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Abstract. We interpret the Hilbert entropy of a convex projective struc-

ture on a closed higher-genus surface as the Hausdorff dimension of the non-
differentiability points of the limit set in the full flag space FpR3q. General-

izations for regularity properties of boundary maps between locally conformal

representations are also discussed. An ingredient for the proofs is the con-
cept of hyperplane conicality that we introduce for a θ-Anosov representation

into a reductive real-algebraic Lie group G. In contrast with directional con-

icality, hyperplane-conical points always have full mass for the corresponding
Patterson-Sullivan measure.
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1. Introduction

Consider a closed connected orientable surface S of genus at least two, and let
ρ : π1S Ñ PSLp3,Rq be a faithful representation preserving an open convex set
Ω “ Ωρ Ă PpR3q, properly contained in an affine chart. The group ρpπ1Sq is
necessarily discrete and acts co-compactly on Ω: one says that ρ divides Ω.

Date: October 11, 2023.
B. P. is supported by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strat-

egy EXC-2181/1 - 390900948 (the Heidelberg STRUCTURES Cluster of Excellence), and acknowl-
edges further support by DFG grant 338644254 (within the framework of SPP2026) and 427903332
(in the Emmy Noether program). A. S. was partially financed by ANR DynGeo ANR-16-CE40-
0025. Part of this work was carried out in Oberwolfach, we thank the institute for its great

hospitality. B.P. additionally thanks Prof. Farkas and Humboldt University for their hospitality,
the Familienzimmer des mathematiches Institut made it possible to work on this paper while
taking care of a small child.

1



2

The geometry of such convex set Ω is well studied, by Benoist [5] it is strictly
convex with C1`ν boundary BΩ (that is not C2 unless it is an ellipse), and the
Hilbert metric of Ω is Gromov-hyperbolic. The geodesic flow of Ω{ρpπ1Sq is an
Anosov flow and its topological entropy, the Hilbert entropy hH “ phHqρ, satisfies

hH ď 1,

an inequality proved by Crampon [18] that is strict if Ω is not an ellipse.
A consequence of Theorem B below is a new geometric interpretation of the

Hilbert entropy which we now explain. For each x P BΩ let Ξpxq P Gr2pR
3q be the

unique plane whose projectivisation is tangent to BΩ at x. By [5], the image curve
ΞpBΩq Ă Gr2pR

3q » PppR3q˚q is also the boundary of a strictly convex divisible set
Ω˚ and is thus again a C1`ν-circle. The full-flag-curve

tpx,Ξpxqq : x P BΩu Ă FpR3q,

is the graph of a monotone map between C1 circles and thus is a Lipschitz subman-
ifold that is therefore differentiable almost everywhere. We establish the following:

Corollary A. Let ρ : π1S Ñ PSLp3,Rq divide a strictly convex set that is not
an ellipse. Then, the set of non-differentiability points of the full flag curve has
Hausdorff dimension phHqρ.

Throughout the paper the Hausdorff dimension is computed with respect to
a(ny) Riemannian metric on the flag space. When Ω is an ellipse the result does
not apply as the associated curve is differentiable everywhere while hH “ 1.

A classical result by Choi-Goldman [16] states that the space of representa-
tions dividing a convex set forms a connected component of the character variety
X
`

π1S,PSLp3,Rq
˘

of homomorphisms up to conjugation. This component is known
today as the Hitchin component of PSLp3,Rq and is diffeomorphic to a ball of di-
mension ´8χpSq. Nie [39] and Zhang [53] have found paths pρtq in this Hitchin
component such that phHqρt Ñ 0 as t Ñ 8. Together with Corollary A this
suggest that the closer Ω is to being an ellipse (the Fuchsian locus), the less dif-
ferentiable the flag curve is whilst the furthest away from Fuchsian locus, the more
regular the flag curve becomes.

The proof of Corollary A is outlined in § 1.4 and serves as a guide path for the
strategy on the general case (Theorems A and B).

1.1. Locally conformal representations and concavity properties. Let K
be R, C or the non-commutative field of Hamilton’s quaternions H. Denote by

a “
 

pa1, . . . , adq P R
d :

ÿ

i

ai “ 0
(

the Cartan subspace of the real-algebraic group SLpd,Kq, by

τipa1, . . . , adq “ ai ´ ai`1 (1.1)

the i-th simple root and by a` Ă a the Weyl chamber whose associated set of simple
roots is ∆ “ tτi : i P J1, d ´ 1Ku. Let a : SLpd,Kq Ñ a` be the Cartan projection
with respect to the choice of an inner (or Hermitian) product on Kd. The eaipgq’s
are the singular values of the matrix g, namely the square roots of the modulus
of the eigenvalues of the matrix gg˚. We also let dP denote the distance on PpKdq
induced by the chosen Hermitian product.
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Let Γ be a finitely generated word-hyperbolic group, consider a finite symmetric
generating set and let | | be the associated word-length. For k P J1, d ´ 1K, a
representation ρ : Γ Ñ SLpd,Kq is tτku-Anosov if there exist positive constants µ
and c such that for all γ P Γ one has

τk
`

apρpγqq
˘

ě µ|γ| ´ c.

A tτku-Anosov representation is also tτd´ku-Anosov. Under such assumption
there exists an equivariant Hölder-continuous map

ξkρ : BΓ Ñ GrkpK
dq,

called the limit map in the Grassmannian GrkpK
dq of k-dimensional subspaces of

Kd, which is a homeomorphism onto its image. If k ď l P J1, d ´ 1K and ρ is also
tτlu-Anosov then the limit maps are compatible, i.e. ξkρ pxq Ă ξlρpxq @x, see §4 for
references and details.

Definition 1.1. Fix p P J2, d ´ 1K. A tτ1, τd´pu-Anosov representation ρ : Γ Ñ
SLpd,Kq is p1, 1, pq-hyperconvex if for every pairwise distinct triple x, y, z P BΓ one
has

`

ξ1
ρpxq ` ξ

1
ρpyq

˘

X ξd´pρ pzq “ t0u. (1.2)

If in addition one has a2pρpγqq “ appρpγqq @γ, we say that ρ is locally conformal.

Hyperconvex representations form an open subset of the character variety

X
`

Γ,SLpd,Kq
˘

“ hom
`

Γ,SLpd,Kq
˘

{SLpd,Kq

and appear naturally. For example, when K “ R, strictly convex divisible sets
give rise to p1, 1, d´ 1q-hyperconvex representations, while higher rank Teichmüller
theory provides many examples of p1, 1, 2q-hyperconvex representations of surface
groups, see Example 1.4.

When p “ 2 the second part of the definition is trivially true, so p1, 1, 2q-
hyperconvex representations over K are locally conformal, when p ą 2 the as-
sumption constrains the Zariski closure of ρpΓq. However, Zariski-dense locally
conformal representations exist (and form open sets) for the groups locally isomor-
phic to SLpn,Rq, SLpn,Cq, SLpn,Hq, SUp1, nq, Spp1, nq, SOpp, qq, see P.-S.-Wienhard
[43, § 8] for details, and, of course, SOp1, nq where every convex co-compact repre-
sentation is locally conformal.

A concrete example in SUp1, nq consist on considering a convex co-compact group
in HnC whose limit set intersects the projectivization of any complex line in at most
2 points. These subgroups are locally conformal ([43, Proposition 8.3]) and their
limit set (though fractal) is tangent to the contact distribution of BHnC.

Consider also K P tR,C,Hu and positive integers d and d. Throughout the paper
we mainly deal with a pair of locally conformal representations

ρ : Γ Ñ SLpd,Kq and ρ : Γ Ñ SLpd,Kq,

with equivariant maps ξ “ ξ1
ρ and ξ “ ξ1

ρ, and we study regularity properties of the
equivariant Hölder-continuous homeomorphism

Ξ “ ξ ˝ ξ´1 : ξpBΓq Ñ ξpBΓq.

To avoid confusion we denote the simple roots of SLpd,Kq by
 

τ i : i P J1, d´1K
(

,
and to simplify notation we identify γ with ρpγq and we let γ “ ρpγq. We consider
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also the graph of Ξ, or equivalently the graph map,

G :
`

ξ, ξ
˘

: BΓ Ñ PpKdq ˆ PpKdq.

Definition 1.2. Fix b P p0, 1s. We will say that that Ξ is b-concave at x P BΓ, or
that x is a b-concavity point for Ξ, if there exists a sequence pykq converging to x
as k Ñ8 such that the incremental quotient

dP
`

ξpxq, ξpykq
˘

dP
`

ξpxq, ξpykq
˘b

(1.3)

is bounded away from t0,8u. The set of b-concavity points is denoted by Hb
ρ,ρ.

Observe that Ξ can be b-concave at x for several b’s and that it is a 1-concave
point if one has yk Ñ x such that dpξpxq, ξpykqq and dPpξpxq, ξpykqq are comparable.

Csb

csb

dPpξpxq, ξpzqq

dPpξpxq, ξpzqq

Figure 1. A b-concave point x. The marked points on the axis’ repre-
sent dPpξpxq, ξpykqq and dPpξpxq, ξpykqq respectively.

In what follows we will compute the Hausdorff dimension of GpHb
ρ,ρq with respect

to the product metric on PpKdq ˆ PpKdq for b lying on an interval that we now
define. The dynamical intersection between ρ and ρ with respect to τ1 and τ1 is
defined by

Iτ1pτ1q “ lim
tÑ8

1

#Rtpτ1q

ÿ

γPRtpτ1q

τ1pλpγqq

τ1pλpγqq
,

where Rtpτ1q “
 

rγs P rΓs : τ1

`

λpγq
˘

ď t
(

and λ : SLpd,Kq Ñ a` is the Jordan
projection. This concept (from Bridgeman-Canary-Labourie-S. [11], Burger [13],
Knieper [34], among others) generalizes Bonahon’s intersection number between
two elements in Teichmüller space.

Let us say that ρ and ρ are gap-isospectral if for all γ P Γ one has

τ1
`

λpγq
˘

“ τ1

`

λpγq
˘

.

Corollary 6.6 (a consequence of [11] together with Proposition 6.3) implies that

if ρ and ρ are not gap-isospectral, then Iτ1pτ1q ą
`

Iτ1
pτ1q

˘´1
. We will study

b-concavity for any b P p0, 1s with

Iτ1pτ1q ą b ą
`

Iτ1
pτ1q

˘´1
.
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Finally, consider the critical exponents

hτ1 “ lim
tÑ8

1

t
log #

 

γ P Γ : τ1
`

apγq
˘

ď t
(

,

h8,b “ lim
tÑ8

1

t
log #

 

γ P Γ : max
 

bτ1
`

apγq
˘

, τ1

`

apγq
˘(

ď t
(

.

Theorem A (Theorem 6.1). Let tK,Ku Ă tR,Cu and let ρ : Γ Ñ SLpd,Kq and
ρ : Γ Ñ SLpd,Kq be locally conformal, R-irreducible and not gap-isospectral. Then

for any b P p0, 1s with Iτ1pτ1q ą b ą
`

Iτ1pτ1q
˘´1

, one has

bh8,b ď dimHffpGpH
b
ρ,ρqq ď minth8,b,bh8,b ` 1´ bu

ă minthτ1 ,hτ1{bu

ď dimHffpGpBΓqq

“ maxthτ1 ,hτ1u.

If K “ H (resp. K “ H) we further assume that the Zariski closure if ρ (resp. ρ)
does not have compact factors, then the same conclusion holds.

The proof of the above Theorem is completed in § 6.3. For representations in
PSLp2,Cq we can furthermore give a geometric interpretation of the 1-weakly-bi-
Hölder points, see § 8.4.

1.2. Surface-group representations. Observe that the first line of inequalities
in Theorem A becomes an equality when b “ 1. We pursue now this situation
while further restricting the source and ambient groups.

Let then K “ R and assume BΓ is homeomorphic to a circle. Real representations
of Γ that are p1, 1, 2q-hyperconvex are necessarily locally conformal and form the
prototype example of Anosov representations with C1 limit sets: indeed we have
the following result from P.-S.-Wienhard [43] and Zhang-Zimmer [54].

Theorem 1.3. Assume BΓ is homeomorphic to a circle and let ρ : Γ Ñ PGLpd,Rq
be tτ1u-Anosov.

[43],[54]: If ρ is p1, 1, 2q-hyperconvex, then ξ1pBΓq Ă PpRdq is a C1 submanifold tan-
gent at ξ1pxq to ξ2pxq.

[54]: If ρ is irreducible and ξpBΓq is a C1 circle then ρ is p1, 1, 2q-hyperconvex.

The graph map G “
`

ξ, ξ
˘

: BΓ Ñ PpRdq ˆ PpRdq has image contained in the

C1`ν torus ξpBΓqˆ ξpBΓq and GpBΓq is the graph of Ξ, a Hölder-continuous homeo-
morphism between C1`ν-circles. By monotonicity of Ξ, GpBΓq is a Lipschitz curve
and is thus differentiable almost everywhere. We let

NDiffρ,ρ Ă GpBΓq

be the subset of points where the curve GpBΓq is not differentiable. The combination
of Lemma 6.2 and Corollary 8.1 establishes that in the current situation (with mild
additional assumptions)

G
`

H1
ρ,ρ

˘

“ NDiffpρ,ρq,

whence with Theorem A one obtains the following:

Theorem B. Assume BΓ is homeomorphic to a circle and let ρ : Γ Ñ SLpd,Rq and
ρ : Γ Ñ SLpd,Rq be p1, 1, 2q-hyperconvex and not gap-isospectral. Then,

dimHff

`

NDiffρ,ρ
˘

“ h8,1 ă 1.
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We emphasize that no irreducibility assumption is made on the representations ρ
and ρ. On the other hand, if the representations are irreducible and gap-isospectral,
we show that there exists an isomorphism between the Zariski closures of ρpΓq and
of ρpΓq intertwining the two representations. It follows then that GpBΓq is the
diagonal of the C1`ν torus, and thus differentiable everywhere. To prove this we
give the following preliminary classification of Zariski-closures, established in § 7.3.

Recall that if G is a semi-simple real-algebraic group of non-compact type, then
irreducible proximal representations Φ : G Ñ PGLpV q are determined by their
highest restricted weight χΦ. A special subset of dominant weights are the so-
called fundamental weights t$a : a P ∆u, and are indexed by the set of simple roots
∆ of G (see § 2.3 for definitions and details).

Theorem C. Assume BΓ is homeomorphic to a circle and let ρ : Γ Ñ PGLpd,Rq be
irreducible and p1, 1, 2q-hyperconvex. Then the Zariski closure G of ρpΓq is simple
and the highest weight of the induced representation Φ : G Ñ PGLpd,Rq is a multiple
of a fundamental weight associated to a root whose root-space is one-dimensional.

In light of the following examples it is unclear if further restrictions can occur.

Example 1.4. Any pair of representations ρ : π1S Ñ G and Φ : G Ñ PGLpV q
in each of the following classes (and small deformations), gives rise to a p1, 1, 2q-
hyperconvex representation via post-composition Φ ˝ ρ. In particular the limit set
of ρ in the specified flag manifold of G is a C1`ν curve:

- G is split, ρ : π1S Ñ G is Hitchin, and Φ satisfies χΦ “ n$a for any
a P ∆ and n P Ną0. This is non-trivial and requires results from Fock-
Goncharov [20] and Labourie [35] together with Lusztig’s canonical basis
[36, Proposition 3.2] (see S. [50, § 5.8] for details). As a result the limit set
of ρ in any maximal flag manifold Ftau of G is a C1`ν curve.

- ρ : π1S Ñ POpp, qq is Θ-positive and Φ has highest weight $a for any root a
in the interior1 of Θ (P.-S.-Wienhard [42, Theorem 10.3], see also Beyrer-P.
[8, Remark 4.6]). In particular the limit set in any flag manifold of the form
IskpR

p,qq for k ď p´ 2 is a C1`ν-curve. When ρ is moreover Zariski-dense,
we can consider any Φ with χ`Φ “ n$a for any a P int Θ and n P Ną0.

- for all k ě 1, k-positive representations ρ : π1S Ñ PSLpd,Rq introduced in
Beyrer-P. [7] are p1, 1, 2q-hyperconvex.

For these examples also the following applies:

Corollary B. Assume BΓ is homeomorphic to a circle, let G be a simple Lie group
and let ρ : Γ Ñ G have Zariski-dense image. Assume there exist ta, bu Ă ∆ distinct
such that both Φa ˝ ρ and Φb ˝ ρ are p1, 1, 2q-hyperconvex. Then:

(i) The image of ξta,bu : BΓ Ñ Fta,bu is Lipschitz and the Hausdorff dimension

of the points where it is non-differentiable is hmaxta,bu.
(ii) If the opposition involution i on g is non-trivial and b “ ia then

hmaxta,bu “ hpa`bq{2.

Remark 1.5. A different approach to Theorem B, relying on Theorem C and The-
orem 1.3, would be to code the action of π1S on Bπ1S via Bowen-Series and ap-
ply Jordan-Kesseböhmer-Pollicott-Stratmann [29, Theorem 1.1]. This method, fol-
lowed by Pollicott-Sharp [40] for two representations in the Teichmüller space of S,

1i.e. a is only connected to roots in Θ in the Dynkin diagram of ∆
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is not applicable for groups other than π1S, in particular this approach cannot be
used in the generality of Theorem A.

1.3. Hyperplane vs directional conicality. To prove Theorems A and B we
introduce the concept of hyperplane conicality, a generalization of directional coni-
cality from Burger-Landesberg-Lee-Oh [14].

Let G be a real-algebraic semi-simple Lie group of non-compact type, a Ă g a
Cartan subspace, Φ Ă a˚ the associated root system and ∆ Ă Φ a choice of simple
roots with associated Weyl chamber a`.

Consider a non-empty θ Ă ∆ and let aθ be the associated Levi space. Fix a
θ-Anosov representation ρ : Γ Ñ G and denote by Lθ,ρ Ă aθ its θ-limit cone. We
will recall in § 4.3 that, when ρpΓq is Zariski-dense, there are natural bijections

intPpLθ,ρq Ø Qθ,ρ “ tϕ P paθq
˚ : hϕ “ 1u

Ø
 

Patterson-Sullivan measures supported on ξθpBΓq
(

.

For ϕ P Qθ,ρ we let uϕ P intPpLθ,ρq be the associated direction and µϕ the associated
Patterson-Sullivan measure.

Consider now a hyperplane W Ă aθ and assume, for the notion to be interesting,
that W intersects the relative interior of Lθ,ρ. Then x P BΓ is W-conical if there
exists a conical sequence pγnq

8
0 Ă Γ converging to x, a constant K and a sequence

pwnq
8
0 P W such that for all n one has

›

›aθ
`

ρpγnqq ´ wn
›

› ď K,

where aθ : G Ñ a`θ is the θ-Cartan projection. The set of W -conical points will be
denoted by BW,ρΓ “ BWΓ. Inspired by [14], in Theorem 4.16 we show the following.

Theorem D. Let ρ : Γ Ñ G be a Zariski-dense θ-Anosov representation and W
be a hyperplane of aθ intersecting non-trivially the interior of Lθ,ρ. Then for every
ϕ P Qθ,ρ with uϕ P PpWq one has µϕpBWΓq “ 1.

1.4. Strategy of the proof of Corollary A. Corollary A is a consequence of
Theorem B where ρ is the dual representation of ρ. We sketch a direct proof of
Corollary A serving as a guide-path for the general result.

Let ρ : π1S Ñ SLp3,Rq be the holonomy of a strictly convex projective structure
dividing the convex set Ω. We consider the L8 distance on the product pPpR3q, dPqˆ
pPppR3q˚q, dPq, which is equivalent to the Riemannian distance, and thus induces
the same Hausdorff dimension.

As a replacement of Sullivan’s shadows we use coarse cone type at infinity, in-
spired by Cannon’s work on cone types [15] (see also §4.1). Fix a finite symmetric
generating set on π1S and let | | be the associated word length. For γ P π1S and
c ą 0, the coarse cone type at infinity Cc8pγq of γ is the set of endpoints at infinity
of pc, cq-quasi geodesic rays based at γ´1 passing through the identity. See Figure
2.

We let ξ : Bπ1S Ñ BΩ be the natural identification via the action of ρpπ1Sq on
Ω, and analogously ξ : π1S Ñ BΩ˚. We denote by G :“ pξ, ξq : π1S Ñ BΩ ˆ BΩ˚

the flag curve. Consider x P Bπ1S and let αi Ñ x be a geodesic ray on π1S. The
following fact is a consequence of Proposition 5.6.

Fact. For big enough i, the subset ξ
`

αiC
c
8pαiq

˘

Ă BΩ is coarsely the intersection of

a ball of radius e´τ1pαiq about ξpxq with BΩ. By duality, one has ξ
`

αiC
c
8pαiq

˘

Ă BΩ˚

is coarsely the intersection of a ball of radius e´τ2pαiq about ξpxq with BΩ˚.



8

γγη

γCc8pγq

e

π1S

e

γ´1 π1S

Ccpγq

Figure 2. The coarse cone type of γ P Γ (left). The set γ ¨Cc8pγq (right).
Pictures from P.-S.-Wienhard [43].

The coarse constants and the minimal length i required in the above statement
depend only on the representation and not on the point x.

e´τ1pραiq

e´τ2pραiq

ξpxq

ξpxq

Figure 3. The image of the cone type αiC
c
8pαiq by the graph curve G

in the C1`ν-torus BΩˆ BΩ˚.

For any point x P Bπ1S we distinguish two complementary situations that don’t
depend on the choice of the geodesic ray pαiqiPN converging to x:

i) For all R ą 0 there exists N P N with |τ1papαiqq ´ τ2papαiqq| ě R for all
i ě N ;

ii) There exists R ą 0 and an infinite set of indices I Ă N such that for all k P I
one has |τ1papαkqq´ τ2papαkqq| ď R. We say in this case that x is b-conical
(b stands for ’barycenter of the chamber’).

In the first case one is easily convinced by looking at Figure 3 that the rectangle
becomes flatter along one of its sides (see § 8 for details in the general case). Fur-
thermore, since τ1papαiqq ´ τ1papαi`1qq is uniformly bounded, its sign is eventually
constant, and thus the longer side only depends on the point. As a result x is
necessarily a differentiability point of the graph curve G, with either horizontal or
vertical derivative.

We are thus bound to understand the set of b-conical points. We show (see
Corollary 8.1):

Fact. The non-differentiabilty points of the curve GpBπ1Sq and the b-conical points
coincide.

The main idea for this is to show that if a b-conical point x were a differen-
tiability point, then the derivative could not be horizontal nor vertical, and thus
(by Proposition 7.2) Ξ would be bi-Lipschitz. In turn, this would force the periods
of the two roots to agree, which in turn would imply that the representation is
Fuchsian, contradicting the assumption that Ω is not an ellipse.
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It remains to understand the Hausdorff dimension of the set of b-conical points.
The upper bound (Proposition 5.11)

dimHff

`

tb´ conicalu
˘

ď hmaxtτ1,τ2u (1.4)

follows readily: since for a b-conical point the lengths e´τ1pαkq and e´τ2pαkq are
comparable independently on k P I, one can replace the rectangle in Figure 3 by
the (smaller) square of length

e´maxtτ1papαkqq,τ2papαkqqu

and still get a covering2 (this time by balls on the L8 metric) of the set tb´conicalu.
Standard arguments on Hausdorff dimension give Equation (1.4).

Finding a lower bound for the Hausdorff dimension is more subtle; we use here
an appropriate Patterson-Sullivan measure to study how the mass of a ball of radius
r scales with r.

Since GpBπ1Sq is a subset the full flag space FpR3q and

}v}8 :“ maxt|τ1pvq|, |τ2pvq|u

is a norm on aPSLp3,Rq, we can apply results by Quint [44] to determine a linear form
ϕ8b P a˚ whose associated growth direction is the barycenter b “ kerpτ1 ´ τ2q. By
Quint [44, Proposition 3.3.3]

hmaxtτ1,τ2u “ }ϕ8b }
1,

where } }1 is the operator norm on a˚ defined by } }8, which turns out to be the
L1 norm }aτ1 ` bτ2}

1 “ |a| ` |b|. The form ϕ8b additionally admits an associated
Patterson-Sullivan probability measure, namely a measure µ8 such that for all
γ P π1S one has (see Corollary 4.14)

µ8
`

GpγCc8pγqq
˘

ď Ce´ϕ
8
b papγqq. (1.5)

A key extra information available in the case of PSLp3,Rq is that the form ϕ8b
is explicit and doesn’t depend on ρ. For this we need a small parenthesis on the
critical hypersurface Qρ of ρ, depicted in Figure 4, and characterized by

Qρ “
 

ϕ P a˚ : hϕ “ 1
(

,

where the critical exponent of a functional ϕ P a˚ is

hϕ :“ lim
tÑ8

1

t
log #

 

γ P π1S : ϕpapγqq ď tu P p0,8s.

The critical hypersurface Qρ Ă a˚ is a closed analytic curve that bounds a strictly
convex set (S. [46] and Potrie-S. [41]), and thus by Quint [44], the linear form ϕ8b
is uniquely determined by

}ϕ8b }
1 “ inf

 

}ϕ}1 : ϕ P Qρ
(

. (1.6)

Again by [41] one has tτ1, τ2u Ă Qρ. Since both Qρ and the norm } }1 are
invariant by the opposition involution i (see again Figure 4) we deduce that, if we
let H “ pτ1 ` τ2q{2, then

ϕ8b “ hH ¨ H ě hH mintτ1, τ2u. (1.7)

2Choosing the longer side e´mintτ1papαkqq,τ2papαkqqu gives the bound dimHff GpBπ1Sq ď 1.
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Qρ

i

a˚

τ2

τ1

H “ τ1`τ2
2

ϕ8b “ hHH

Figure 4. The critical hypersurface of a strictly convex projective
structure on S. Since H is a convex combination of tτ1, τ2u one has
}H}1 “ 1 and thus }ϕ8b }

1
“ hH.

In particular, using Equation (1.6), we obtain that hmaxtτ1,τ2u “ hH. Moreover,
since the geodesic flow is Anosov (by Benoist [5]) we can apply Bowen’s charac-
terization of entropy [10] (and Remark 4.13), to obtain that the Hilbert entropy
hH “ hH.

After this small parenthesis on the critical hypersurface, we come back to the
lower bound on the Hausdorff dimension. Since G is a graph, GpBπ1Sq has the same
intersection with the rectangle in Figure 3 than with the larger square of size

e´mintτ1papαiqq,τ2papαiqqu;

this square is now a ball (for the L8 metric) of radius e´mintτ1papαiqq,τ2papαiqqu. Thus
for all i, G

`

αiC
c
8pαiq

˘

is coarsely a ball of the latter radius and one has

µ8
`

BpGpxq, e´mintτ1papαiqq,τ2papαiqqu
˘

ď µ8
`

GpαiC
c
8pαiq

˘

ď Ce´ϕ
8
b papαiqq

ď C
`

e´mintτ1papαiqq,τ2papαiqqu
˘hH

,

where the last inequalities follow from Equations (1.5) and (1.7). This gives a
possibly bigger constant C 1 such that, for all r,

µ8
`

BpGpxq, rq
˘

ď C 1rh
H

.

Again, classical Hausdorff dimension arguments (c.f. Corollary 5.8 below) give that,
for any measurable subset E Ă GpBπ1Sq with full µ8 mass, one has dimHffpEq ě
hH.

Since PSLp3,Rq has rank smaller than 3 and ρ is ∆-Anosov we can apply Burger-
Landesberg-Lee-Oh [14, Theorem 1.6] to obtain that µ8ptb-conicaluq “ 1 and thus
we have the desired lower bound

dimHff

`

tb-conicalu
˘

ě hH,

which combined with the upper bound (1.4) and the equality hmaxtτ1,τ2u “ hH,
gives the proof of Corollary A.

In the general case [14, Theorem 1.6] is not applicable and we replace it with
Theorem D. �
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Structure of the paper. The preliminaries of the paper are standard facts about
linear algebraic groups, recalled in §2, the work of S. [49] about linear cocycles over
the boundary of a hyperbolic group (in §3), as well as basic facts about Anosov
representations and their Patterson-Sullivan theory recalled from [25, 9, 43, 49]
in the first part of §4. In the rest of §4 we prove Theorem 4.16 a more precise
statement than Theorem D, discussing the Patterson-Sullivan measure of pW, ϕq-
conical points. The heart of the proof is to construct and study a rank 2 flow whose
recurrence set is related to pW, ϕq-conical points.

In §5 we consider two locally conformal representations. We prove Theorem 5.3,
stating that for such a pair the Hausdorff dimension of the set of b-conical points
belongs to

rbh8,b,minth8,b,bh8,b ` 1´ bus.

The lower bound is obtained by analyzing properties of the linear form ϕ8b whose

associated growth direction is pb, 1q; its Patterson-Sullivan measure µϕ
8
b gives full

mass to the set of b-conical points thanks to Theorem 4.16. Using cone-types we

can show that for a fine set of balls µϕ
8
b pBpx, rqq ď Cr´bh8,b . The upper bound

uses results of [43] to construct a fine covering of the set of b-conical points with
balls of radius e´maxtbτ,τu. In §6 we prove Theorem A.

In §7 we prove that if the graph map between R-hyperconvex representations
has an oblique derivative, then the map is bi-Lipschitz (Proposition 7.2). This only
relies on basic properties of hyperconvex representations, and is crucial for the proof
of Theorem B, achieved in §8, as it allows the identification of b-conical points and
points of non-differentiability.

Acknowledgements. We thank Katie Mann, Gabriele Viaggi, Anna Wienhard
and Maxime Wolff for insightful conversations and Andrés Navas for pointing us to
useful literature.

2. Linear algebraic groups

Throughout the text G will denote a real-algebraic semi-simple Lie group of
non-compact type and g its Lie algebra.

2.1. Linear algebraic groups. Fix a Cartan involution o : gÑ g with associated
Cartan decomposition g “ k‘ p. Let a Ă p be a maximal abelian subspace and let
Φ Ă a˚ be the set of restricted roots of a in g. For a P Φ, we denote by

ga “ tu P g : ra, us “ apaqu @a P au

its associated root space. The (restricted) root space decomposition is g “ g0 ‘
À

aPΦ ga, where g0 is the centralizer of a. Fix a Weyl chamber a` of a and let Φ`

and ∆ be, respectively, the associated sets of positive and simple roots. Let W be
the Weyl group of Φ and i : aÑ a be the opposition involution: if u : aÑ a is the
unique element in W with upa`q “ ´a` then i “ ´u.

We denote by p¨, ¨q both the Killing form of g, its restriction to a, and its asso-
ciated dual form on a˚, the dual of a. For χ, ψ P a˚ let

xχ, ψy “ 2
pχ, ψq

pψ,ψq
.

The restricted weight lattice is defined by

Π “ tϕ P a˚ : xϕ, ay P Z @a P Φu.
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It is spanned by the fundamental weights t$a : a P ∆u, defined by

x$a, by “ daδab (2.1)

for every a, b P ∆, where da “ 1 if 2a R Φ` and da “ 2 otherwise.
A subset θ Ă ∆ determines a pair of opposite parabolic subgroups Pθ and P̌θ

whose Lie algebras are

pθ “
à

aPΦ`Yt0u

ga ‘
à

aPx∆´θy

g´a,

p̌θ “
à

aPΦ`Yt0u

g´a ‘
à

aPx∆´θy

ga.

The group P̌θ is conjugated to the parabolic group Piθ. We denote the flag space
associated to θ by Fθ “ G{Pθ. The G orbit of the pair prPθs, rP̌θsq is the unique

open orbit for the action of G in the product Fθ ˆ Fiθ and is denoted by F
p2q
θ .

2.2. Cartan and Jordan projection. Denote by K “ exp k and A “ exp a. The
Cartan decomposition asserts the existence of a continuous map a : G Ñ a`, called
the Cartan projection, such that every g P G can be written as g “ keapgql for some
k, l P K.

We will need the following uniform continuity of the Cartan projection:

Proposition 2.1 (Benoist [2, Proposition 5.1]). For any compact L Ă G there
exists a compact set H Ă a such that, for every g P G, one has

apLgLq Ă apgq `H.

By the Jordan’s decomposition, every element g P G can be uniquely written as
a commuting product g “ gegssgu where ge is conjugate to an element in K, gss
is conjugate to an element in exppa`q and gu is unipotent. The Jordan projection
λ “ λG : G Ñ a` is the unique map such that gss is conjugated to exp

`

λpgq
˘

.

Definition 2.2. Let Γ Ă G be a discrete subgroup, then its limit cone LΓ is the
smallest closed cone of the closed Weyl chamber a` that contains tλpgq : g P Γu.

We will need the following results by Benoist.

Theorem 2.3 (Benoist [3, 4]). Let Γ Ă G be a Zariski-dense sub-semigroup, then
its limit cone LΓ has non-empty interior. Moreover, the group generated by the
Jordan projections tλpgq : g P Γu is dense in a.

2.3. Representations of G. The standard references for the following are Fulton-
Harris [21], Humphreys [27] and Tits [51].

Let Φ : G Ñ PGLpV q be a finite dimensional rational3 irreducible representation
and denote by φΦ : gÑ slpV q the Lie algebra homomorphism associated to Φ. The
weight space associated to χ P a˚ is the vector space

Vχ “ tv P V : φΦpaqv “ χpaqv @a P Au.

We say that χ P a˚ is a restricted weight of Φ if Vχ ‰ 0. Tits [51, Theorem 7.2]
states that the set of weights has a unique maximal element with respect to the
partial order χ ą ψ if χ ´ ψ is a N-linear combination of positive roots. This is

3Namely a rational map between algebraic varieties.
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called the highest weight of Φ and denoted by χΦ. By definition, for every g P G
one has

λ1

`

Φpgq
˘

“ χΦpλpgq
˘

, (2.2)

where λ1 is the logarithm of the spectral radius of Φpgq.
We denote by Πpφq the set of restricted weights of the representation φΦ

Πpφq “
 

χ P a˚ : Vχ ‰ t0u
(

,

these are all bounded above by χΦ (see for example Humphreys [27, §13.4 Lemma
B]), namely every weight χ P Πpφq has the form

χΦ ´
ÿ

aP∆

naa for na P N.

The level of a weight χ is the integer
ř

a na, the highest weight is thus the only
weight of level zero. Additionally, if χ P ΠpφΦq and a P Φ` then the elements of
ΠpφΦq of the form χ` ja, j P Z form an unbroken string

χ` ja, j P J´r, qK

and r´q “ xχ, ay. One can then recover algorithmically the set ΠpφΦq level by level
starting from χΦ, as follows:

- Assume the set of weights of level at most k is known and consider a weight
χ of level k.

- For each a P ∆ compute xχ, ay, this gives the length r ´ q of the a-string
through χ. The weights of the form χ`ja, for positive j, have level smaller
than k and are thus known, thus we can decide whether χ ´ a is a weight
or not, determining the set of weights of level k ` 1.

The following lemma follows at once from the algorithmic description above. Let
g “

À

i gi be the decomposition in simple factors of a semi-simple real Lie algebra
of non-compact type. Recall that if ai Ă gi is a Cartan subspace, then a “

À

i ai
is a Cartan subspace of g. Any ϕ P paiq

˚ extends to a functional on a, still denoted
ϕ, by vanishing on the remaining factors. The restricted root system of g is then
∆g “

Ť

∆gi . The associated simple factor to a P ∆g is gi such that a P ∆i.

Lemma 2.4. Let g be a semi-simple real Lie algebra of non-compact type and φ be
an irreducible representation of g whose highest restricted weight is a multiple of a
fundamental weight, χφ “ k$a for some a P ∆. Then φ factors as a representation
of the simple factor associated to a.

Proof. Proceeding by induction on the levels of φ, one readily sees that for every
τ P ∆j for j ‰ i and all χ P Πpφq one has xχ, τy “ 0. Thus the associated root
space pgjq´τ acts trivially on every weight space of φ and so the whole factor gj
acts trivially. �

The following set of simple roots plays a special role in representation theory.

Definition 2.5. Let Φ : G Ñ PGLpV q be a representation. We denote by θΦ the
set of simple roots a P ∆ such that χΦ ´ a is still a weight of Φ. Equivalently

θΦ “
 

a P ∆ : xχΦ, ay ‰ 0
(

. (2.3)

The following lemma will be needed in the proof of Theorem C.
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Lemma 2.6. Let g be semi-simple of non-compact type and φ : g Ñ glpV q an
irreducible representation. For a P θφ and v P Vχφ ´ t0u, the map n ÞÑ φpnqv is
injective when defined on g´a.

Proof. By definition of χφ every n P ga acts trivially on Vχφ . For y P g´a ´ t0u,
there exists x P ga such that tx, y, hau spans a Lie algebra isomorphic to sl2pRq,
where ha is defined by ϕphaq “ xϕ, ay for all ϕ P a˚. If φpyqv “ 0 then, since
φpxqVχφ “ 0 one concludes φphaqv “ 0 and since Vχφ is a weight-space one has
φphaqVχφ “ 0. This in turn implies that

xχφ, ay “ χφphaq “ 0,

contradicting that a P θφ. �

We denote by } }Φ an Euclidean norm on V invariant under ΦK and such that ΦA
is self-adjoint, see for example Benoist-Quint’s book [6, Lemma 6.33]. By definition
of χΦ and } }Φ, and Equation (2.2) one has, for every g P G, that

log }Φg}Φ “ χΦpapgqq. (2.4)

Here, with a slight abuse of notation, we denote by } }Φ also the induced operator
norm, which doesn’t depend on the scale of } }Φ.

Denote by WχΦ the ΦA-invariant complement of VχΦ . The stabilizer in G of WχΦ

is P̌θΦ , and thus one has a map of flag spaces

pζΦ, ζ
˚
Φq : F

p2q
θΦ
pGq Ñ Gr

p2q
dimVχΦ

pV q. (2.5)

This is a proper embedding which is an homeomorphism onto its image. Here, as

above, Gr
p2q
dimVχΦ

pV q is the open PGLpV q-orbit in the product of the Grassmannian

of pdimVχΦ
q-dimensional subspaces and the Grassmannian of pdimV ´ dimVχΦ

q-
dimensional subspaces. One has the following proposition (see also Humphreys [28,
Chapter XI]).

Proposition 2.7 (Tits [51]). For each a P ∆ there exists a finite dimensional
rational irreducible representation Φa : G Ñ PSLpVaq, such that χΦa is an integer
multiple la$a of the fundamental weight and dimVχΦa

“ 1.

We will fix from now on such a set of representations and call them, for each
a P ∆, the Tits representation associated to a.

2.4. The center of the Levi group PθXP̌θ. We now consider the vector subspace

aθ “
č

aP∆´θ

ker a.

Denoting by Wθ “ tw P W : wpvq “ v @v P aθu the subgroup of the Weyl group
generated by reflections associated to roots in ∆ ´ θ, there is a unique projection
πθ : aÑ aθ invariant under Wθ.

The dual paθq
˚ is canonically identified with the subspace of a˚ of πθ-invariant

linear forms. Such space is spanned by the fundamental weights of roots in θ,

paθq
˚ “ tϕ P a˚ : ϕ ˝ πθ “ ϕu “ x$a|aθ : a P θy.

We will denote, respectively, by

aθ “ πθ ˝ a : G Ñ aθ

λθ “ πθ ˝ λ : G Ñ aθ,



15

the compositions of the Cartan and Jordan projections with πθ.

2.5. The Buseman-Iwasawa cocycle. The Iwasawa decomposition of G states
that every g P G can be written uniquely as a product lzu with l P K, z P A and
u P U∆, where U∆ is the unipotent radical of P∆.

The Buseman-Iwasawa cocycle of G is the map b : Gˆ F Ñ a such that, for all
g P G and krP∆s P F,

bpg, krP∆sq “ logpzq

where log : A Ñ a denotes the inverse of the exponential map, and gk “ lzu is
the Iwasawa decomposition of gk. Quint [45, Lemmes 6.1 and 6.2] proved that the
function bθ “ πθ ˝ b factors as a cocycle bθ : Gˆ Fθ Ñ aθ.

The Buseman-Iwasawa cocycle can also be read from the representations of G.
Indeed, Quint [45, Lemme 6.4] shows that for every g P G and x P Fθ one has

la$apbpg, xqq “ log
}Φapgqv}Φ
}v}Φ

, (2.6)

where v P ζΦapxq P PpVaq is non-zero, and la is as in Proposition 2.7.

2.6. Gromov product and Cartan attractors. Let K be either C or R. For a
decomposition Kd “ `‘ V into a line ` and a hyperplane V together with an inner
(Hermitian) product o on Kd, one defines the Gromov product by

GpV, `q “ GopV, `q :“ log
|ϕpvq|

}ϕ}}v}
“ log sin >op`, V q,

for any non-vanishing v P ` and ϕ P pKdq˚ with kerϕ “ V.
This induces, for any semisimple Lie group G and subset θ ă ∆, a Gromov

product Gθ : F
p2q
θ Ñ aθ defined, for every px, yq P F

p2q
θ and a P θ, by

la$a

`

Gθpx, yq
˘

“ GΦapζ˚Φa
x, ζΦayq “ log sin >o

`

ζΦay, ζ
˚
Φa
xq,

where ζ˚Φa
and ζΦa are the equivariant maps from Equation (2.5), and the Hermitian

product o is induced by an Euclidean norm } }Φa invariant under ΦaK.

From S. [47, Lemma 4.12] one has, for all g P G and px, yq P F
p2q
θ ,

Gθpgx, gyq ´ Gθpx, yq “ ´
`

i biθpg, xq ` bθpg, yq
˘

. (2.7)

If g “ k exppapgqql is a Cartan decomposition of g P G we define its θ-Cartan
attractor (resp. repeller) by

Uθpgq “ krPθs P Fθ and Uiθpg
´1q “ l´1rP̌θs P Fiθ.

The Cartan basin of g is defined, for α ą 0, by

Bθ,αpgq “
 

x P Fθ : $aGθ
`

Uiθpg
´1q, x

˘

ą ´α, @a P θ
(

. (2.8)

Remark 2.8. Observe that a statement of the form $aGθpx, yq ě ´κ for all a P θ is
a quantitative version (depending on the choice of K) of the transversality between
x and y; in particular it implies that x and y are transverse.

Neither the Cartan attractor nor its basin are uniquely defined unless for all
a P θ one has a

`

apgq
˘

ą 0, regardless one has the following:
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Remark 2.9. Given α ą 0 there exists a constant Kα such that if y P Fθ belongs to
Bθ,αpgq then one has

›

›aθpgq ´ bθpg, yq
›

› ď Kα. (2.9)

Indeed, using Tits’s representations of G and Equations (2.4) and (2.6) this boils
down to the elementary fact that if A P GLdpRq verifies4 τ1papAqq ą 0 then for every
v P Rd one has

log
}Av}

}v}
ě log }A} ` log sin >

`

R ¨ v, Ud´1pA
´1q

˘

(see for example [9, Lemma A.3]).

3. Hölder cocycles on BΓ

Let Γ be a finitely generated group, and fix a finite generating set S. A group Γ
is Gromov hyperbolic if its Cayley graph CaypΓ, Sq is a Gromov hyperbolic geodesic
metric space. In this case we denote by BΓ its Gromov boundary, namely the
equivalence classes of (quasi)-geodesic rays. It is well known that, up to Hölder
homeomorphism, BΓ doesn’t depend on the choice of the generating set S. We will
denote by B2Γ the set of distinct pairs in BΓ:

B2Γ :“ tpx, yq P BΓˆ BΓ|x ‰ yu.

For a finitely generated, non-elementary, word-hyperbolic group Γ we denote by
g “

`

gt : UΓ Ñ UΓ
˘

tPR
the Gromov-Mineyev geodesic flow of Γ (see Gromov [23]

and Mineyev [38]). Throughout this section we will have the same assumptions as
in S. [49, § 3], namely that g is metric-Anosov and that the lamination induced on

the quotient by rWcu “ tpx, ¨, ¨q P ĂUΓu is the central-unstable lamination of g.
Since we will mostly recall needed results from S. [49, § 3] we do not overcharge

the paper with the definitions of metric-Anosov and central-unstable lamination: by
Bridgeman-Canary-Labourie-S. [11], word-hyperbolic groups admitting an Anosov
representation verify the required assumptions.

Definition 3.1. Let V be a finite dimensional real vector space. A Hölder cocycle
is a function c : Γˆ BΓ Ñ V such that:

- for all γ, h P Γ one has c
`

γh, x
˘

“ c
`

h, x
˘

` c
`

γ, hpxq
˘

,
- there exists α P p0, 1s such that for every γ P Γ the map cpγ, ¨q is α-Hölder

continuous.

Recall that every hyperbolic element5 γ P Γ has two fixed points on BΓ, the
attracting γ` and the repelling γ´. If x P BΓ´tγ´u then γnxÑ γ` as nÑ8. The
period of a Hölder cocycle for a hyperbolic γ P Γ is `cpγq :“ c

`

γ, γ`
˘

. A cocycle
c˚ : Γˆ BΓ Ñ R is dual to c if for every hyperbolic γ P Γ one has

`c˚pγq “ `c
`

γ´1
˘

.

4Recall from Equation (1.1) that we denote by τi the simple roots of GLdpRq
5Namely an infinite order element
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3.1. Real-valued coycles. Assume now V “ R and consider a cocycle κ with
non-negative (and not all vanishing) periods. For t ą 0 we let

Rtpκq “
 

rγs P rΓs hyperbolic : `κpγq ď t
(

and define the entropy of κ by

hκ “ lim sup
tÑ8

1

t
log #Rtpκq P p0,8s.

For such a cocycle consider the action of Γ on B2Γˆ R via κ:

γ ¨ px, y, tq “ pγx, γy, t´ κ pγ, yqq . (3.1)

The following is a straightforward consequence of S. [49, Theorem 3.2.2].

Proposition 3.2. Let κ be a Hölder cocycle with non-negative periods and finite
entropy. Then, the above action of Γ on B2Γˆ R is properly-discontinuous and co-
compact. If moreover c is another Hölder cocycle with non-negative periods and fi-
nite entropy then there exists a Γ-equivariant bi-Hölder-continuous homeomorphism
E : B2Γˆ RÑ B2Γˆ R which is an orbit equivalence between the R-translation ac-
tions.

We recall the notion of dynamical intersection, a concept from Bridgeman-
Canary-Labourie-S. [11] for Hölder functions over a metric-Anosov flow, that can
be pulled back to this setting via the existence of the Ledrappier potential of κ from
S. [49, § 3.1].

The dynamical intersection of two real valued cocycles κ, c is

Ipκ, cq “ lim
tÑ8

1

Rtpκq

ÿ

γPRtpκq

`cpγq

`κpγq
. (3.2)

We record in the following proposition various needed facts about I:

Proposition 3.3 ([11, § 3]). The dynamical intersection defined above is well de-
fined, linear in the second variable and for all positive s satisfies Ipsκ, cq “ Ipκ, cq{s.
If also c has non-negative periods and finite entropy then Ipκ, cq ě hκ{hc. More-
over, if Ipκ, cq “ hκ{hc then for every γ P Γ one has hκ`κpγq “ hc`cpγq.

We will also need the following definitions.

Definition 3.4.
- A Patterson-Sullivan measure for κ of exponent δ P R` is a probability

measure µ on BΓ such that for every γ P Γ one has

dγ˚µ

dµ
p¨q “ e´δ¨κpγ

´1, ¨ q. (3.3)

- Let κ˚ be a cocycle dual to κ, then a Gromov product for the ordered pair
pκ˚, κq is a function r¨, ¨s : B2Γ Ñ R such that for all γ P Γ and px, yq P B2Γ
one has

rγx, γys ´ rx, ys “ ´
`

κ˚pγ, xq ` κpγ, yq
˘

.
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3.2. The critical hypersurface and intersection. Let now c : Γ ˆ BΓ Ñ V be
a Hölder cocycle. Its limit cone is denoted by

Lc “
ď

γPΓ

R` ¨ `cpγq

and its dual cone by
`

Lc
˘˚
“ tψ P V ˚ : ψ|Lc ě 0u. Observe that for every

ϕ P int
`

Lc
˘˚

, ϕ ˝ c is a real-valued cocycle, so the concepts from Section 3.1
apply. We denote by

Qc “
!

ϕ P int
`

Lc
˘˚

: hϕ˝c “ 1
)

, (3.4)

Dc “

!

ϕ P int
`

Lc
˘˚

: hϕ˝c P p0, 1q
)

,

respectively the critical hypersurface and the convergence domain of c.

For ϕ P int
`

Lc
˘˚

we consider the linear map Iϕ “ Icϕ : V ˚ Ñ R defined by

Icϕpψq :“ Ipϕ ˝ c, ψ ˝ cq,

as in Equation (3.2). The natural identification between the set of hyperplanes in
V ˚ and PpV q is used in the next proposition.

Corollary 3.5 (S. [49, Cor. 3.4.3]). Assume Lc has non-empty interior and that

there exists ψ P
`

Lc
˘˚

such that hψ ă 8. Then Dc is a strictly convex set with
boundary Qc. The latter is an analytic co-dimension one sub-manifold of V. The
map uc : Qc Ñ PpV q defined by

ϕ ÞÑ ucϕ :“ TϕQc “ ker Iϕ

is an analytic diffeomorphism between Qc and int
`

PpLcq
˘

.

3.3. Ergodicity of directional flows. It follows from Proposition 3.2 that if there

exists ψ P
`

Lc
˘˚

with hψ ă 8 then the Γ-action B2Γˆ V

γpx, y, vq “
`

γx, γy, v ´ cpγ, yq
˘

is properly discontinuous.

Definition 3.6. A Hölder cocycle c is non-arithmetic if the periods of c generate
a dense subgroup in V.

We fix ϕ P Qc and denote by uϕ P uϕ the unique vector in LcXuϕ with ϕpuϕq “ 1.
We define then the directional flow ωϕ “

`

ωϕt : Γz
`

B2Γˆ V
˘

Ñ Γz
`

B2Γˆ V
˘˘

tPR
by

t ¨ px, y, vq “ px, y, v ´ tuϕq.

Assumption 3.7. We assume there exists:

- a dual cocycle pϕ ˝ cq˚,
- a Gromov product r , sϕ for such a pair,
- Patterson-Sullivan measures, µϕ and µϕ, respectively for each of the co-

cycles; (the exponent of both measures is then necessarily hϕ “ 1 S. [49,
Proposition 3.3.2]).

Consider then the ϕ-Bowen-Margulis measure Ωϕ on Γz
`

B2ΓˆV
˘

defined as the
measure induced on the quotient by the measure

e´r¨,¨sϕµϕ b µϕ b LebV , (3.5)
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for a V -invariant Lebesgue measure on V. We denote by Kpωϕq the recurrence set
of the directional flow ωϕ:

Kpωϕq :“ tp P Γz
`

B2Γˆ V
˘
ˇ

ˇ DB open bounded, tn Ñ8 with ωϕtnppq P Bu.

Corollary 3.8 (S. [49, Cor. 3.6.1]). Assume that c is non-arithmetic, and that
there exists ϕ P Qc satisfying Assumptions 3.7. If dimV ď 2 then the directional
flow ωϕ is Ωϕ-ergodic, and Kpωϕq has total mass. If dimV ě 4 then Kpωϕq has
measure zero.

4. Subspace conicality for Anosov representations: Theorem D

4.1. Gromov hyperbolic groups and cone types. Let Γ “ xSy be a finitely
generated non-elementary Gromov hyperbolic group, and recall from §3 that we
denote by B2Γ the set of distinct pairs in its Gromov boundary BΓ.

Definition 4.1. A divergent sequence tγnunPN Ă Γ converges to a point x P BΓ
conically if for every y P BΓ´txu the sequence pγ´1

n y, γ´1
n xq remains on a compact

set of B2Γ.

Remark 4.2. It is easy to verify that a sequence tγnunPN converges conically to
x P BΓ if and only if it lies in an uniform neighborhood of any geodesic ray pαnq

8
0

converging to x, namely there exists K ą 0 and a subsequence tαnku such that for
all k one has dΓpαnk , γkq ă K.

Given γ P Γ we denote by Cpγq the cone type of γ P Γ, namely

Cpγq :“ th P Γ| dpe, γhq “ dpe, γq ` dpe, hqu.

Cannon showed [15] the set of cone types of a Gromov hyperbolic group is finite,
see for example Bridson-Haefliger’s book [12, P. 455]. We denote by C8pγq Ă BΓ
the set of points x that can be represented by a geodesic ray contained in Cpγq.

We will also need a coarse version of these. Recall that a sequence pαjq
8
0 is a

pc, Cq-quasigeodesic if for every pair j, l it holds

1

c
|j ´ l| ´ C ď dΓpαj , αlq ď c|j ´ l| ` C.

The coarse cone type at infinity of an element γ is the set of endpoints at infinity
of quasi-geodesic rays based at γ´1 passing through the identity:

Cc8pγq “
!

rpαjq
8
0 s P BΓ| pαiq

8
0 is a pc, cq-quasi-geodesic, α0 “ γ´1, e P tαju

)

.

Bcpeq

γ´1 Γ

Cc8pγq

Figure 5. The coarse cone type at infinity, picture from P.-S.-Wienhard [42].
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4.2. Anosov representations. Fix a subset θ Ă ∆. Let Γ be a finitely generated
group and denote by | | the word-length associated to a finite generating set S.

Definition 4.3. Following6 Kapovich-Leeb-Porti [30], a representation ρ : Γ Ñ G
is θ-Anosov if there exist positive constants C and µ such that for all γ P Γ and
a P θ one has

apapργqq ě µ|γ| ´ C.

The constants µ and C are usually referred to as the domination constants of ρ. If
G “ PGLpd,Rq and θ “ tτ1u we say that ρ is projective Anosov. In order to easy
the notation we ill identify in what follows γ with ρpγq.

Anosov representations were introduced by Labourie [35] and further developed
by Guichard-Wienhard [25]. They have played a central role in understanding the
Hitchin component of split groups (see below) and are considered nowadays as the
higher-rank generalization of convex co-compact groups. We refer the reader to the
surveys by Kassel [31] and Wienhard [52] for further information.

Remark 4.4. A Zariski-dense representation ρ : Γ Ñ G is θ-Anosov if and only if ρ is
a quasi-isometric embedding and its limit cone Lρ does not meet any wall ker a for
a P θ : this follows from the definition since by Benoist [3], if ρpΓq is Zariski-dense
then the limit cone Lρ equals the asymptotic cone.

A useful property of θ-Anosov representations is that their limit set ΛΓ Ă Fθ,
namely the minimal Γ-invariant subset in Fθ, is parametrized by the Gromov
boundary of the group Γ, see Kapovich-Leeb-Porti [30], Guéritaud-Guichard-Kassel-
Wienhard [24]. We will need the following precise statement.

Proposition 4.5 (Bochi-Potrie-S. [9, Proposition 4.9 ]). If ρ : Γ Ñ G is θ-Anosov,
then for any geodesic ray pαnq

8
0 with endpoint x, the limits

ξθρpxq :“ lim
nÑ8

Uθpαnq ξiθ
ρ pxq :“ lim

nÑ8
Uiθpαnq

exist and do not depend on the ray; they define continuous ρ-equivariant transverse
maps ξθ : BΓ Ñ Fθ, ξiθ : BΓ Ñ Fiθ. If γ P Γ is hyperbolic, then γ is θ-proximal with
attracting point ξθpγ`q “ pγq`θ .

We conclude the section with a number of quantitative results that will be needed
in the paper. For an Anosov representation ρ there exists a constant δρ quantifying
transversality of Cartan-attractors along (quasi)-geodesic rays:

Proposition 4.6 (Bochi-Potrie-S. [9, Lemma 2.5]). If ρ : Γ Ñ G is θ-Anosov
and c ą 0 is given, then there exist L P N and δρ,c ą 0, depending only c and the
domination constants of ρ, such that for every pc, cq-quasi-geodesic segment through
the identity tαiu

k
´m with k,m ě L one has, for all a P θ, that

$aGθ
`

Uiθpα´mq, Uθpραkq
˘

ě log δρ,c.

Combining Proposition 4.5 and Proposition 4.6 we obtain:

Corollary 4.7. Up to decreasing δρ,c, for every γ P Γ and every x P Cc8pγq one has

$aGθ
`

Uiθpγ
´1q, ξθρpxq

˘

ě log δρ,c.

In particular, if we let α “ ´ log δρ,c then (recall Equation (2.8))

ξθρpC
c
8pγqq Ă Bθ,αpγq. (4.1)

6See also Bochi-Potrie-S. [9] and Guéritaud-Guichard-Kassel-Wienhard [24].



21

Definition 4.8. Let ρ : Γ Ñ G be θ-Anosov and c ą 0, then the constant δρ,c
verifying both Proposition 4.6 and Corollary 4.7 will be called the fundamental
constant of ρ and c. If we consider geodesics instead of quasi-geodesics (i.e. pc, Cq “
p1, 0q) we let δρ be the fundamental constant associated to ρ.

The following two results will be needed in Section 7.1.

Proposition 4.9 (cfr. P.-S.-Wienhard [43, §5.1]). Let ρ : Γ Ñ SLpd,Kq be projec-
tive Anosov and consider c ą 0. Then there exists a constant K, depending on c
and on ρ such that for every large enough γ P Γ one has

ξ1
ρ

`

γCc8pγq
˘

Ă B
`

U1pγq,Ke
´τ1papγqq

˘

.

Proof. Using Corollary 4.7 for θ “ tτ1u, the result follows as in P.-S.-Wienhard [43,
§5.1]. �

Proposition 4.10. Let ρ : Γ Ñ SLpd,Kq be projective Anosov. For every α ą 0
there exist C and µ ą 0 such that for every `1, `2 P PpK

dq with

G
`

`i, Ud´1pγ
´1q

˘

ě ´α, i “ 1, 2

it holds dPpρpγq`1, ρpγq`2q ď Ce´µ|γ|dp`1, `2q.

Proof. For an Hermitian product on Cd, and every α ą 0 there exists C ą 0 such
that if h P GLpd,Cq is such that τ1paphqq ą 0, then for all `1, `2 P PpC

dq with
>p`i, Ud´1ph

´1qq ą α one has

dPph`1, h`2q ď Ce´τ1paphqqdPp`1, `2q,

(a proof follows, for instance, by applying [43, Lemma 2.8] to g “ h´1, P “ U1phq
and Q “ hUd´1phq). The result then follows by applying Definition 4.3. �

The following technical result will be useful in the proof of Proposition 4.23.
Given an Anosov representation, we can use the Gromov product to determine the
endpoint of a conical sequence (recall Definition 4.1):

Lemma 4.11. Let ρ : Γ Ñ G be θ-Anosov. If tγnu Ă Γ is a conical sequence,
x P BΓ, and there exists a P θ such that $aGθ

`

Uiθpγnq, ξ
θpxq

˘

Ñ ´8, then γn Ñ x.

Proof. We denote by y the endpoint of the conical sequence γn. Proposition 4.5 and
Remark 4.2 imply that Uiθpγnq Ñ ξiθpyq. Since, however, $aGθ

`

Uiθpγnq, ξ
θpxq

˘

Ñ

´8, we deduce that ξiθpyq is not transverse to ξθpxq (recall Remark 2.8). Since ξθ

is transverse, we deduce that x “ y. �

It will be useful in the proof of Proposition 4.23 to know that the endpoints of
conical sequences belong to pushed Cartan basins:

Lemma 4.12. Let ρ : Γ Ñ G be θ-Anosov, x P BΓ. If γn Ñ x conically, then
there exists α only depending on the sequence and the representation ρ such that
for every n, ξθpxq P γnBθ,αpγnq.

Proof. We know from Remark 4.2 that γn is contained in a neighbourhood of a
geodesic ray to x, or equivalently there exist a constant c such that γ´1x P Cc8pγnq.
The result is then a consequence of Equation (4.1). �
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4.3. Patterson-Sullivan theory of Anosov representations. If ρ is a θ-Anosov
representation, then we can pullback the Buseman-Iwasawa cocycle of G using the
equivariant maps: the refraction cocycle associated to a θ-Anosov representation
ρ : Γ Ñ G is β : Γˆ BΓ Ñ aθ given by

βpγ, xq “ βθ,ρpγ, xq “ bθ
`

ρpγq, ξθρpxq
˘

.

Bridgeman-Canary-Labourie-S. [11, Theorem 1.10] show that the Mineyev geodesic
flow of a group Γ admitting an Anosov representations is metric-Anosov, and thus
§ 3 applies to β. Moreover, the following fact places β in the assumptions required
in § 3.1 and § 3.2, see S. [49] for details.

Fact. The periods of the refraction cocycle equal the θ-Jordan projection: βpγ, γ`q “
λθpγq. For any a P θ the real valued cocycle $aβ has finite entropy.

We import the following concepts of cocycles to the setting of Anosov represen-
tations:

- The limit cone of β will be denoted by Lθ,ρ and referred to as the θ-limit
cone of ρ; it is the smallest closed cone that contains the projected Jordan
projections tλθpγq : γ P Γu.

- The interior of the dual cone int
`

Lθ,ρ
˘˚
Ă a˚θ consists of linear forms whose

entropy

hϕ “ lim
tÑ8

1

t
log #

 

rγs P rΓs : ϕpλθpγqq ď t
(

is finite.
- The θ-critical hypersurface, resp. θ-convergence domain, of β will be de-

noted by

Qθ,ρ “
!

ϕ P int
`

Lθ,ρ
˘˚

: hϕ “ 1
)

,

Dθ,ρ “

!

ϕ P int
`

Lθ,ρ
˘˚

: hϕ P p0, 1q
)

.

- If Lθ,ρ has non-empty interior, then we have a duality diffeomorphism be-
tween Qθ,ρ and intPpLθ,ρq given by

ϕ ÞÑ uϕ “ TϕQρ.

More information on these objets can be found on S. [49, § 5.9].

Remark 4.13. It it proven in Glorieux-Monclair-Tholozan [22, Theorem 2.31 (2)]

(see also S. [49, Corollary 5.5.3]) that if ρ is θ-Anosov then for every ϕ P int
`

Lθ,ρ
˘˚

the entropy hϕ equals the critical exponent

hϕ :“ lim
tÑ8

1

t
log #

 

γ P Γ : ϕpapγqq ď t
(

.

In particular the θ-convergence domain is also given by

Dθ,ρ “

!

ϕ P paθq
˚ :

ÿ

γPΓ

e´ϕpapγqq ă 8
)

,

see S. [49, § 5.7.2].

We observe that for ϕ P int
`

Lθ,ρ
˘˚

Assumptions 3.7 are guaranteed for βϕ :“
ϕ ˝ β. Indeed the cocycle

βpγ, xq “ i biθ

`

γ, ξiθpxq
˘
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is dual to β, from Equation (2.7) the function r¨, ¨sϕ : B2Γ Ñ R

rx, ysϕ “ ϕ
´

Gθ
`

ξiθpxq, ξθpyq
˘

¯

is a Gromov product for the pair pβϕ, βϕq, and we have the following result guaran-
teeing existence of Patterson-Sullivan measures µϕ and µϕ, as well as their values
on Cartan basins defined in Equation (2.8).

Corollary 4.14 (S. [49, Cor. 5.5.3+Lemma 5.7.1]). For every ϕ P int
`

Lθ,ρ
˘˚

there
exists a βϕ-Patterson-Sullivan measure µϕ of exponent hϕ, moreover for every α
there exists a constant C such that for every γ P Γ one has

µϕ
`

pξθq´1pγBθ,αpγqq ď Ce´hϕϕ
`

apγq
˘

.

4.4. Subspace-conicality. In this section we are interested in a notion of coni-
cality along higher dimensional subspaces of the ambient Levi space.

Definition 4.15. Let ρ : Γ Ñ G be θ-Anosov and consider a subspace W Ă aθ. A
point x P BΓ is W-conical if there exists a conical sequence tγnu

8
0 Ă Γ converging

to x, a constant K and twnu
8
0 Ă W such that for all n one has
›

›aθ
`

γnq ´ wn
›

› ď K.

The set of such points will be denoted by BW,ρΓ “ BWΓ.

Assume from now on that W intersects the relative interior of Lθ,ρ, and consider

ϕ P int
`

Lθ,ρ
˘˚

with uϕ Ă W. The intersection Wϕ “ W X kerϕ has co-dimension
1 in W and has trivial intersection with the limit cone Lθ,ρ. Consider the quotient
space

V “ aθ{Wϕ

equipped with the quotient projection Π : aθ Ñ V. We say that ρ is pW, ϕq-non-
arithmetic if the group spanned by

 

Πpλθpγqq : γ P Γ
(

is dense in V. In this section
we prove the following.

Theorem 4.16. Let ρ : Γ Ñ G be θ-Anosov, W be a subspace of aθ intersecting
non-trivially the relative interior of Lθ,ρ, and ϕ P paθq

˚ with uϕ Ă W. Assume ρ is
pW, ϕq-non-arithmetic, then:

‚ if W has codimension 1 then µϕpBWΓq “ 1;
‚ if codim W ě 3 then µϕpBWΓq “ 0.

Remark 4.17. If ρ is Zariski-dense then Theorem 2.3 (Benoist [4]) guarantees
pW, ϕq-non-arithmeticity for every ϕ P paθq

˚ with uϕ P PpWq, thus Theorem 4.16
readily implies Theorem D.

The remainder of the section is devoted to the proof of Theorem 4.16. Let

V ˚ “ AnnpWϕq “ tψ P paθq
˚ : ψ|Wϕ ” 0u,

with a slight abuse of notation we will identify the dual of V with V ˚ Ă paθq
˚ Ă

a˚ (recall from Section 2.4 that we are identifying paθq
˚ with the subspace of a˚

consisting of πθ-invariant linear forms).
The composition of the refraction cocycle of ρ with Π is a V -valued Hölder

cocycle v : Γˆ BΓ Ñ V,

vpγ, xq “ Π
`

βpγ, xq
˘

.
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Its periods are vpγ, γ`q “ Π
`

λθpγq
˘

, and thus its limit cone is Lv “ ΠpLθ,ρq. By
pW, ϕq-non-arithmeticity, Lv Ă V has non-empty interior.

The heart of the proof of Theorem 4.16 consits on relating pW, ϕq-conical points

with elements of rK
`

ωϕ
˘

, where ωϕ is the directional flow on ΓzB2Γˆ V associated
to the cocycle v as in § 3.3. The first step is thus to observe that we can apply
Corollary 3.8 to v, a task we enter at this point.

Since ϕ P Qθ,ρ, it has in particular finite entropy. Moreover, by definition of V ˚

one has ϕ P V ˚. Consequently, the cocycle v verifies assumptions in Corollary 3.5.
One can moreover transfer existence properties from β to v, indeed one has the
following.

Proposition 4.18. The cocycle v “ Π ˝β is a dual cocycle for v. For each ψ P Qv

there exist Paterson-Sullivan measures for v and v and the projection ψ
`

Π
`

r¨, ¨s
˘˘

is a Gromov product for the pair ψ ˝ v, ψ ˝ v.

Proof. Since ψ P Qv “ Qθ,ρ X V ˚ we can apply Corollary 4.14 to ψ to obtain the
desired Patterson-Sullivan measure, the remaining statements follow trivially as the
equalities are linear. �

Since we are assuming pW, ϕq-non-arithmeticity, the cocycle v is non-arithmetic
and thus Corollary 3.8 gives the following dynamical information, observe that
dimV “ codim W ` 1.

Corollary 4.19. If codim W ď 1 then the directional flow ωϕ is Ωϕ-ergodic, in
particular Kpωϕq has total mass. If codim W ě 3 then Kpωϕq has measure zero.

Observe that modulo the understood identifications Qv “ Qθ,ρ X V
˚, hence

TϕQv “ pTϕQθ,ρq X V
˚

and thus the map uv : Qv Ñ intPpLvq from Corollary 3.5 verifies uv
ϕ “ Πpuϕq.

So measuring W-conicality with respect to µϕ translates to directional conicality
along the direction uv

ϕ, which we now recall. We fix an arbitrary norm } } on V and
define, for ` P PpV q and r ą 0, the r-tube about ` by

Trp`q :“ tv P V | Dw P `, }v ´ w} ă ru.

Definition 4.20. A point y P BΓ is uv
ϕ-conical if there exists r ą 0 and a conical

sequence tγnu
8
0 Ă Γ with γn Ñ y such that for all n one has Π

`

aθpρpγnqq
˘

P Trpu
v
ϕq.

The next statement follows from the definitions.

Lemma 4.21. A point y P BΓ is W-conical if and only if it is uv
ϕ-conical.

If we are allowed to worsen the constants, we can replace, in Definition 4.20, the
conical sequence pγnq with an infinite subset of a geodesic ray:

Lemma 4.22. A point y P BΓ is uv
ϕ-conical if and only if there exists r ą 0, a

geodesic ray pαiq
8
0 converging to y and an infinite set of indices I Ă N such that

for all k P I one has

Π
`

aθpαkq
˘

P Trpu
v
ϕq.

Proof. Assume y is uv
ϕ-conical, then since tγnu

8
0 is conical, for any geodesic ray

pαnq
8
0 converging to y there exists K ą 0 and a subsequence tαnku such that for
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all k one has dΓpαnk , γkq ă K (Remark 4.2). Proposition 2.1 implies then that for
all k one has

}apαnkq ´ apγkq}

is bounded independently of k. This implies the result. �

We now relate uv
ϕ-conicality with the recurrence set Kpωϕq. By definition of

Kpωϕq, a point px, y, vq P B2Γ ˆ V projects to Kpωϕq if and only if there exist
divergent sequences pγnq Ă Γ and tn Ñ `8 in R such that

ωϕtnγ
´1
n px, y, vq “

`

γ´1
n x, γ´1

n y, v ´ vpγ´1
n , yq ´ tnuϕ

˘

(4.2)

is contained in a subset of the form tpz, wq P B2Γ : dpz, wq ě κu ˆBpv,Kq for some
distance d on BΓ. One has the following

Proposition 4.23. A point y P BΓ is uv
ϕ-conical if and only if for every x P BΓ´tyu

and v P V the point px, y, vq projects to Kpωϕq.

Proof. The implication (ñ) follows exactly as in the proof of S. [49, Proposition
5.13.4]. The other implication also follows similarly but with a minor difference we
now explain.

Assume that px, y, vq projects to Kpωϕq and consider sequences tγnu and tn as
in Equation (4.2). Since

`

γ´1
n x, γ´1

n y
˘

remains in a compact subset of B2Γ, the
sequence tγnu is conical, we will show now that γn Ñ y. Indeed, since tn Ñ `8

necessarily vpγ´1
n , yq Ñ ´8.

Consider now any root a P θ, with associated fundamental weight $a P
`

Lθ,ρ
˘˚

,
and Tits representation Φa : G Ñ V . Since ρ is θ-Anosov, the Hölder cocycle β$a

has positive periods and finite entropy. Since vpγ´1
n , yq Ñ ´8 Proposition 3.2

implies that

β$apγ
´1
n , y

˘

Ñ ´8.

By definition of the cocycle β$a and Equation (2.6) we have

}Φapγ
´1
n qv}

}v}
Ñ 0 (4.3)

for a non-zero v P ζapξpyqq, (recall that the map ζa : FapGq Ñ PpV q was defined
in Equation (2.5)). Setting dimV “ d, a standard linear algebra computation (for
example in Bochi-Potrie-S. [9, Lemma A.3]) gives

}Φapγ
´1
n qv}

}v}
ě
›

›Φapγ
´1
n q

›

› sin >
`

ζaξpyq, Ud´1pΦaγnq
˘

ě ela$aGθ

`

Uθpγnq,y
˘

and thus, by Equation (4.3) and Lemma 4.11 one has γn Ñ y, as desired.
The point ξpyq lies then in the pushed Cartan basin γnBθ,αpγnq for an α inde-

pendent of n (Lemma 4.12), and thus Equation (2.9) gives a constant K such that
for all n one has

K ě
›

›aθpγnq ´ β
`

γn, γ
´1
n y

˘
›

› “
›

›aθpγnq ` βpγ
´1
n , yq

›

›

implying, by Equation (4.2), that y is uv
ϕ-conical, as desired. �
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The proof of Theorem 4.16 follows now along the same lines as in S. [49, Theorem
5.13.3]. We include the arguments here for completeness.

For y P BW,ρΓ, x P BΓ ´ tyu we fix neighbourhoods A´ and A` of x and y
respectively and T ą 0 small enough so that the quotient projection p : B2ΓˆV Ñ
ΓzB2Γˆ V is injective on B̃ “ A´ ˆA` ˆBp0, T q. We can thus use Equation (3.5)

to compute the measure of B “ ppB̃q.

For K̃pωϕq “ p´1
`

Kpωϕq
˘

, Proposition 4.23 asserts

A´ ˆ pA` X BW,ρΓq ˆBp0, T q “ K̃pωϕq X B̃.

If codim W “ 1 by Corollary 4.19 ΩϕpB̃q “ Ωϕ
`

K̃pωϕq X B̃
˘

, which implies that
µϕpA`zBW,ρΓq “ 0 and thus µϕpBW,ρΓq “ 1. On the other hand, if codim W ě 3,

then we have Ωϕ
`

K̃pωϕq
˘

“ 0 so µϕpA` X BW,ρΓq “ 0 and the theorem is proved.

5. Locally conformal representations: Hausdorff dimension of
b-conical points

In this section we let K “ R,C or H, the non-commutative field of Hamilton’s
quaternions. A Cartan subspace a of SLpd,Kq is the subspace of Rd consisting of
vectors whose coordinates sum 0. For g P SLpd,Kq we denote by

apgq “
`

a1pgq, ¨ ¨ ¨ , adpgq
˘

P a`

the coordinates of the Cartan projection. We recall Definition 1.1.

Definition 5.1. Let p P J2, d ´ 1K. A tτ1, τd´pu-Anosov representation ρ : Γ Ñ

SLpd,Kq is p1, 1, pq-hyperconvex if, for every pairwise distinct triple px, y, zq P BΓp3q,
one has

`

ξ1pxq ` ξ1pyq
˘

X ξd´ppzq “ t0u.

If in addition one has a2pρpγqq “ appρpγqq @γ, we say that ρ is locally conformal.
As before, we identify from now on γ and ρpγq.

The terminology is justified by Proposition 5.6 below stating that for such rep-
resentations pushed coarse cone types are coarsely balls, a small refinement of an
analogous result from P.-S.-Wienhard [43].

In this section we will study conicality from § 4.4 on a specific situation that we
now explain. Later, in § 6, we will relate this section to the notion of b-concavity
and in § 8 to differentiability properties of the map ξ ˝ ξ´1.

Consider K P tR,C,Hu and two locally conformal representations ρ : Γ Ñ

SLpd,Kq and ρ : Γ Ñ SLpd,Kq, with projective equivariant maps

ξ :BΓ Ñ PpKdq

ξ :BΓ Ñ PpKdq.

The product representation pρ, ρq : Γ Ñ SLpd,Kq ˆ SLpd,Kq is θ-Anosov for θ “
tτ1, τp, τ1, τpu with tτ1, τ1u-limit map the ”graph map”

G “
`

ξ, ξ
˘

: BΓ Ñ PpKdq ˆ PpK
d
q.

We consider a Cartan subspace of the product group SLpd,KqˆSLpd,Kq and let aθ
be the associated Levi space. Its dual paθq

˚ is spanned by the fundamental weights
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of roots in θ. We let

τ :“
p$τ1 ´$τp

p´ 1
,

τ :“
p$τ1 ´$τp

p´ 1
.

Both τ, τ P paθq
˚ and under the assumption a2pγq “ appγq for all γ of Definition

5.1, it holds on Lρ that τ1 “ τ and τ “ τ1 (if p “ 2 the equality holds on a).

Definition 5.2. Fix b P p0, 1s. A point x P BΓ is b-conical if it is conical as in
Definition 4.15 for the product representation pρ, ρq with respect to the hyperplane

tv P aθ : bτpvq “ τpvqu “ kerpbτ ´ τq.

Equivalently, there exist R, a geodesic ray pαnq
8
0 Ă Γ with αn Ñ x, and a subse-

quence tnku such that for all k one has
ˇ

ˇbτ
`

apαnkq
˘

´ τ
`

apαnkq
˘
ˇ

ˇ ď R.

Consider also the critical exponent

h8,b “ lim
tÑ8

1

t
log #

 

γ P Γ : max
 

bτpapγqq, τpapγqq
(

ď t
(

,

and recall from Equation (3.2) the dynamical intersection defined by

Iτ pτq “ lim
tÑ8

1

#Rtpτq

ÿ

γPRtpτq

τpλpγqq

τpλpγqq
, (5.1)

where Rtpτq “
 

rγs P rΓs : τ
`

λpγq
˘

ď t
(

.
In this section we compute the Hausdorff dimension of the image under the graph

map G of the set of b-conical points with respect to a Riemannian metric:

Theorem 5.3. Let ρ, ρ be locally conformal representations over K and K respec-
tively. Assume the group generated by tpτpλpγqq, τpλpγqqq : γ P Γu is dense in R2.
Then, for every b P p0, 1s with

Iτ pτq ą b ą 1{Iτ pτq,

one has

bh8,b ď dimHff G
`

tb´conical pointsu
˘

ď minth8,b,bh8,b ` p1´ bqu

ă minthτ ,hτ {bu

ď dimHffpGpBΓqq

“ maxthτ ,hτu.

The proof of the above result is completed in § 5.5.
Recall that if hτ1 “ hτ1 and the representations are not gap-isospectral, then

Proposition 3.3 gives Iτ1pτ1q ą 1. Theorem 5.3 studies then b-conical points for
any b with Iτ1

pτ1q ą 1{b ě 1. As the following result shows, the equality between
entropies is rather natural for K “ R.

Theorem 5.4 (P.-S.-Wienhard [43]). Let ρ : Γ Ñ SLpd,Kq be locally conformal,
then

hτ “ dimHff

`

ξpBΓq
˘

.

Moreover, when K “ R and BΓ is homeomorphic to a p ´ 1-dimensional sphere,
hτ “ p´ 1.
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When Γ is a surface group we can also weaken the assumption on the density of
periods:

Corollary 5.5. Assume BΓ is homeomorphic to a circle and let ρ and ρ be non-
gap-isospectral real p1, 1, 2q-hyperconvex representations of Γ. Then

dimHff G
`

t1´conical pointsu
˘

“ h8 ă 1.

Proof. Proposition 6.3 below states that under our assumptions the group generated
by tpτpλpγqq, τpλpγqqq : γ P Γu is dense in R2. Theorem 5.4 guarantees that Iτ pτq ě
1. The equality then follows from Theorem 5.3. �

Kim-Minsky-Oh [32] have established realted Hausdorff dimension computations
when ρ and ρ are convex-co-compact representations in SOpn, 1q without any as-
sumption on I.

5.1. Cone types are coarsely balls. In [43] P.-S.-Wienhard gave a concrete de-
scription of the images under the boundary map of the cone types at infinity. We
discuss here a slight extension of that result adapted to our needs. We denote by
dP the distance on PpKdq induced by the choice of an inner (Hermitian) product
on Kd and by Bp`, rq Ă PpKdq the associated ball of radius r about `.

Proposition 5.6. Let ρ : Γ Ñ SLpd,Kq be locally conformal. Then there exist
positive constants c, k1, k2 and L P N such that for every x P BΓ, every geodesic ray
pαnq

8
0 with endpoint x and every n ą L one has

B
´

ξpxq, k1e
´τ1papαnqq

¯

X ξpBΓq Ă ξ
´

αnC
c
8pαnq

¯

Ă B
´

ξpxq, k2e
´τ1papαnqq

¯

.

Proof. The desired inclusions are proven in [43] for thickened cone types at infinity.
We briefly explain here how to deduce from it the result we need.

Following [43] we denote by X8pγq, for γ P Γ, the thickened cone type at infinity,
namely the tubular neighborhood in PpKdq of ξ

`

C8pγq
˘

of radius δρ{2, where δρ
is the fundamental constant from Definition 4.8. In [43, Corollary 5.10] it is es-
tablished that there exists c1 ą 0 and L0 ą 0 only depending on the domination
constants of ρ such that for all i ě L0 one has

B
´

ξpxq, c1e
´τ1papαiqq

¯

X ξpBΓq Ă αiX8pαiq.

By definition the thickened cone type X8pγq is contained in the Cartan basin
Btτ1u,αpγq for α “ ´2 log δρ. So P.-S.-Wienhard [42, Proposition 3.3] provides the
existence of c and L0 such that for γ P Γ with |γ| ą L0, one has

X8pγq X ξpBΓq Ă ξ
`

Cc8pγq
˘

.

Combining both equations one has, for all i ě L0 that

B
´

ξpxq, c1e
´τ1papαiqq

¯

X ξpBΓq Ă ξ
´

αiC
c
8pαiq

¯

Ă B
´

ξpxq,Ke´τ1papαiqq
¯

, (5.2)

the second inclusion following from Proposition 4.9. This concludes the proof. �
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5.2. Hausdorff dimension and related concepts. Recall that, given a metric
space pX, dq and a real number s ą 0, the s-capacity of X is

HspX, dq “ lim
εÑ0

inf

#

ÿ

UPU

diamUs
ˇ

ˇ

ˇ

ˇ

U open covering of Λ, sup
UPU

diamU ă ε

+

and that
dimHffpXq “ infts|HspXq “ 0u “ supts|HspXq “ 8u. (5.3)

The following can be verified directly from the definition:

Lemma 5.7. If X “
Ť

nPNXn then

dimHffpXq “ sup dimHffpXnq.

We will use the following consequence of Theorem 1.5.14 from Edgar’s book [19]:

Corollary 5.8. Let E Ă Rd be a measurable subset equipped with a probability
measure ν. If the upper density

D
α
pxq “ lim sup

rÑ0

ν
`

Bpx, rq X E
˘

rα

is ν-essentially bounded above, then dimHffpEq ě α.

5.3. The lower bound dimHffpGtb´conical pointsuq ě bh8,b. We import some
tools from the proof of Theorem 4.16. Consider the vector space

V ˚ :“ spantτ, τu

together with its radical AnnpV ˚q “ ker τXker τ and the quotient vector space V “
aθ{AnnpV ˚q. Any element of V ˚ vanishes on AnnpV ˚q and thus V ˚ is naturally
identified with the dual space of V. Using the preferred basis tτ, τu of V ˚ we identify
V and R2 via the isomorphism v ÞÑ

`

τpvq, τpvq
˘

and we let

Π : aθ Ñ R2

be the quotient projection (composed with the above isomorphism). The image of
the hyperplane kerbτ ´ τ under the composition of Π and the identification of V
with R2 is the line passing through p1,bq,

Π
`

kerpbτ ´ τq
˘

“
 

v P V : bτpvq “ τpvq
(

.

We consider the quadrant

V ` “ tτ ě 0u X tτ ě 0u.

Let v “ vpρ,ρq : Γ ˆ BΓ Ñ V be the composition of the refraction cocycle βpρ,ρq of
the pair with Π. Its periods are

vpγ, γ`q “
´

τ
`

λpγq
˘

, τ
`

λpγq
˘

¯

,

so by assumption v is non-arithmetic. As in § 4.4 one has Qv “ V ˚ X Qθ,ρ; by
non-arithmeticity, the cone Lv has non-empty interior and thus Corollary 3.5
gives that Qv is a strictly convex curve. We consider the max norm }v}8,b “
maxtb|τpvq|, |τpvq|u on V , and its dual (operator) norm on V ˚ denoted by } }1,b.
Let ϕ8b P Qv be the unique form such that

}ϕ8b }
1,b “ inft}ϕ}1,b : ϕ P Qvu.

In the following lemma the role of the assumptions on dynamical intersection in
Theorem 5.3 becomes clear:
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Lemma 5.9. The functional ϕ8b {}ϕ
8
b }

1,b is a convex combination sbτ ` p1´ sqτ
with s P p0, 1q if and only if

Iτ pτq ą b ą 1{Iτ pτq. (5.4)

In this case one has Tϕ8
b
Qv “ spantbτ ´ τu.

Proof. Recall from Corollary 3.5 that ThττQv “ ker Ihττ and Qv is strictly convex.
Furthermore, by definition the functional ϕ8b is the point of Qv, that minimizes the
norm } }1,b. The level set t}ϕ}1,b “ 1u is a rhombus with vertices pbτ, τq (in blue in
Figure 6), the tangent to Qv at hττ, in red in Figure 6, is the level set Ihττ p¨q “ 1,
whence its intersection with the τ -axis is τ{Ihττ pτq, and the the tangent to to Qv

at hττ is the level set Ihττ p¨q “ 1, and it intersects the τ -axis is τ{Ihττ pτq.
Equation (5.4) is thus equivalent to the fact that the slope of the side of the

rhombus, equal to ´1{b, is between the slope of the tangent at hττ , which is equal
to ´hτ {Ihττ pτq “ ´1{Iτ pτq, and the slope of the tangent at hττ , which is equal
to ´Ihττ pτq{hτ “ ´Iτ pτq.

Strict convexity of Qv ensures that this is equivalent to having a unique point in
Qv X ttτ : t ą 0u ˆ tsτ : s ą 0u tangent to the side of the rhombus, which is the
desired functional ϕ8b . �

Qv

V ˚

hττ

hττ
bτ

hτ
b
τ

τ

ψ

hτ
Iτ pτq

τ

ϕ8b

hττ ` ThττQv

Figure 6. The situation of Lemma 5.9.

We thus obtain the following key properties of ϕ8b :

Lemma 5.10. Under the assumptions of Theorem 5.3 one has

(i) uv
ϕ8

b
“ Πpkerpbτ ´ τqq;

(ii) for any v P V ` one has

ϕ8b pvq ě h8,bb mintτpvq, τpvqu.

Moreover one has h8,b ă minthτ ,hτ {bu.

Proof. Lemma 5.9 implies that

(i) Tϕ8
b
Qv “ spantbτ ´ τu and thus

uv
ϕ8

b
“ Ann

`

R ¨ pbτ ´ τq
˘

“ Πpkerpbτ ´ τqq.
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(ii) ϕ8b {}ϕ
8
b }

1,b “ sbτ`p1´sqτ for some s P p0, 1q and hence7, since b P p0, 1s,

ϕ8b ě }ϕ
8
b }

1,bb mintτ, τu.

In order to prove item (ii), we need to show that h8,b ď }ϕ8b }
1,b. Since

ϕ8b
`

aθppρ, ρqγq
˘

ď }Πpaθppρ, ρqγqq}8,b}ϕ
8
b }

1,b, we deduce, for all s ą }ϕ8b }
1,b,

ÿ

γPΓ

e´s}Πpaθppρ,ρqγqq}8,b ď
ÿ

γPΓ

e´ps{}ϕ
8
b }

1,b
qϕ8b

`

aθppρ,ρqγq
˘

ă 8

where last inequality holds as hϕ
8
b “ 1 (by Equation (3.4) and Remark 4.13).

The last assertion follows directly from the definitions:

h8,b “ lim
tÑ8

1

t
log #

 

γ P Γ : max
 

bτpapγqq, τpapγqq
(

ď t
(

ď lim
tÑ8

1

t
log #

 

γ P Γ : bτpapγqq
(

ď t
(

“ hτ {b “ hτ {b,

where the last equality follows from Remark 4.13. The inequality h8,b ď hτ is
analogous. �

Let µϕ
8
b be the Patterson-Sullivan measure associated to ϕ8b by Corollary 4.14.

Combining Equation (2.8), Equation (4.1) and Corollary 4.14 we deduce that, for
every γ P Γ,

µϕ
8
b

`

γCc8pγq
˘

ď Ce´ϕ
8
b

`

aθppρ,ρqγq
˘

ď Ce´h8,bb min
 

τpapγqq,τpapγqq
(

, (5.5)

where the last inequality comes from Lemma 5.10.
By Proposition 5.6 there exist constants c, k1 and k1 such that if pαiq

8
0 is a

geodesic ray from id to x then for all i the subsets

ξ
`

αiC
c
8pαiq

˘

and ξ
`

αiC
c
8pαiq

˘

contain balls on the corresponding projective spaces of radi

k1e
´τpapαiqq and k1e

´τpapαiqq

respectively where k1, k1 depend on the representations but not on i. Since GpBΓq
is a graph, the preceding radius computation implies that the image of the cone
type G

`

αiC
c
8pαiq

˘

contains the intersection of BΓˆ BΓ with a ball, for the product

metric on PpKdq ˆ PpKdq, of radius

ke´min
 

τpapαiqq,τpapαiqq
(

, (5.6)

for some uniform constant k. This set of balls forms a fine set of neighbourhoods
around any point x P BΓ. Combining this with Equation (5.5) and the fact that

µϕ
8
b is supported on BΓ, one has, possibly enlarging the constant C, that for all r

the measure of the ball of radius r about Gpxq is

µϕ
8
b

`

Bpx, rq
˘

ď Cr´h8,bb.

7Indeed, if x, y ě 0, s P p0, 1q and b P p0, 1s one has: sbx` p1´ sqy ě b minpx, yq: Assume for
example that y ě x (the other case follows smilarly), then

sbx` p1´ sqy ´ bx ě p1´ sqp1´ bqx ě 0.
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Since dimV ˚ “ 2 and vpρ,ρq is assumed non-arithmetic, Theorem 4.16 states

that the subset of b-conical points has full µϕ
8
b measure. Applying Corollary 5.8

one concludes that

dimHff

`

Gtb ´ conical pointsu
˘

ě bh8,b.

5.4. The upper bound. We now prove the second inequality.

Proposition 5.11. Let ρ, ρ be locally conformal representations over K and K.
For every b ď 1,

dimHff

`

Gtb ´ conical pointsu
˘

ď minth8,b,bh8,b ` p1´ bqu.

Proof. We say that a point x is pR,bq-conical if there exists a geodesic ray pαiqiPN
converging to x and such that for an infinite subset I Ă N of indices and for every
k P I

ˇ

ˇ

ˇ
bτ

`

apαkq
˘

´ τ
`

apαkq
˘

ˇ

ˇ

ˇ
ď R. (5.7)

We denote by CRb the set of pR,bq-conical points. By Lemma 4.22 one has
ď

Rą0

CRb “ tx P BΓ : x is b ´ conicalu,

and thus by Lemma 5.7 it suffices to show that for every R one has

dimHff

`

CRb
˘

ď h8.

For any constant K ą 0 and any γ P Γ we denote by Bmax,K
γ the open ball of

PpKdq ˆ PpKdq given by:

Bmax,K
γ :“ B

´

`

U1pγq, U1pγq
˘

,Ke´max tbτpapγqq,τpapγqqu
¯

,

and denote by

UKT :“
 

Bmax,K
γ | |γ| ě T

(

.

Let K, resp. K, be the constants given by Proposition 4.9 for the representation ρ
(resp. ρ).

We first observe that for C “ 2eR maxtK,Ku and every T ą 0, the set UCT covers
GpCRb q. Indeed, if x P CRb consider the geodesic ray pαiqiPN converging to x, and
the set I of indices for which Equation (5.7) holds. Then for every k P I one has,
since b ď 1, that

τ
`

apραkqq ě bτ
`

apαkqq ą max
 

bτ
`

apαkq
˘

, τ
`

apαkq
˘(

´R, (5.8)

τ
`

apαkqq ą max
 

bτ
`

apαkq
˘

, τ
`

apαkq
˘(

´R. (5.9)

Let now T be fixed and choose k P I, k ą T . Since x P αkC
c
8pαkq, Proposition 4.9

together with Equation (5.9) give

d
`

ξpxq, U1pαkq
˘

ď Ce´max
 

bτ
`

apαkq
˘

,τ
`

apαkq
˘(

d
`

ξpxq, U1pαkq
˘

ď Ce´max
 

bτ
`

apαkq
˘

,τ
`

apαkq
˘(

,

as desired.
Furthermore, by definition of h8,b, for every s ą h8,b,

ÿ

UPUCT

diamUs ď 2sCs
ÿ

|γ|ěT

e´smaxtbτpapγqq,τpapγqqu ă `8,



33

whence, Equation (5.3) yields dimHffpC
R
b q ď h8,b. In order to obtain the second

upper bound we observe that, if α P Γ satisfies Equation (5.7), the set GpαCc8pαqq
can be covered with ep1´bqτpapαqq balls of radius 2Ce´τpapαqq. We denote by UT the
collection of open balls, that only take into account elements α P Γ with |α| ą T
that verify (5.7), which in particular covers the set CRb . Using Equation (5.8) we
obtain

ÿ

UPUT

diamUs ď 2sCs
ÿ

|γ|ěT

ep1´bqτpapγqqe´sτpapγqq

ď 2sCs
ÿ

|γ|ěT

e´ps´p1´bqqτpapγqq

ď 2sCse
Rps´1`bq

b

ÿ

|γ|ěT

e´
ps´p1´bqq

b
maxtbτpapγqq,τpapγqqu.

Since the latter quantity is finite whenever ps´p1´bqq

b
ą h8,b, we deduce

dimHffpC
R
b q ă bh8,b ` p1´ bq.

�

We conclude this subsection computing the Hausdorff dimension of the image
of the whole boundary through the graph map. See [17] for examples of homeo-
morphisms between Cantor sets for which the Hausdorff dimension of the graph
exceeds the maximal Hausdorff dimension of the factors.

Proposition 5.12. Let ρ : Γ Ñ SLpd,Kq, ρ : Γ Ñ SLpd,Kq be locally conformal.
Then

dimHffpGpBΓqq “ maxthτ ,hτu

Proof. This follows as in the proof of Proposition 5.11 considering the covers of
GpBΓq given by UCT :“

 

Bmin,C
γ | |γ| ě T

(

with

Bmin,K
γ :“ B

´

`

U1pγq, U1pγq
˘

,Ke´min tτpapγqq,τpapγqqu
¯

,

and C “ 2 maxtK,Ku where K (resp. K) is the constant given by Proposition 4.9
for the representations ρ (resp. ρ). To conclude it is enough to observe that

hmintτ,τu “ maxthτ ,hτu,

a fact proven for example in P.-S.-Wienhard [42, Lemma 5.1]. �

It is easy to generalize Proposition 5.12 to an arbitrary number of factors. as an
application we get.

Corollary 5.13. Let ρ : Γ Ñ SLpd,Kq and θ Ă ∆ be such that for all τi P θ, Φτi ˝ρ
is p1, 1, 2q-hyperconvex. Then

dimHffpξ
θ
ρpBΓqq “ max

τiPθ
hτi .

5.5. Proof of Theorem 5.3. The first inequality is established in § 5.3, the second
inequality is proven in Proposition 5.11, the third inequality follows from Lemma
5.10 and the fourth from Theorem 5.4.The last equality was stablished in Proposi-
tion 5.12.
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6. b-concavity and b-conicality: Final steps for the proof of
Theorem A

The goal of this section is to prove the following more general version of Theorem
A. As before, fix tK,Ku Ă tR,C,Hu together with locally conformal representations
ρ : Γ Ñ SLpd,Kq and ρ : Γ Ñ SLpd,Kq of an arbitrary word-hyperbolic group Γ.
For b P p0, 1s recall that Ξ : ξpBΓq Ñ ξpBΓq is b-concave at x P BΓ if there exists
yk Ñ x such that the incremental quotients

dP
`

ξpxq, ξpykq
˘

dP
`

ξpxq, ξpykq
˘b

(6.1)

are bounded away from 0 and 8 (independently of k). We also let Hb
pρ,ρq be the

set of x P BΓ that are b-concavity points of Ξ. Finally, recall that ρ and ρ are not
gap-isospectral if there exists γ P Γ such that τpapγqq ‰ τpapγqq.

Theorem 6.1. Let ρ, ρ be locally conformal representations acting irreducibly, on

Kd and Kd respectively, as real vector spaces, and that are not gap-isospectral.
Consider any b P p0, 1s with Iτ pτq ą b ą pIτ pτqq

´1, then

- if tK,Ku Ă tR,Cu one has

bh8,b ď dimHffpH
b
ρ,ρq ď minth8,b,bh8,b ` p1´ bqu

ă minthτ ,hτ {bu

ď dimHffpGpBΓqq (6.2)

“ maxthτ ,hτu; (6.3)

- if K “ H (resp. K “ H), Equation (6.2) holds if we further assume that the
real Zariski closure of ρpΓq (resp. of ρpΓq) does not have compact factors.

6.1. Hyperplane conicality and the concavity condition. We commence with
a lemma relating b-conicality to the desired concavity properties of the equivariant
map Ξ : ξpBΓq Ñ ξpBΓq.

Lemma 6.2. Let ρ and ρ be locally conformal representations over K and K re-
spectively, and b P p0, 1s. Then one has tb´conical points of pρ, ρqu “ Hb

ρ,ρ .

Proof. Let pαiqiPN denote a geodesic ray converging to x. Proposition 5.6 gives
constants C1, C2, C1, C2 and L P N such that, for every n P N and every yn P
αnC

c
8pαnqzαn`LC

c
8pαn`Lq, it holds

C1e
´τpapαnqq ă dP

`

ξpynq, ξpxq
˘

ă C2e
´τpapαnqq,

C1e
´τpapαnqq ă dP

`

ξpynq, ξpxq
˘

ă C2e
´τpapαnqq. (6.4)

Assume first that x is b-conical. By Definition 5.2 we obtain a geodesic ray
pαiq

8
0 , an infinite set of indices I Ă N and a number R, such that for all k P I one

has

|bτpapαkqq ´ τpapαkqq| ă R. (6.5)

For each such k we choose a point yk P αkC
c
8pαkqzαk`LC

c
8pαk`Lq. By construc-

tion yk converges to x. Combining both equations, for every k P I it holds

e´R
C1

C2
b
ď

dP
`

ξpykq, ξpxq
˘

dP
`

ξpykq, ξpxq
˘b
ď eR

C2

C1
b
,
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so the incremental quotient (6.1) is uniformly far from 0 and 8. Whence tb ´

conical pointsu Ă Hb
ρ,ρ.

Conversely, assume that x is not b-conical. The Cartan projections of two con-
secutive elements αi and αi`1 make uniformly bounded gaps (Proposition 2.1), and
thus there exists C such that for all n P N one has

ˇ

ˇτ
`

apαn`1q
˘

´ τ
`

apαnq
˘
ˇ

ˇ ă C.

As a consequence, we can assume, up to switching the roles of ρ and ρ, that for any
R there exists nR such that for every n ą nR one has

bτ
`

apαnq
˘

´ τ
`

apαnq
˘

ą R.

In turn this implies, thanks to Equation (6.4), that for every y P αnRC
c
8pαnRq,

dP
`

ξpyq, ξpxq
˘

dP
`

ξpyq, ξpxq
˘b
ď e´R

C2

C1
b
.

Since R is arbitrary, and the sets αnRC
c
8pαnRq form a system of neighborhoods

of the point x, we deduce that the limit in Equation (6.1) exists and equals 0. This
concludes the proof. �

6.2. Non-arithmeticity of periods. In this section we establish a non-arithmeti-
city condition, necessary to apply later Theorem 5.3. This is established in a rather
general setting. Recall that a subgroup Λ ă SLpd,Kq is K-proximal if it contains a
K-proximal element, i.e. there exists g P Λ such that τ1pλpgqq ą 0.

Proposition 6.3. Let Λ be a finitely generated group. Let ρ : Λ Ñ SLpd,Kq and
ρ : Λ Ñ SLpd,Kq be two K-proximal representations that act irreducibly on Kd

and Kd respectively, as real vector spaces. Assume there exists γ P Λ such that
τ1pλpργqq ‰ τ1pλpργqq. If tK,Ku Ă tR,Cu, then the group generated by the pairs

!´

τ1
`

λpργq
˘

, τ1

`

λpργq
˘

¯

: γ P Λ
)

is dense in R2. If K “ H we further assume that the Zariski closure over R of ρpΛq
has no compact factors, and the same for ρpΛq if moreover K “ H, then the same
conclusion holds.

To prove the proposition we need Lemmas 6.4 and 6.5 below.

Lemma 6.4. Let K be either R or C. Let Λ ă SLpd,Kq be a subgroup acting irre-
ducibly on Kd as a real vector space and assume Λ contains a K-proximal element.
Then the real Zariski closure of Λ is semi-simple, has finite center and without
compact factors.

Proof. IfK “ R the Lemma is the content of S. [48, Lemma 8.6] and the proof over C
is a slight modification of the latter. Indeed, let G be the Zariski closure of ρpΛq over
the reals, by the irreducibility assumption it is a reductive (real-algebraic) group.
By Schur’s Lemma the elements commuting with Λ consist only on homotheties,
but since we’re in special linear group one has that the center of G is finite.

The group G is then semi-simple and we let K be the identity component of
the product of all the compact simple factors of G. We also let H be the identity
component of the product of all the non-compact simple factors of G. The groups
H and K commute and one has HK has finite index in G.
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Consider a proximal g P G, up to a fixed power we may write g “ kh with k P K
and h P H. Since K is compact, its eigenvalues have modulus one so we conclude
that h is proximal and that g` “ h`. The attracting line of h is thus invariant
under K. Since K is connected, an element of K acts on h` as multiplication by
some element of S1.

By irreducibility we may find a basis of Cd consisting on fixed attracting lines
of proximal elements of H. This basis simultaneously diagonalizes K, so we get
an injective map from K to a compact group isomorphic to a d-dimensional torus.
Consequently K is abelian, and since it commutes with H we conclude that K is
contained in the identity component of the center of G, which we proved earlier to
be trivial. �

Lemma 6.5. Let G be a semi-simple real-algebraic Lie group with finite center and
no compact factors. Fix ϑ, ϑ Ă ∆G two non-empty subsets with ϑ X ϑ “ H. Let
Λ be a group and r : ΛÑ G a representation with Zariski-dense image. Then, for
every closed cone with non-empty interior C Ă intLrpΛq, the group spanned by the
pairs

!

`

min
σPϑ

σ
`

λprgq
˘

,min
σPϑ

σ
`

λprgq
˘˘

: g P Λ and λprgq P C
)

is dense in R2.

Proof. Define the piecewise linear maps τ, τ : a` Ñ R by:

τpvq “ min
 

σpvq : σ P ϑ
(

τpvq “ min
 

σpvq : σ P ϑ
(

.

The vanishing set of the difference τ ´ τ is contained the union of kerpa´ bq for
arbitrary a P ϑ and b P ϑ. Since ϑ and ϑ are disjoint, this is a union of hyperplanes
of a, from which we deduce that the set of zeroes of τ ´ τ has empty interior.

Since C Ă intLrpΛq has non-empty interior, the difference τ ´ τ does not iden-
tically vanish on C. Since τ and τ are piecewise linear, we can choose a possibly
smaller closed cone with non-empty interior

C1 Ă C,

and a P ϑ, b P ϑ such that for all v P C1 one has

τ ˆ τpvq :“ pτpvq, τpvqq “ papvq, bpvqq.

Since a and b are distinct simple roots the map pa, bq : aÑ R2 is surjective.
By Benoist [3, Proposition 5.1] there exists a sub-semigroup Λ1 ă Λ such that

rpΛ1q is a Zariski-dense Schottky semi-group with LrpΛ1q “ C1. In particular, for
all γ P Λ1 one has

τ ˆ τ
`

λprγq
˘

“
`

a
`

λprγq
˘

, b
`

λprγq
˘˘

.

By Benoist’s Theorem 2.3, stating that the group generated by the Jordan projec-
tions λprγq, for γ P Λ1, is dense in a, we conclude that the group spanned by

!´

`

a
`

λprγq
˘

, b
`

λprγq
˘˘

¯

: γ P Λ1
)

is dense in R2, giving in turn the desired conclusion. �
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Proof of Proposition 6.3. Denote by G and G the Zariski closures of ρpΛq and ρpΛq
respectively. Both G and G are semi-simple, have finite center, and don’t have
compact factors: if tK,Ku Ă tR,Cu then this is the content of Lemma 6.4, if either
K and/or K equals H then this is an assumption. We let ι : ΛÑ G and ι : ΛÑ G
be the respective inclusions.

If we let φ : G Ñ SLpd,Kq and φ : G Ñ SLpd,Kq be the associated real represen-
tations, so that ρ “ φ ˝ ι and ρ “ φ ˝ ι, we have from §2.3 two subsets of simple
roots θ :“ θφ and θ :“ θφ such that for all a P a`G and b P a`

G
one has

τpaq :“ τ1pφpaqq “ min
 

apaq : a P θ
(

τpbq :“ τ1pφpbqq “ min
 

apbq : a P θ
(

. (6.6)

In particular, for every γ P Λ one has τ1pλpγqq “ τpλGpιγqq, and similarly for ρ.
Since φ and φ are faithful, θ and θ contain at least one root of each factor of,

respectively, G and G. If ϑ Ă θ then we let

τϑpvq “ min
σPϑ

σpvq, v P aG.

If H is a non-trivial product of simple factors of G then we let ιH : ΛÑ H be the
composition of ι with the projection of G onto H. By Zarisk-density of ιpΛq, each
representation ιH has Zariski-dense image (though unlikely to be discrete). We also
let

θH “ θ X∆H.

Each θH is non-empty. We analogously define ιH, θH and τH.
We now let L be the largest product of simple factors, simultaneously of G and

G, so that ιL is conjugated (up to finite index) to ιL. Let H and H be the remaining
factors of G and G respectively, i.e.

G “ Lˆ H and G “ Lˆ H,

and moreover, by definition of L, the representation r : ΛÑ Lˆ Hˆ H

r : g ÞÑ
`

ιLpgq, ιHpgq, ιHpgq
˘

(6.7)

has Zariski-dense image, see for example Bridgeman-Canary-Labourie-S. [11, Corol-
lary 11.6]. We remark that we are not assuming that any of L, H or H is non-trivial
(they can’t, of course, be all trivial).

If pu, v, wq P aLˆ aHˆ aH we naturally think of pu, vq as an element of aG and of
pu,wq as an element of aG. We now write

Θ “ θL X θL,

ΘL “ θLzΘ,

ΘL “ θLzΘ.

One has, for all pu, v, wq P aL ˆ aH ˆ aH that

τpu,wq “ min
 

τΘLpuq, τΘpuq, τθHpwq
(

τpu, vq “ min
 

τΘLpuq, τΘpuq, τθHpvq
(

. (6.8)

By assumption, there exists g P Λ such that ρpgq and ρpgq are proximal and
τpλGpιgqq ‰ τpλGpιgqq. Assume, without loss of generality, that

τpλGpιgqq ă τpλGpιgqq. (6.9)
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By means of Equations (6.8) we see that in this situation one has

τΘLYθHpλGpιgqq “ τpλGpιgqq ă τpλGpιgqq,

in particular the union ΘLYθH must be non-empty. Moreover, this strict inequality
yields the existence of a small closed cone with non-empty interior C0 Ă Lρ Ă a`G
about R`λGpρgq such that

τΘLYθHpaq “ τ1paq @a P C0. (6.10)

Consider now the representation r : ΛÑ LˆHˆH from (6.7) and a closed cone
with non-empty interior C Ă LrpΛq Ă a`L ˆ a`

H
ˆ a`H whose natural projection onto

a`G “ a`L ˆ a`H is C0.

Lemma 6.5 applied to the group G “ LˆHˆH, the representation r, the disjoint
non-empty subsets ϑ “ ΘL Y θH and ϑ “ θL Y θH and the cone C, provides the
desired conclusion. �

We conclude with the following Corollary that we don’t need but is of indepen-
dent interest.

Corollary 6.6. Let ρ : Γ Ñ SLpd,Kq and ρ : Γ Ñ SLpd,Kq be R-irreducible and
tτ1, τ2u-Anosov and tτ1, τ2u-Anosov respectively. If K “ H assume moreover the
Zariski closure of ρpΓq does not contain compact factors, and analogously for ρ. If
ρ and ρ are not gap-isospectral then

Iτ1
pτ1q ą hτ1

{hτ1 .

Proof. Since both representations are projective-Anosov they are K-proximal. Pro-
position 6.3 implies then that, since they are not gap-isospectral, the group spanned
by the pairs

 `

τ1pλpγqq, τ1pλpγqq
˘

: γ P Γ
(

is dense. Since both representations are
also Anosov with respect to 2-dimensional stabilizers, the functionals τ1 and τ1 lie
in the Anosov-Levy space of ρ and ρ respectively, we can apply Proposition 3.3 to
obtain the desired strict inequality. �

6.3. Proof of Theorem 6.1. Theorem 6.1 follows from Proposition 6.3 giving the
desired non-arithmecity of periods, Lemma 6.2 identifying the set Hb

ρ,ρ with the set
of b-conical points of pρ, ρq and Theorem 5.3 computing the Hausdorff dimension
of the latter when the periods are non-arithmetic. The last equality is a direct
consequence of Proposition 5.12. �

7. Theorem C: Zariski closures of real-hyperconvex surface-group
representations

In this section we prove Theorem C giving a preliminary classification of Zariski
closures of irreducible real p1, 1, 2q-hyperconvex representations of surface groups.
For most of the section we work with a pair of p1, 1, 2q-hyperconvex representations
and eventually reduce the proof of Theorem C to a situation like this; we will
crucially use Theorem 1.3.

7.1. When Ξ has oblique derivative. We prove here a result of independent
interest, albeit possibly known to experts. This subsection only requires § 4.1 and
§ 4.2 and will be needed not only for Theorem C but also for Theorems B and 8.6.
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Either we let Γ have boundary homeomorphic to a circle, either we let it be a
Kleinian group. In the first case we let

ρ, ρ : Γ Ñ Diff1`ν
pS1q

be Hölder conjugated to action of Γ on its boundary; if instead Γ ă PSLp2,Cq is
a Kleinian group we let ρ, ρ : Γ Ñ PSLp2,Cq be two convex co-compact represen-
tations that lie in the same connected component of the subset of the character
variety XpΓ,PSLp2,Cqq consisting of convex cocompact representations.

We let X be either the circle or BH3. To simplify notation we will denote the
action of γ P Γ on X via ρ by γ, the action via ρ by γ, and the limit sets of ρ and
ρ by BΓ, BΓ Ă X respectively.

In both situations there exists a Hölder-continuous map

Ξ : X Ñ X

conjugating ρ and ρ. Indeed while in the surface case this holds by definition, in the
Kleinian case this is a theorem by Marden [37], see also Anderson’s survey [1, page
32]: the equivariant limit map Ξ : BΓ Ñ BΓ conjugating the actions ρ and ρ on their
respective limit sets extends to a Γ-equivariant, Hölder continuous homeomorphism
of the whole Riemann sphere BH3.We study differentiability points of Ξ with oblique
derivative.

We let d be either a visual distance on X (in the complex case) or a distance
inducing the chosen C1 structure on the circle S1.

Definition 7.1. An action ρ admits a Lipschitz-compatible cover if there exists a
finite open cover B of X and a map Γ Ñ B, γ ÞÑ B8pγq such that

(i) for any a, b P Γ so that |ab| “ |a| ` |b| one has
(a) bB8pabq Ă B8paq,
(b) B8pabq Ă B8pbq;

(ii) there exist λ ą 0, C and L P N such that if |γ| ě L and x, y P B8pγq then

dpγx, γyq ď Ce´|γ|λdpx, yq;

(iii) there exist constants r1, r2 and a function τ : Γ Ñ R with τpγq ě λ|γ| such
that for every γ P Γ and every x P C8pγq,

Bpx, r1e
´τpγqq Ă γB8pγq Ă Bpx, r2e

´τpγqq.

The goal of the subsection is to prove the following result, similar arguments can
be found in Guizhen [26] in the context of conjugacies of expanding circle maps.

Proposition 7.2. Let ρ, ρ be as above and assume both admit a Lipschitz compatible
cover. If there exists p P BΓ such that Ξ has a finite non-vanishing derivative
(complex derivative in the Kleinian case) at p then Ξ|BΓ is bi-Lipschitz.

We work under the assumptions of Proposition 7.2 and begin its proof with the
following lemma. For γ P Γ we denote its derivative at x P X by γ1pxq P K defined,
according our two situations, by

X “ S1 : the derivative γ̃1px̃q of a lift of γ to the universal cover R of S1, and a lift
x̃ P R of x, the number γ̃1px̃q is independent of these choices;

X “ BH3: we fix an arbitrary point 8 R BΓ, identify X ´ t8u with K via the stereo-
graphic projection and let γ1pxq be the standard complex derivative.
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Lemma 7.3. Let ρ : Γ Ñ Diff1`ν
pXq admit a Lipschitz compatible cover. There

exists a constant κ ą 0 and N P N such that for all γ P Γ with |γ| ě N and
x, y P B8pγq one has

ˇ

ˇ log |γ1pxq| ´ log |γ1pyq|
ˇ

ˇ ď κdpx, yqν .

Proof. We consider L from Definition 7.1, so that for every η P Γ with |η| ě L and
x, y P B8pηq one has

dpηx, ηyq ď Ce´|η|λdpx, yq. (7.1)

Since the action is C1`ν we can find a positive K such that for every β with
|β| ď L and u,w P X one has

ˇ

ˇ log |β1puq| ´ log |β1pwq|
ˇ

ˇ ď Kdpu,wqν . (7.2)

We let then K 1 “ maxtK,KCνu. We begin by showing, by induction on k, that
if |γ| “ kL then for all x, y P B8pγq, one has

ˇ

ˇ log |γ1pxq| ´ log |γ1pyq|
ˇ

ˇ ď K 1
`

k´1
ÿ

i“0

e´νλLi
˘

dpx, yqν . (7.3)

Equation (7.2) gives the base case, so assume that the result holds up to k ´ 1.
We write γ “ βη with |β| “ L, |η| “ pk ´ 1qL. By Definition 7.1 (ib) we have

B8pγq Ď B8pηq. (7.4)

Applying the chain rule gives that for every u P X one has

log |γ1puq| “ log |pβq1pηuq| ` log |pβq1puq|

and thus, when x, y P B8pγq,

ˇ

ˇ log |γ1pxq| ´ log |γ1pyq|
ˇ

ˇ ď
ˇ

ˇ log |β1pηxq| ´ log |β1pηyq|
ˇ

ˇ`
ˇ

ˇ log |η1pxq| ´ log |η1pyq|
ˇ

ˇ

ď Kdpηx, ηyqν `K 1
`

k´2
ÿ

i“0

e´νλLi
˘

dpx, yqν pby (7.2) and inductionq

ď KCνe´|η|νλdpx, yqν `K 1
`

k´2
ÿ

i“0

e´νλLi
˘

dpx, yqν pby (7.4) and (7.1)q.

This shows Equation (7.3) which implies that for κ0 “ K 1{p1 ´ e´νλLq, every
γ P Γ whose word-length is an integer multiple of L, and x, y P B8pγq one has

ˇ

ˇ log |γ1pxq| ´ log |γ1pyq|
ˇ

ˇ ď κ0dpx, yq
ν .

To conclude the lemma we consider an arbitrary γ with |γ| “ mL` t and t ă L.
We write γ “ βη with |β| “ mL. By Definition 7.1 (ia) it holds

ηB8pγq Ă B8pβq. (7.5)

Applying the chain rule gives then
ˇ

ˇ log |γ1pxq| ´ log |γ1pyq|
ˇ

ˇ ď
ˇ

ˇ log |β1pηxq| ´ log |β1pηyq|
ˇ

ˇ`
ˇ

ˇ log |η1pxq| ´ log |η1pyq|
ˇ

ˇ

ď κ0dpηx, ηyq
ν `Kdpx, yqν pby (7.2) and (7.5)q

ď pκ0C
νe´mLλ `Kqdpx, yqν pby (7.1)q

so taking κ “ K ` κ0C
νe´Lλ we conclude the proof. �
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Proof of Proposition 7.2. Let p P BΓ be such that Ξ has a derivative at p that is
neither horizontal nor vertical. Fix a geodesic ray pαnq

8
0 through the identity with

αn Ñ p. By definition for all n one has p P αnC8pαnq. Without loss of generality
we may also assume that

p “ 0 “ Ξp0q

and we may write the derivative as the incremental limit

Ξ1p0q “ lim
yÑ0

Ξpyq

y
P K´ t0u.

For each n we let sn “ r1e
´τpαnq, so that by Definition 7.1 (iii),

Bp0, snq Ă αnB8pαnq.

We consider the scaling map

gn : Bp0, 1q Ñ αnB8pαnq

defined by gnpzq “ snz.
Let an be an arbitrary point at distance sn from 0 and let s̃n “ Ξpanq. Observe

that since Ξ is differentiable at zero, for n big enough the image ΞpBp0, snqq is
coarsely a ball around zero of size comparable to that of αnC8pαnq, and in particular
we can assume, since the cover tB8pγqu is Lipschitz compatible (Definition 7.1 (iii)),
that ΞpBp0, snqq is contained in αnB8pαnq. Furthermore we deduce that there exist
positive constants d,D such that for every n

d ă
r2e

´τpαnq

|s̃n|
ă D.

Here we denote by ri, λ, C, τ the constants and function associated to the Lips-
chitz compatible cover tB8pγqu for the action ρ. We consider the scaling map

g̃n : Bp0, Dq Ñ Bp0, |s̃n|Dq

by z ÞÑ zs̃n.
Since sn Ñ 0 and Ξ1p0q R t0,8u exists, the composition

g̃´1
n Ξgnpzq “

Ξpzsnq

s̃n
¨
snz

snz
“

Ξpzsnq

snz
¨
sn
s̃n
¨ z “

Ξpzsnq

snz
¨

sn
Ξpsnq

¨ z

converges uniformly on compact subsets to the identity map.
On the other hand, one has

g̃´1
n Ξgn “ g̃´1

n αnΞα´1
n gn.

We now study the maps fn :“ α´1
n ˝ gn and f̃n :“ g̃´1

n ˝ αn. Since the coverings B

and B are finite, we can assume, up to extracting a subsequence that there exists
sets B8 P B, B8 P B so that, for every n, B8pαnq “ B8 (resp. B8pαnq “ B8).

Observe that for every x P Bp0, 1q one has

log |f 1npxq| “ log |pα´1
n q

1pgnxq| ` log |sn| “ ´ log |α1npα
´1
n gnxq| ` log |sn|.

Now by definition of gn, we have that gnx P αnB8pαnq and thus α´1
n pgnxq P

B8pαnq. For n large enough we can apply Lemma 7.3 to αn to obtain κ so that
for every pair x, y P Bp0, 1q it holds

ˇ

ˇ log |f 1npxq| ´ log |f 1npyq|
ˇ

ˇ ď κdpx, yqν .
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We conclude that the family of maps pfnq is uniformly bi-Lipschitz on Bp0, 1q and
thus, since pfn0q is bounded, Arzela-Ascoli’s Theorem applies to give a subsequence
(still denoted by fn) that converges to a bi-Lipschitz map f defined on Bp0, 1q.

A similar reasoning applies to the maps f̃ defined on B8, and we obtain that,
about 0, Ξ can be written as a composition of bi-Lipschitz maps and is thus bi-
Lipschitz. Using the action of Γ we extend the Lipschitz property of Ξ to the whole
BΓ, concluding the proof. �

The following Lemma guarantees we can later apply the results of this section
to the situation of our interest.

Lemma 7.4.
- Assume BΓ is homeomorphic to a circle and let ρ : Γ Ñ SLpd,Rq be p1, 1, 2q-

hyperconvex. Then the induced action of ρpΓq on the C1`ν circle ξpBΓq
admits a Lipschitz compatible covering.

- If Γ is a convex-co-compact Kleinian group then the action of Γ on B8H
3

admits a Lipschitz compatible cover.

Proof. Recall from Section 4.1 that we have fixed a word metric on Γ and we denote
by C8pγq Ă BΓ Ă X the set of endpoints of geodesic rays contained in the cone
type Cpγq.

Let δρ be the fundamental constant of ρ from Definition 4.8, and let B8pγq “
X8pγq be the δρ{2-neighbourhood of C8pγq inside S1. This is the thickened cone
type at infinity considered in [43, Section 5] (see also the proof of Proposition 5.6).
It is a proper subset of S1 by Corollary 4.7. The cover B is finite since there are
only finitely many cone types [12, p. 455].

Property (i) holds since the same property holds for C8pγq, Property (ii) is a
consequence of Proposition 4.10. Finally, Property (iii) was proven in [43, Corollary
5.10] choosing τpγq :“ τ1paρpγqq (see also the proof of Proposition 5.6). Observe
that in the real case by considering X “ S1 we are implicitly considering only the
intersection with the limit set, while in the Kleinian group case it is not necessary
to intersect with the limit set since the Γ-action on the whole X is conformal. �

We now establish the following corollary that will be used in the sequel.

Corollary 7.5. Assume BΓ is homeomorphic to a circle. Let ρ : π1S Ñ PGLpd,Rq
and ρ : π1S Ñ PGLpd,Rq be p1, 1, 2q-hyperconvex, consider the map between C1`ν

circles
Ξ “ ξ ˝ ξ´1 : ξpBπ1Sq Ñ ξpBπ1Sq.

If Ξ has a differentiability point with finite non-vanishing derivative then ρ and ρ
are gap-isospectral.

Proof. By Lemma 7.4 we can apply Proposition 7.2 to obtain that Ξ is bi-Lipschitz.
The following standard lemma from linear algebra (see for example Benoist [5] and
S. [46, Lemma 3.4]) gives the period computation completing the proof. �

Lemma 7.6. Let g P PGLpd,Rq be proximal with attracting point g` P PpR
dq and

repelling hyperplane g´ P PppRdq˚q. Let Vλ2pgq be the sum of the characteristic
spaces of g whose associated eigenvalue is of modulus expλ2pgq, Then for every
v R Ppg´q, with non-zero component in Vλ2pgq, one has

lim
nÑ8

log dPpg
npvq, g`q

n
“ ´τ1pλpgqq.
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7.2. Limit curves in non-maximal flags. We proceed with another intermediate
step for the proof of Theorem C describing differentiability points of boundary maps
in partial flag manifolds Fta,bu for ta, bu-Anosov representations. This step follows
from the combination of Theorem 1.3 and Corollary 7.5.

Let G be real-algebraic and semi-simple. Let ta, bu Ă ∆ be two distinct simple
roots. The partial flag space Fta,bu carries two transverse foliations that are the
level sets of the natural projections Fta,bu Ñ Ftau and Fta,bu Ñ Ftbu. We will refer
to these as the canonical foliations of Fta,bu.

Corollary 7.7. Let G be real-algebraic and semi-simple and let ta, bu Ă ∆ distinct.
Let ρ : π1S Ñ G be Zariski-dense and ta, bu-Anosov. If both curves ξapBπ1Sq and
ξbpBπ1Sq are C1 then every differentiability point of ξta,bupBπ1Sq is tangent to one
of the canonical foliations of Fta,bu.

Proof. By Benoist’s Theorem 2.3 the limit cone of ρ has non-empty interior, in
particular there exists γ P π1S such that

apλpγqq ‰ bpλpγqq. (7.6)

Consider the Tits representations Φa and Φb associated to a and b. Since ρpπ1Sq
is Zariski-dense, both representation Φaρ and Φbρ are irreducible and since ρ is
ta, bu-Anosov both representation Φaρ and Φbρ are projective Anosov. Recall that
by definition of Φa, for every g P G one has

τ1
`

λ
`

Φapgq
˘˘

“ a
`

λpgq
˘

,

so by Equation (7.6) the representations Φaρ and Φbρ are not gap-isospectral.
Since the maps ζa and ζb are analytic, both projective curves ζaξ

apBπ1Sq and
ζbξ

bpBπ1Sq are C1 and thus by Zhang-Zimmer’s Theorem 1.3 the representations
Φaρ and Φbρ are p1, 1, 2q-hyperconvex.

The natural embedding Fta,bu Ñ PpVaq ˆ PpVbq sends ξta,bu to the graph of the
map Ξ from Corollary 7.5 and thus the corollary implies the result. �

7.3. Proof of Theorem C. The goal of the section is to prove Theorem C, stat-
ing that the Zariski closure G of the image of an irreducible p1, 1, 2q-hyperconvex
representation ρ : π1S Ñ PGLpd,Rq is simple and the highest weight of the induced
representation Φ : G Ñ PGLpd,Rq is a multiple of a fundamental weight associated
to a root whose root-space is one-dimensional.

It is known that an irreducible subgroup G ă PGLpd,Rq containing a proximal
element is semi-simple without compact factors (see S. [48, Lemma 8.6] for an
explicit argument following a suggestion by Quint).

We consider the induced representation ρ0 : Γ Ñ G and denote by Φ : G Ñ

PGLpd,Rq the linear representation so that ρ “ Φρ0. Let χ “ χΦ P a˚ be the
highest weight of Φ. As in Definition 2.5 we consider

θ “ θΦ “ ta P ∆ : χ´ a is a weight of Φu “ ta P ∆ : xχ, ay ‰ 0u.

It is enough to show that θ is reduced to a single root ta0u; indeed, if this is the
case, upon writing χ in the basis of fundamental weights t$a : a P ∆u (recall their
defining Equation (2.1)) one has

χ “
ÿ

aP∆

xχ, ay$a “ xχ, a0y$a0 ,

Moreover this gives:
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- G is simple by Lemma 2.4;
- the weights on the first level consist solely on χ´a and its associated weight

space is φpg´aqVχΦ . Since ρpΓq is tτ2u-Anosov one has that φpg´aqVχΦ is
one-dimensional, but by Lemma 2.6 no element of g´a acts trivially on VχΦ

so g´a is 1-dimensional, as desired.

We proceed now to show that in the present situation θ consists of only one
element. By definition of θ one has, for every g P G, that

τ1
`

λ
`

Φpgq
˘

“ min
aPθ

 

apλGpgqq
(

.

Consequently, the limit cone Lρ0 Ă a`G does not intersect the walls of elements in θ
and, since ρ0 : Γ Ñ G is a quasi-isometry, Remark 4.4 implies that the representation
ρ0 is θ-Anosov.

Recall from Equation (2.5) that we have a Φ-equivariant analytic embedding
ζθ : G{Pθ Ñ PpRdq. One has moreover that ξ1

ρ “ ζθ ˝ξ
θ
ρ0
. In particular the boundary

map ξθ has C1-image. Composing with the projections Fθ Ñ Fθ1 one sees that, for
any θ1 Ă θ the curve ξθ

1

ρ0
pBΓq is a C1 circle.

Assume now there exists two distinct roots a, b in θ. By the previous paragraph
the curve ξta,bupBΓq is C1 . Corollary 7.7 gives then that ξta,bupBΓq is necessarily
contained in one of the leaves of the canonical foliations of Fta,bu, thus giving that

one of the maps ξa or ξb is constant, achieving a contradiction. �

8. Non-differentiability and 1-conicality: The proof of Theorem B

8.1. Non-differentiability and 1-conicality. By means of § 7.1 we can improve
Lemma 6.2 when we deal with a pair of real hyperconvex representations of surface
groups, this is the missing ingredient for Theorem B:

Corollary 8.1. Assume BΓ is homeomorphic to a circle. Let ρ, ρ two p1, 1, 2q-
hyperconvex representations over R of Γ that are not gap-isospectral. Then, the set
of non-differentiability points of Ξ coincides with the set of 1-conical points.

Proof. We choose a C1 identification of the C1 torus ξpBΓqˆξpBΓq Ă PpRdqˆPpRdq
with the quotient of the square r´1, 1s ˆ r´1, 1s preserving the product structure,
and such that the point px,Ξpxqq corresponds to p0, 0q. In these coordinates the
graph of Ξ is a monotone curve r´1, 1s Ñ r´1, 1s passing through the origin. Since
the chosen identification is C1, it is in particular K-bi-Lipschitz for some K, so
we can write (coarsely in a small neighbourhood of x) dpξpyq, ξpxqq “ |y| and
dpξpyq, ξpxqq “ |Ξpyq|.

From Lemma 6.2 we know that x is 1-conical if and only if either limyÑx
|Ξpyq|
|y|

exists and is far from 0 and 8, either it does not exist. The proposition is settled if
we show that the first situation cannot happen, so let’s assume it does. However,
since Ξ is monotone we can remove the | | and we get that x is a differentiability
point of Ξ with oblique derivative. Corollary 7.5 implies then that for all γ P Γ one
has τ1pλpγqq “ τ1pλpγqq, contradicting our assumption. �

8.2. Proof of Theorem B and an analogous for Kleinian groups. We begin
with the proof of Theorem B by recalling the following result from Beyrer-P. [7]
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Corollary 8.2 (Beyrer-P. [7]). Assume BΓ is homeomorphic to a circle and let
ρ : Γ Ñ PGLpd,Rq be p1, 1, 2q-hyperconvex. Then there exists an irreducible p1, 1, 2q-
hyperconvex representation ρ0 : Γ Ñ PGLpm,Rq such that, for every γ P Γ one
has

τ1
`

λpγq
˘

“ τ1
`

λpρ0γq
˘

.

We now prove Theorem B. Since there exists γ P Γ with τ1
`

λpγq
˘

‰ τ1

`

λpγq
˘

,
Corollary 8.2 allows us to apply Proposition 6.3 to obtain the density assumption
in Theorem 5.3, so one has

dimHff Ξ
`

t1-conical pointsu
˘

“ hmaxtτ,τu.

Corollary 8.1 states that the set of 1-conical points coincides with the set of non-
differentiability points of Ξ. The inequality h8 ă 1 follows from the strict convexity
of the critical hypersurface Qv, where v is the cocycle studied in Section 5.3. This
completes the proof of Theorem B.

8.3. Proof of Corollary B. We conclude the paper proving Corollary B. Recall
from Section 2.3 that for every simple root a of G we chose a Tits representation
Φa : G Ñ PSLpVaq.

Corollary 8.3. Assume BΓ is homeomorphic to a circle and let G be a simple Lie
group. Let ρ : Γ Ñ G have Zariski-dense image. If for a, b P ∆ the representations
Φa ˝ ρ and Φb ˝ ρ are p1, 1, 2q-hyperconvex, then

(i) the image of the limit curve ξta,bu : BΓ Ñ Fta,bu is Lipschitz and the Haus-

dorff dimension of the points where it is non-differentiable is hmaxta,bu.
(ii) If the opposition involution i on g is non-trivial and b “ ia then

hmaxta,bu “ hpa`bq{2.

Proof.
(i) Since the map Φa : Fa Ñ PpVaq is analytic, and Φa˝ξ

apBΓq is a C1-submanifold
(Theorem 1.3), ξapBΓq is a C1 submanifold as well. The curve ξta,bu :“ Fta,bu X

pξapBΓq ˆ ξbpBΓqq is the graph of the homeomorphism Ξ and is thus a Lipschitz
curve. The second claim is then a direct consequence of Theorem B.

(ii) Assume the opposition involution i of g is non-trivial and that b “ ia. Using
notation from Section 5.3 with a “ τ and b “ ia “ τ we let V ˚ “ spanta, bu,
V “ aθ{AnnpV ˚q, Π : aθ Ñ V the quotient projection, } }8 “ maxt|a|, |b|u, } }1 its
dual norm on V ˚ and ϕ8b P Qv the only form minimizing } }1.

Since ia “ b, the space V ˚ is preserved by i and the fact that λpg´1q “ iλpgq
(for all g P G) implies that Qv is i-invariant. Moreover, the norm } }1 is i-invariant
and by definition of ϕ8b one has iϕ8b “ ϕ8b . However, pa ` bq{2 is also i-invariant

and hpa`bq{2pa` bq{2 P Qv whence

ϕ8b “ hpa`bq{2pa` bq{2.

In order to prove the result it is thus enough to show that

hmaxta,bu “ }ϕ8b }
1. (8.1)

We conclude the proof deducing this equality from Quint’s [44, Proposition 3.3.3].
We consider the counting measure

ν “
ÿ

γPΓ

δΠaθpγq
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on the vector space E “ V and the norm N “ } }8. We then have, in the notation
of [44, §3], that τNν “ hmaxta,bu and, by Remark 4.13, σNν “ infϕPQv

}ϕ}1. Thus, in
order to deduce Equation (8.1) from [44, Proposition 3.3.3] it is enough to verify
that the counting measure ν is of concave growth as in [44, §3.2]. In turn this is a
consequence of Lemma 8.4 below, an adaptation of [44, Proposition 2.3.1] (see also
Kim-Oh-Wang [33, Lemma 3.8] where similar arguments are explained for the aθ
counting measure). �

Lemma 8.4. Let } } be a norm on V . Let Λ ă G be Zariski-dense and ta, bu-
Anosov. Then there exists a product map m : Λ ˆ Λ Ñ Λ with the following
properties:

(i) there exists a real number κ ě 0 such that, for all γ1, γ2 P Λ,

}Πaθpmpγ1, γ2qq ´Πaθpγ1q ´Πaθpγ2q} ď κ;

(ii) for every real R ě 0 there exists a finite subset H of Λ such that, for
γ1, γ2γ

1
1, γ

1
2 in Λ with }Πaθpγiq ´Πaθpγ

1
iq} ă R for i “ 1, 2, then

mpγ1, γ2q “ mpγ11, γ
1
2q ñ γ1i P γiH, for i “ 1, 2.

Proof. It is enough to consider the generic product map π : ΛˆΛÑ Λ constructed
in [44, Proposition 2.3.1], which satisfies the analogous properties with respect to
the Cartan projection a : G Ñ a and a norm } } on a. The first property is satisfied
since we can assume that the projection Π˝πθ : aÑ V is norm non-increasing. The
second follows from the Anosov property: by the construction in [44, Proposition
2.3.1] one can choose H to be the set of elements γ such that }Πaθpγq} ă R1 for
some R1 depending on R. Such set is finite because, by definition of Π, there exists
R2 depending on R1 and the norm } } such that if }Πaθpγq} ă R1 then apapγqq ă R2,
which in turn implies by Definition 4.3 that |γ| ă R2{µ`C, and thus γ belongs to
a finite subset. �

8.4. The PSLp2,Cq-case. If ρ, ρ : Γ Ñ PSLp2,Cq are convex co-compact represen-
tations that are connected by convex-co-compact representations, it was proven by
Marden [37] that the natural map Ξ : Λρ Ñ Λρ conjugating the respective actions
extends to a Hölder homeomorphism Ξ : CP1 Ñ CP1 that is pρ, ρq-equivariant. We
consider in this case the complex derivative of such an extension Ξ and say that Ξ
is C-differentiable at a given x P Λρ if, conformally identifying BH3 ´ tpointu to C,
the limit

Ξ1pxq :“ lim
yÑx

Ξpxq ´ Ξpyq

x´ y

exists or is infinite. We let now NDiffρ,ρ be the set of points x P Λρ where the
extended conjugating map Ξ is not C-differentiable and let

The proof of the following works verbatim as in Corollary 8.1.

Proposition 8.5. Let ρ, ρ : Γ Ñ PSLp2,Cq be non-gap-isospectral and in the same
connected component of

 

% : Γ Ñ PSLp2,Cq : % is convex co´ compact
(

.

Then, the set of non-C-differentiability points of Ξ coincides with the set of 1-conical
points.
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Density of the group generated by the pairs tpλpγq, λpγ̄qq : γ P Γu follows readily
from Benoist [4] (see Theorem 2.3), from this point on the exact same proof of
Theorem B gives the following.

Theorem 8.6. Let ρ, ρ : Γ Ñ PSLp2,Cq be non-gap-isospectral convex co-compact
representations that are connected by convex co-compact representations. Assume
without loss of generality that hτ ě hτ . If Iτ pτq ą 1, then dimHffpNDiffρ,ρq “ h8.
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