin
representation. We interpret the next result to say that this family of flows varies analytically
over the Hitchin component.

Proposition 6.1 For all i ∈ {1, . . . , d − 1} and ρ ∈ Hd(S), there exists a neighborhood Vi

of ρ in Hd(S), νi > 0 and an analytic map Ti : Vi → Holνi (U(S)) such that if σ ∈ Vi , then
Ti (σ ) is positive and �Ti (σ )(γ ) = Lαi (σ (γ )) for all γ ∈ π1(S).

Notice that the conclusion of Proposition 6.1 implies that the reparametrization of U(S)
by Ti (σ ) is Hölder conjugate to Uαi (σ ).

Proof Let ρ ∈ Hd(S). Proposition 3.6 implies that there exists a neighborhood W1 of ρ,
β1 > 0 and an analytic map S1 : W1 → Holβ1 (U(S)), so that

�S1(σ )(γ ) = log λ1 (σ (γ ))

for all γ ∈ π1(S) and σ ∈ W1. Similarly, since for all i ∈ {2, . . . , d − 1}, the exterior
power Ei ρ̃ of a lift of ρ is projective Anosov, by Proposition 3.3, Proposition 3.6 implies
that there exists a neighborhood Wi of ρ in Hd(S), βi > 0 and an analytic map Si : Wi →
Holβi (U(S),R) so that if σ ∈ Wi , then

�Si (σ )(γ ) = log λ1

(
Ei σ̃ (γ )

)
= log

(
λ1 (σ (γ )) λ2 (σ (γ )) · · · λi (σ (γ ))

)

for all γ ∈ π1(S).
Let V̂1 = W1 ∩ W2 and ν̂1 = min{β1, β2} and define an analytic map T̂1 : V1 →

Holν̂1 (U(S)) by setting T̂1(σ ) = 2S1(σ ) − S2(σ ). Then

�T̂1(σ )(γ ) = 2 log λ1 (σ (γ )) − log λ1
(
E2σ(γ )

) = log

(
λ1 (σ (γ ))

λ2 (σ (γ ))

)
= Lα1 (σ (γ ))

for all γ ∈ π1(S) and σ ∈ V̂1.
More generally, if i ∈ {2, . . . , d − 2}, let V̂i = W1 ∩ W2 ∩ · · · ∩ Wi+1 and ν̂i =

min{β1, . . . , βi+1}, and define T̂i : V̂i → Holν̂i (U(S)) by setting

T̂i (σ ) = 2Si (σ ) − Si+1(σ ) − Si−1(σ ).

One easily checks that �T̂i (σ )(γ ) = Lαi (σ (γ )) for all γ ∈ π1(S) and σ ∈ V̂i . Finally, we

define T̂d−1 : V̂1 → Holν̂d−1 (U(S)), where ν̂d−1 = ν̂1, by T̂d−1(σ ) = T̂1(σ ) ◦ F where
F : U(S) → U(S) is given by F(v) = − v, and check that �T̂d−1(σ )(γ ) = Lα1

(
σ(γ−1)

) =
Lαd−1 (σ (γ )) for all γ ∈ π1(S) and σ ∈ V̂d−1 = V̂1.

It remains to alter each T̂i so that, after restricting to a sub-neighborhood of V̂i , the image
consists of positive functions. Since T̂i (ρ) has positive periods, it is Livšic cohomologous to
a positive τi -Hölder function fi , for some τi > 0 (see [34, Lemma 3.8]). Define Ti : V̂i →
Holνi (U(S)), where νi = min{ν̂i , τi }, by setting

Ti (σ ) = T̂i (σ ) + (
fi − T̂i (ρ)

)
.

We now check that Ti has the properties we claimed.

(1) Since T̂i is analytic, and Ti is a translate of T̂i , Ti is also analytic.
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(2) Since fi − T̂i (ρ) is Livšic cohomologous to 0, Ti (σ ) is Livšic cohomologous to T̂i (σ ).
In particular, they have the same periods, so �Ti (σ ) = �T̂i (σ )(γ ) = Lαi (σ (γ )) for all

γ ∈ π1(S) and σ ∈ V̂1.
(3) Since U(S) is compact, the set of positive functions is an open subset of Holνi (U(S)).

Since Ti (ρ) is a positive function and Ti is analytic, hence continuous, there is a neigh-
bourhood Vi ⊂ V̂i of ρ so that Ti (σ ) is a positive function for all σ ∈ Vi . ��

We then define the pressure intersection

Iαi (ρ, η) = lim
T →∞

1

#Rαi (ρ, T )

∑
γ∈Rαi (ρ,T )

Lαi (η(γ ))

Lαi (ρ(γ ))
= I

(
f i
ρ, f i

η

)

for all ρ, η ∈ Hd(S), where

Rαi (ρ, T ) = {[γ ] ∈ [π1(S)]\{[1]} | Lαi (ρ(γ )) � T }
and the reparametrizations ofU(S) by f i

ρ and f i
η are Hölder conjugate toUαi (ρ) andUαi (η).

For fixed ρ ∈ Hd(S), we further define (Iαi )ρ : Hd(S) → R by

(Iαi )ρ(σ ) = Iαi (ρ, σ )

for all σ ∈ Hd(S). If Vi is the neighorhood of ρ and Ti is the map provided by Proposition
6.1, then

Iαi (σ, η) = I (Ti (σ ), Ti (η))

for all σ, η ∈ Vi . By Theorem 3.5, Uαi (σ ) has entropy 1, for all σ ∈ Hd(S) and all i , so

Iαi (σ, η) = I (Ti (σ ), Ti (η)) = J (Ti (σ ), Ti (η))

for all σ, η ∈ Vi . Proposition 2.2 then implies that

Pαi |TρHd (S) = Hessρ(Iαi )ρ

is positive semi-definite and varies analytically over Hd(S).
By construction, the extended mapping class group and the contragredient preserve each

Pαi . It follows immediately from work of Wolpert [37], that the restriction of each Pαi to
the Fuchsian locus is a positive multiple of the Weil–Petersson metric. Since Lαi (ρ(γ )) =
Lαd−i

(
ρ(γ−1)

)
for all ρ ∈ Hd(S) and γ ∈ π1(S), we see that Iαi (ρ, σ ) = Iαd−i (ρ, σ ) for

all ρ, σ ∈ Hd(S), so Pαi = Pαd−i for all i.
Wecombine these observationswith the non-degeneracy criterion provided by Proposition

2.2 to obtain:

Proposition 6.2 For each i ∈ {1, . . . , d − 1}, there exists a positive semi-definite, analytic,
quadratic formPαi onTHd(S), which is invariant under the action of the mapping class group
and restricts to a multiple of the Weil–Petersson metric on the Fuchsian locus. Moreover, if
{ρt }t ∈ (−ε, ε) is a smooth one-parameter family in Hd(S), then ‖ρ̇0‖2Pαi

= 0 if and only if

∂

∂t

∣∣∣
t=0

〈
γ | Lαi

ρt

〉 = ∂

∂t

∣∣∣
t=0

Lαi (ρt (γ )) = 0

for all γ ∈ π1(S).

Remark Labourie and Wentworth [24] evaluate the original pressure metric at the Fuchsian
locus. They remark [24, Section 6.6] that their analysis should extend to the pressure quadratic
forms Pαi .
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Finally, we observe that, as was claimed in the introduction, we may rewrite the Liouville
pressure intersection Iα1 as

Iα1(ρ, η) = 1〈
ωρ | Lα1

ρ

〉 〈ωρ | Lα1
η

〉
.

Notice that, by Theorem 4.4, ωρ is a scalar multiple of μρ so ωρ = cρμρ for some cρ ∈ R.

Since μρ = 1
#Rα1 (ρ,T )

∑
Rα1 (ρ,T )

δγ
Lα1 (ρ(γ ))

, we see that
〈
ωρ | Lα1

ρ

〉 = cρ and

〈
ωρ | Lα1η

〉
= cρ lim

T →∞
1

#Rα1 (ρ, T )

∑
Rα1 (ρ,T )

〈
δγ | Lα1η

〉

Lα1 (ρ(γ ))
= cρ lim

T →∞
1

#Rα1 (ρ, T )

∑
Rα1 (ρ,T )

Lα1 (η(γ ))

Lα1 (ρ(γ ))

Therefore,

1〈
ωρ | Lα1

ρ

〉 〈ωρ | Lα1
η

〉
= lim

T →∞
1

#Rα1(ρ, T )

∑
Rα1 (ρ,T )

Lα1 (η(γ ))

Lα1 (ρ(γ ))
= Iα1(ρ, η).

7 The Liouville pressure quadratic form is a Riemannian metric

The main work of this section is to show that the derivatives of the Lα1 -length functions
generate the cotangent space of the Hitchin component.

Theorem 1.7 If ρ ∈ Hd(S), then the set
{
Dρ Lγ

α1

}
γ∈π1(S)

generates the cotangent space T∗
ρHd(S).

Theorem 1.7 and Proposition 6.2 together imply that the Liouville pressure quadratic form
is a Riemannian metric.

Theorem 1.6 The Liouville pressure quadratic formPα1 is a mapping class group invariant,
analytic Riemannian metric on Hd(S), that restricts to a scalar multiple of the the Weil–
Petersson metric on the Fuchsian locus.

Proof of Theorem 1.6 Suppose that v ∈ TρHd(S) and ‖v‖Pα1
= 0. Proposition 6.2 implies

that Dρ Lγ
α1(v) = 0 for all γ ∈ π1(S). Theorem 1.7 then implies that v = 0. Therefore, since

we already know it is positive semi-definite, Pα1 is positive definite. The remainder of the
theorem follows from Proposition 6.2. ��

The remainder of the section will be taken up with the proof of Theorem 1.7. Theorem 1.7
generalizes [7, Proposition 10.1],which asserts that derivatives of the spectral radius functions
generate the cotangent space, and its proof follows a similar outline.We use an analysis of the
asymptotic behavior of the Lα1 -length functions to show that if Dρ Lγ

α1(v) = 0 for all γ , then
the derivatives of functions which record the eigenvalues are also trivial in the direction v.
We then apply [7, Proposition 10.1] itself to finish the proof, but we could also have observed
that the derivatives of all trace functions are trivial in the direction v and applied standard
facts about character varieties.
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7.1 Transversality results

Let ρ̂(γ ) be the lift of ρ(γ ) to SL(d,R) so that all of its eigenvalues are positive. Suppose
that {e1 (ρ(γ )) , . . . , ed (ρ(γ ))} is a basis of R

d consisting of eigenvectors for ρ(γ ) so that

ρ̂(γ ) (ei (γ )) = λi (ρ(γ )) ei (ρ(γ ))

for all i . Then we may write

ρ̂(γ ) =
d∑

i=1

λi (ρ(γ )) pi (ρ(γ ))

where pi (ρ(γ )) is the projection onto the eigenline spanned by ei (ρ(γ )) parallel to the
hyperplane spanned by the other basis elements.

In [6], we prove that if α and β have non-intersecting axes and ρ ∈ Hd(S), then the
bases {ei (ρ(α))} and {ei (ρ(β))} have strong transversality properties, which generalize the
transversality properties established by Labourie in [20].

Theorem 7.1 [6, Cor. 4.1] If ρ ∈ Hd(S), α, β ∈ π1(S) − {1} and α and β have non-
intersecting axes, then any d elements of

{e1 (ρ(α)) , . . . , ed (ρ(α)) , e1 (ρ(β)) , . . . , ed (ρ(β))}
span R

d . In particular,

pi (ρ(α))
(
e j (ρ(β))

) �= 0

for any i, j ∈ {1, . . . , d}.
If ρ ∈ Hd(S) and S2ρ : π1(S) → SL

(
S2(Rd)

)
is the second symmetric product of a lift

of ρ to a representation into SL(d,R), then

S2ρ(γ ) =
d∑

i� j

λi (ρ(γ )) λ j (ρ(γ )) pi j (ρ(γ ))

and if E2ρ : π1(S) → SL
(
E2(Rd)

)
is the second exterior product of a lift of ρ to a

representation into SL(d,R), then

E2ρ(γ ) =
d∑

i< j

λi (ρ(γ )) λ j (ρ(γ )) qi j (ρ(γ ))

where pi j (ρ(γ )) is the projection onto the eigenline spanned by ei (ρ(γ )) · e j (ρ(γ )) and
qi j (ρ(γ )) is the projection onto the eigenline ei (ρ(γ ))∧e j (ρ(γ )) parallel to the hyperplane
spanned by the other products of basis elements. (Notice that E2ρ and S2ρ are independent
of the choice of lift of ρ to a representation into SL(d,R).) Then

pi i (ρ(γ )) (v · w) = pi (ρ(γ )) (v) · pi (ρ(γ )) (w),

pi j (ρ(γ )) (v · w) = pi (ρ(γ )) (v) · p j (ρ(γ )) (w) + p j (ρ(γ )) (v) · pi (ρ(γ )) (w) for i �= j, and

qi j (ρ(γ )) (v ∧ w) = pi (ρ(γ )) (v) ∧ p j (ρ(γ )) (w) − p j (ρ(γ )) (v) ∧ pi (ρ(γ )) (w).

We use Theorem 7.1 to prove that various terms arising in our asymptotic analysis are
non-zero.
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Lemma 7.2 If α, β ∈ π1(S) have non-intersecting axes and ρ ∈ Hd(S), then

(1) Tr
(
pi i (ρ(α)) pkk (ρ(β))

) �= 0, for all i, k ∈ {1, . . . , d},
(2) Tr

(
qi j (ρ(α)) qkl (ρ(β))

) �= 0 if i, j, k, l ∈ {1, . . . , d}, i �= j and k �= l,
(3) Tr

(
pi i (ρ(α))S2ρ(β)

) �= 0 if i ∈ {1, . . . , d}, and
(4) Tr

(
qi j (ρ(α))E2ρ(β)

) �= 0 if i, j ∈ {1, . . . , d} and i �= j .

Proof We fix ρ ∈ Hd(S) and identify ρ(γ ) with γ , for all γ ∈ π1(S), throughout the proof
for notational simplicity. Choose bases {e1(α), . . . , ed(α)} and {e1(β), . . . , ed(β)} and define
ti j (α, β) so that

pi (α)
(
e j (β)

) = ti j (α, β)ei (α)

for all i, j ∈ {1, . . . , d}. Theorem 7.1 implies that ti j (α, β) �= 0 for all i and j , so

Tr
(
pi i (α)pkk(β)

) = tik(α, β)
2tki (β, α)

2 �= 0.

If i < j and k < l, we define si jkl(α, β) by the equation

ek(β) ∧ el(β)
∧

r �=i, j

er (α) = si jkl(α, β)

⎛
⎝ei (α) ∧ e j (α)

∧
r �=i, j

er (α)

⎞
⎠ .

Theorem 7.1 implies that si jkl(α, β) �= 0, so

Tr
(
qi j (α)qkl(β)

) = si jkl(α, β)skli j (β, α) �= 0.

Notice that we may choose the basis {ei (βαβ
−1)}d

i=1 = {β (ei (α))}d
i=1, in which case

S2ρ(β) (ei (α) · ei (α)) = ei (βαβ
−1) · ei (βαβ

−1).

One then computes that

Tr
(
pi i (α)S2ρ(β)

) = ti i (α, βαβ−1)2 �= 0.

(Notice that if α and β have non-intersecting axes, then so do α and βαβ−1.)
Similarly,

Tr
(
qi j (α)E2ρ(β)

) = si j i j (α, βαβ
−1) �= 0.

��
7.2 Trace asymptotics

If γ ∈ π1(S), let �γ
α1 : Hd(S) → R be given by

�γ
α1
(ρ) = λ1 (ρ(γ ))

λ2 (ρ(γ ))

and notice that Lγ
α1 = log�

γ
α1 . An asymptotic analysis of traces yields:

Lemma 7.3 If α, β ∈ π1(S) have non-intersecting axes and ρ ∈ Hd(S), then

lim
n→∞

�
αnβn

α1 (ρ)

�αn
α1

(ρ)�
βn

α1 (ρ)
= Tr (p11 (ρ(α)) p11 (ρ(β)))

Tr (q12 (ρ(α)) q12 (ρ(β)))
�= 0
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and

lim
n→∞

�
αnβ
α1 (ρ)

�αn
α1

(ρ)
= Tr

(
p11 (ρ(α))S2ρ(β)

)
Tr
(
q12(ρ(α)E2ρ(β)

) �= 0

Proof We again fix ρ ∈ Hd(S) and identify ρ(γ ) with γ throughout the proof for notational
simplicity. One can compute that

Tr
(
S2ρ(αnβn)

)
Tr
(
E2ρ(αnβn)

) =
∑

1�i� j�d λi (α
nβn)λ j (α

nβn)∑
1�i< j�d λi (αnβn)λ j (αnβ)

= λ1(α
nβn)2(1 + an)

λ1(αnβn)λ2(αnβn)(1 + bn)

Since limn→∞
λ j (α

nβn)

λi (α
nβn)

= 0 if i > j , by Lemma 3.4, an → 0 and bn → 0 as n → ∞.
Similarly,

Tr
(
S2ρ(αn)S2ρ(βn)

)

Tr
(
E2ρ(αn)E2ρ(βn)

) =
Tr
((∑

i� j λi (α
n)λ j (α

n)pi j (α)
) (∑

i� j λi (β
n)λ j (β

n)pi j (β)
))

Tr
((∑

i< j λi (α
n)λ j (α

n)qi j (α)
) (∑

i< j λi (β
n)λ j (β

n)qi j (β)
))

= �αn
α1

(ρ)�
βn

α1 (ρ)
Tr
(
p11(α)p11(β)

)
(1 + cn)

Tr
(
q12(α)q12(β)

)
(1 + dn)

where cn → 0 and dn → 0. Since the two expression are equal, we may take limits to
obtain the first equality in the statement. Notice that Lemma 7.2 is being used to guarantee
that Tr (p11(α)p11(β)) and Tr (q12(α)q12(β)) are non-zero so that the right-hand expression
makes sense and is non-zero.

To establish the second equality, we compute that

Tr
(
S2ρ(αnβ)

)
Tr
(
E2ρ(αnβ)

) = λ1(α
nβ)2(1 + a′

n)

λ1(αnβ)λ2(αnβ)(1 + b′
n)

,

where a′
n → 0 and b′

n → 0, and that

Tr
(
S2ρ(αn)S2ρ(β)

)
Tr
(
E2ρ(αn)E2ρ(β)

) =
Tr
((∑

i� j λi (α
n)λ j (α

n)pi j (α)
)
S2ρ(β)

)

Tr
((∑

i< j λi (αn)λ j (αn)qi j (α)
)
E2ρ(β)

)

= �αn

α1
(ρ)

Tr
(
p11(α)S2(ρ(β)

)
(1 + c′

n)

Tr
(
q12(α)E2ρ(β)

)
(1 + d ′

n)

where c′
n → 0 and d ′

n → 0. We obtain the second equation by setting the two expressions
above equal, taking limits and applyingLemma7.2 to guarantee that the right-hand expression
makes sense and is non-zero. ��
7.3 Derivatives of eigenvalue functions

Let λγ

i : Hd(S) → R be given by λ
γ

i (ρ) = λi (ρ(γ )).

Proposition 7.4 If v ∈ TρHd(S) and Dρ Lγ
α1(v) = 0 for all γ ∈ π1(S), then Dρλ

γ

i (v) = 0,
for all i = 1, . . . , d and all γ ∈ π1(S).

Notice that the assumptions of Proposition 7.4 are equivalent to the assumption that
Dρ�

γ
α1(v) = 0 for all γ ∈ π1(S). The proof of Proposition 7.4 makes use of the following

elementary lemma:
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Lemma 7.5 Let ai , bi , ci , di , wi ∈ R, for i = 1, . . . k, with w1 > w2 > · · · > wk > 0. If,
for every n ∈ N,

k∑
i=1

(ai + nbi )w
n
i =

k∑
i=1

(ci + ndi )w
n
i ,

then ai = ci and bi = di for all i .

Proof We first divide by nwn
1 and take the limit to see that

b1 = lim
n→∞

1

nwn
1

(
k∑

i=1

(ai + nbi )w
n
i

)
= lim

n→∞
1

nwn
1

(
k∑

i=1

(ci + ndi )w
n
i

)
= d1.

We then subtract nb1wn
1 from each side, divide by wn

1 , and pass to a limit to conclude that
a1 = c1.

We may then remove the first order terms and proceed iteratively. ��
Proof of Proposition 7.4 We will show that, if γ ∈ π1(S), then Dρ(log λ

γ

i )(v) =
Dρ(log λ

γ
1 )(v) for all i . Since λ

γ
1 · · · λγ

d = 1,

Dρ(0)(v) = Dρ

(
log λ

γ
1

)
(v) + · · · + Dρ

(
log λ

γ

d

)
(v) = d Dρ

(
log λ

γ
1

)
(v) = 0,

which in turn implies that Dρλ
γ

i (v) = 0 for all i .
We first notice that, since Dρ Lγ

α1(v) = 0, Dρ(log λ
γ
2 )(v) = Dρ(log λ

γ
1 )(v) for all γ ∈

π1(S). We proceed iteratively. Assume that Dρ(log λ
γ

i )(v) = Dρ(log λ
γ
1 )(v) for all i < m

and γ ∈ π1(S). Notice that this is equivalent to the claim that Dρλ
γ

i (v) = Dρλ
γ
1 (v) for all

i < m and γ ∈ π1(S).
Fixα ∈ π1(S)−{1} and letβ be an element ofπ1(S), so thatα andβ have non-intersecting

axes and consider the family of analytic functions {Fn : Hd(S) → R}n∈N defined by

Fn(ρ) =

(
Tr
(
p11(ρ(α))S2ρ(βn)

)
Tr(q12(ρ(α))E2ρ(βn))

)

(
�

β
1 (ρ)

)n
(

Tr
(
p11(ρ(α))p11(ρ(β))

)
Tr
(
q12(ρ(α))q12(ρ(β))

)
) .

Notice that, by Lemma 7.3, the numerator of Fn is an analytic function which is a limit
of analytic functions which, by assumption, have derivative zero in the direction v, so the
numerator has derivative zero in direction v. We may similarly use our assumptions and
Lemma 7.3 to show that the denominator of Fn has derivative zero in direction v. Therefore,
Dρ Fn(v) = 0 for all n ∈ N.

We adopt the shorthand λi = λ
ρ
i (β) and expand the above equation to see that

Fn(ρ) =
∑

i� j ai j (ρ)
(

λi
λ1

)n ( λ j
λ1

)n

∑
i< j bi j (ρ)

(
λi
λ1

)n ( λ j
λ2

)n =
∑

i� j ai j (ρ)un
i un

j∑
i< j bi j (ρ)un

i v
n
j

where

ai j (ρ) = Tr
(
p11 (ρ(α)) pi j (ρ(β))

)
Tr (p11 (ρ(α)) p11 (ρ(β)))

, bi j (ρ) = Tr
(
q12 (ρ(α)) qi j (ρ(β))

)
Tr (q12 (ρ(α)) q12 (ρ(β)))

,

ui = λi

λ1
, and vi = λi

λ2
.
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In particular, a11 = b12 = 1 and, by Lemma 7.2, b1m �= 0 for all m. Since Dρ Fn(v) = 0 for
all n ∈ N, ⎛

⎝Dρ

⎛
⎝∑

i� j

ai j u
n
i un

j

⎞
⎠ (v)

⎞
⎠
((∑

k<l

bklu
n
kv

n
l

)
(ρ)

)

=
⎛
⎝
⎛
⎝∑

i� j

ai j u
n
i un

j

⎞
⎠ (ρ)

⎞
⎠
(
Dρ

(∑
k<l

bklu
n
kv

n
l

)
(v)

)

Letting Ui jkl = ui u j ukvl , this becomes

∑
i� j,k<l

(
ȧi j bkl + nai j bkl

(
u̇i

ui
+ u̇ j

u j

))
U n

i jkl

=
∑

i� j,k<l

(
ai j ḃkl + nai j bkl

(
u̇k

uk
+ v̇l

vl

))
U n

i jkl .

We group terms where Ui jkl agree and order so that, as sets, {ws}M
s=1 = {Ui jkl}i� j,k<l

and wi > wi+1 > 0 for all i . We may rewrite the expression above as

M∑
s=1

(As + nBs)w
n
s =

M∑
s=1

(Cs + nDs)w
n
s

where As , Bs , Cs and Ds are constants depending only on s and not on n. Lemma 7.5 implies
that As = Cs and Bs = Ds for all s.

By our iterative hypothesis, Dρ(log λi )(v) = Dρ(log λ1) for all i < m, and m > 2.
Therefore, u̇i = v̇i = 0 for all i < m. Since m > 2, the iterative step of the proof will be
completed if we show that either u̇m = 0 or v̇m = 0.

Consider s1 such that ws1 = U111m = vm and notice that

Bs1 =
∑

{i� j, k<l | Ui jkl=vm }

(
ai j bkl

(
u̇i

ui
+ u̇ j

u j

))
.

If ws1 = Ui jkl , then Ui jkl = ui u j ukvl = vm . Since 1 = u1 > u2 > · · · > ud > 0 and
1 � vi > ui for all i � 2, we see that u j � ui u j ukvl = vm > um , so i � j < m. Since
u̇i = 0 if i < m, we see that Bs1 = 0.

A similar analysis yields that ifUi jkl = ui u j ukvl = vm , then k < m and l � m. Therefore,
u̇k = 0 and v̇l = 0 if l �= m. However, if l = m, then i = j = k = 1, so

Ds1 =
∑

{i� j,k<l | Ui jkl=vm }

(
ai j bkl

(
u̇k

uk
+ v̇l

vl

))
= a11b1m

(
v̇m

vm

)
= b1m

(
v̇m

vm

)
,

so, since Ds1 = Bs1 = 0, we conclude that b1m v̇m = 0. Since we have previously observed
that b1m �= 0, it must be that v̇m = 0 which completes the proof. ��
7.4 Proof of Theorem 1.7

If v ∈ TρHd(S) andDρ Lγ
α1(v) = 0 for all γ ∈ π1(S), then, by Proposition 7.4, Dρλ

γ

i (v) = 0
for all i and all γ ∈ π1(S). However, Proposition 10.1 in [7] guarantees that {Dρλ

γ
1 }γ∈π1(S)

generates the cotangent space to Hd(S) at ρ, so our proof is complete. ��
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8 Degeneracy of Pαn on H2n(S)

Bridgeman [5] showed that the pressure metric on quasifuchsian space is degenerate on
the Fuchsian locus. In [8, Section 5.8], we construct a pressure metric on Hd(S) which is
associated to the Hilbert length of elements of the image and similarly prove that this metric is
degenerate on the fixed point locus of the contragredient involution. A very similar argument
yields that Pαn is degenerate on H2n(S).

Recall that the contragredient involution τ : H2n(S) → H2n(S) fixes the submanifold
H (S,PSp(2n)) of Hitchin representations with image in PSp(2n).

Proposition 8.1 The pressure quadratic form Pαn on H2n(S) is degenerate on
H(S,PSp(2n)). In particular, if ρ ∈ H (S,PSp(2n)), v ∈ TρHd(S) and Dτρ(v) = −v,
then ||v||Pαn

= 0.

Proof Suppose that ρ ∈ H (S,PSp(2n)), v ∈ TρHd(S) and Dτρ(v) = −v. We choose
a path {ρt }t∈(ε,ε) in H2n(S) such that ρ̇0 = v and τ(ρt ) = ρ−t for all t ∈ (−ε, ε). Since
λi
(
σ(γ−1)

) = (λ2n−i (τ (σ )(γ )))−1 for all i and all σ ∈ H2n ,

Lαn (ρt (γ )) = log

(
λn (ρt (γ ))

λn+1 (ρt (γ ))

)
= Lαn (ρ−t (γ ))

for all t ∈ (−ε, ε) and γ ∈ π1(S). Therefore,

d

dt

∣∣∣
t=0

Lαn (ρt (γ )) = 0

for all γ ∈ π1(S), so Proposition 6.2 implies that ‖ρ̇0‖Pαn
= ‖v‖Pαn

= 0. ��
It is natural to wonder whether a similar symmetry is responsible for all degeneracies of

pressure metrics constructed in this fashion.
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