METRIC PROPERTIES OF BOUNDARY MAPS, HILBERT
ENTROPY AND NON-DIFFERENTIABILITY
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ABSTRACT. We interpret the Hilbert entropy of a convex projective struc-
ture on a closed higher-genus surface as the Hausdorff dimension of the non-
differentiability points of the limit set in the full flag space F(R3). General-
izations for regularity properties of boundary maps between locally conformal
representations are also discussed. An ingredient for the proofs is the con-
cept of hyperplane conicality that we introduce for a 6-Anosov representation
into a reductive real-algebraic Lie group G. In contrast with directional con-
icality, hyperplane-conical points always have full mass for the corresponding
Patterson-Sullivan measure.
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Consider a closed connected orientable surface S of genus at least two, and let
p : mS — PSL(3,R) be a faithful representation preserving an open convex set
Q = Q, < P(R%), properly contained in an affine chart. The group p(mS) is

necessarily discrete and acts co-compactly on €2: one says that p divides Q.
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The geometry of such convex set  is well studied, by Benoist [5] it is strictly
convex with C'™ boundary Q (that is not C? unless it is an ellipse), and the
Hilbert metric of Q is Gromov-hyperbolic. The geodesic flow of Q/p(m1.S) is an
Anosov flow and its topological entropy, the Hilbert entropy 7w = (#%n),, satisfies

/iy < 1,

an inequality proved by Crampon [18] that is strict if € is not an ellipse.

A consequence of Theorem B below is a new geometric interpretation of the
Hilbert entropy which we now explain. For each x € 00 let Z(z) € Gra(R?) be the
unique plane whose projectivisation is tangent to 02 at z. By [5], the image curve
2(09Q) = Gra(R?) ~ P((R3)*) is also the boundary of a strictly convex divisible set
Q* and is thus again a C**"-circle. The full-flag-curve

{(x,2(x)) : x € 0Q} = F(R?),

is the graph of a monotone map between C' circles and thus is a Lipschitz subman-
ifold that is therefore differentiable almost everywhere. We establish the following:

Corollary A. Let p : mS — PSL(3,R) divide a strictly convexr set that is not
an ellipse. Then, the set of non-differentiability points of the full flag curve has
Hausdorff dimension (%n),,.

Throughout the paper the Hausdorff dimension is computed with respect to
a(ny) Riemannian metric on the flag space. When () is an ellipse the result does
not apply as the associated curve is differentiable everywhere while 4y = 1.

A classical result by Choi-Goldman [16] states that the space of representa-
tions dividing a convex set forms a connected component of the character variety
%(m S, PSL(3, IR)) of homomorphisms up to conjugation. This component is known
today as the Hitchin component of PSL(3,R) and is diffeomorphic to a ball of di-
mension —8x(S). Nie [39] and Zhang [53] have found paths (p;) in this Hitchin
component such that (%Zn),, — 0 as t — oo. Together with Corollary A this
suggest that the closer Q is to being an ellipse (the Fuchsian locus), the less dif-
ferentiable the flag curve is whilst the furthest away from Fuchsian locus, the more
regular the flag curve becomes.

The proof of Corollary A is outlined in § 1.4 and serves as a guide path for the
strategy on the general case (Theorems A and B).

1.1. Locally conformal representations and concavity properties. Let K
be R, C or the non-commutative field of Hamilton’s quaternions H. Denote by

az{(al,...,ad)eRd:ZaizO}

the Cartan subspace of the real-algebraic group SL(d,K), by
Ti(a1,...,aq) = a; — a1 (1.1)

the i-th simple root and by a* < a the Weyl chamber whose associated set of simple
roots is A = {r; : i € [1,d — 1]}. Let a : SL(d,K) — a't be the Cartan projection
with respect to the choice of an inner (or Hermitian) product on K?. The e%(9)’s
are the singular values of the matrix g, namely the square roots of the modulus
of the eigenvalues of the matrix gg*. We also let dp denote the distance on P(IK)
induced by the chosen Hermitian product.
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Let I be a finitely generated word-hyperbolic group, consider a finite symmetric
generating set and let || be the associated word-length. For k € [1,d — 1], a
representation p : ' — SL(d,K) is {7} }-Anosov if there exist positive constants p
and ¢ such that for all v € I one has

i (a(p(7))) = ply] —c.

A {7;}-Anosov representation is also {r4_x}-Anosov. Under such assumption
there exists an equivariant Holder-continuous map

&y 2 o — Gri(K9),

called the limit map in the Grassmannian Gry(K9) of k-dimensional subspaces of
K¢, which is a homeomorphism onto its image. If £ <[ € [1,d — 1] and p is also
{71}-Anosov then the limit maps are compatible, i.e. £k(x) c flp(x) Yz, see §4 for
references and details.

Definition 1.1. Fix p € [2,d — 1]. A {71, 74—, }-Anosov representation p : I —
SL(d,K) is (1,1, p)-hyperconvez if for every pairwise distinct triple z,y, z € 0l one
has

(& (@) + &) N €77 (=) = {0} (1.2)
If in addition one has a2(p(7)) = ap(p(7y)) Vv, we say that p is locally conformal.

Hyperconvex representations form an open subset of the character variety
%(F,SL(d,[K)) = hom (F,SL(d,IK))/SL(d,[K)

and appear naturally. For example, when K = R, strictly convex divisible sets
give rise to (1, 1,d — 1)-hyperconvex representations, while higher rank Teichmiiller
theory provides many examples of (1,1,2)-hyperconvex representations of surface
groups, see Example 1.4.

When p = 2 the second part of the definition is trivially true, so (1,1,2)-
hyperconvex representations over K are locally conformal, when p > 2 the as-
sumption constrains the Zariski closure of p(I'). However, Zariski-dense locally
conformal representations exist (and form open sets) for the groups locally isomor-
phic to SL(n,R), SL(n, C), SL(n,H), SU(1,n), Sp(1,n), SO(p, q), see P.-S.-Wienhard
[43, §8] for details, and, of course, SO(1,n) where every convex co-compact repre-
sentation is locally conformal.

A concrete example in SU(1, n) consist on considering a convex co-compact group
in HE whose limit set intersects the projectivization of any complex line in at most
2 points. These subgroups are locally conformal ([43, Proposition 8.3]) and their
limit set (though fractal) is tangent to the contact distribution of 0Hg.

Consider also K € {R, C,H} and positive integers d and d. Throughout the paper
we mainly deal with a pair of locally conformal representations

p:T —SL(d,K)and p: T — SL(d,K),

with equivariant maps £ = 5; and € = f%, and we study regularity properties of the
equivariant Holder-continuous homeomorphism

E=gog tg(ar) — ().

To avoid confusion we denote the simple roots of SL(d, K) by {ﬂ ciel,d— 1]]},
and to simplify notation we identify v with p(v) and we let ¥ = p(v). We consider
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also the graph of =, or equivalently the graph map,
g (¢,8): ar - PKY) x P(KY).

Definition 1.2. Fix # € (0,1]. We will say that that = is #-concave at « € oI, or
that x is a &-concavity point for E, if there exists a sequence (yi) converging to x
as k — oo such that the incremental quotient

dp (€(x), E(yr))
dp (£(2), E(yr))"”

is bounded away from {0, 00}. The set of #-concavity points is denoted by 9—(?5.

(1.3)

Observe that = can be #Z-concave at x for several #’s and that it is a 1-concave

point if one has y; — x such that d(&(x), {(yx)) and dp(£(2), £(yr)) are comparable.

dp(&(2),&(2))
Cs?

dp(&(),€(2))

FIGURE 1. A #-concave point x. The marked points on the axis’ repre-

sent dp(&(z),£(yk)) and dp(£(z), £(yx)) respectively.

In what follows we will compute the Hausdorff dimension of ‘g(f}(?ﬁ) with respect

to the product metric on P(K?) x P(K?) for # lying on an interval that we now
define. The dynamical intersection between p and p with respect to 71 and 71 is
defined by

= (11) = lim - M
I‘rl( 1) tLoo #Rt(?l) ’YERtZ(TI) ?1()‘(7))’

where Ry(71) = {[7y] € [[]: 71(A(¥)) <t} and X : SL(d,K) — a™ is the Jordan
projection. This concept (from Bridgeman-Canary-Labourie-S. [11], Burger [13],
Knieper [34], among others) generalizes Bonahon’s intersection number between

two elements in Teichmiiller space.
Let us say that p and p are gap-isospectral if for all v € I one has

(A7) =T1(A@))-

Corollary 6.6 (a consequence of [11] together with Proposition 6.3) implies that
if p and p are not gap-isospectral, then I, (71) > (I (7'1))_1. We will study
#-concavity for any # € (0, 1] with

L, (71) > 6> (I (m)



Finally, consider the critical exponents
T 3 1
AT = tlgg} n log#{v el :7(a(y)) < t},

A" = lim % log #{v € T: max {#71 (a(v)),71(a(7))} < t}.

Theorem A (Theorem 6.1). Let {K,K} < {R,C} and let p : T — SL(d,K) and
p: T — SL(d,K) be locally conformal, R-irreducible and not gap-isospectral. Then
for any & € (0,1] with 1., (71) > & > (Iz, (7'1))_1, one has
6470 < dimpgr(9(H ) < min{A™7 6477 +1 — 4}
< min{A™, 5™ )6}
< dimp (Z(0T))
=max{A™, A" }.

If K = H (resp. K = H) we further assume that the Zariski closure if p (resp. p)
does not have compact factors, then the same conclusion holds.

The proof of the above Theorem is completed in §6.3. For representations in
PSL(2,C) we can furthermore give a geometric interpretation of the 1-weakly-bi-
Holder points, see §8.4.

1.2. Surface-group representations. Observe that the first line of inequalities
in Theorem A becomes an equality when # = 1. We pursue now this situation
while further restricting the source and ambient groups.

Let then K = R and assume ¢I' is homeomorphic to a circle. Real representations
of I that are (1,1, 2)-hyperconvex are necessarily locally conformal and form the
prototype example of Anosov representations with C' limit sets: indeed we have
the following result from P.-S.-Wienhard [13] and Zhang-Zimmer [54].

Theorem 1.3. Assume Ol is homeomorphic to a circle and let p : T — PGL(d, R)
be {11 }-Anosov.
[43],[54]: If p is (1, 1,2)-hyperconvex, then £'(oF) < P(R?) is a C' submanifold tan-
gent at £1(x) to £2(x).
[54]): If p is irreducible and £(OT) is a C circle then p is (1,1,2)-hyperconves.
The graph map & = (£,€) : o — P(RY) x P(R?) has image contained in the
CH torus () x £(0T) and €(Ar) is the graph of Z, a Hélder-continuous homeo-
morphism between C'*”-circles. By monotonicity of Z, €(@l) is a Lipschitz curve
and is thus differentiable almost everywhere. We let
NDiff, 5 < €(ar)
be the subset of points where the curve € () is not differentiable. The combination
of Lemma 6.2 and Corollary 8.1 establishes that in the current situation (with mild
additional assumptions)
1 .
(9,5) = NDiff(, 5,
whence with Theorem A one obtains the following:
Theorem B. Assume 0 is homeomorphic to a circle and let p : T — SL(d,R) and
p:T — SL(d,R) be (1,1,2)-hyperconver and not gap-isospectral. Then,

dimpgr (NDiff, 5) = £7" < 1.



We emphasize that no irreducibility assumption is made on the representations p
and p. On the other hand, if the representations are irreducible and gap-isospectral,
we show that there exists an isomorphism between the Zariski closures of p(I') and
of p(I) intertwining the two representations. It follows then that &(dl) is the
diagonal of the C'™ torus, and thus differentiable everywhere. To prove this we
give the following preliminary classification of Zariski-closures, established in § 7.3.

Recall that if G is a semi-simple real-algebraic group of non-compact type, then
irreducible proximal representations ® : G — PGL(V) are determined by their
highest restricted weight xs. A special subset of dominant weights are the so-
called fundamental weights {0, : a € A}, and are indexed by the set of simple roots
A of G (see §2.3 for definitions and details).

Theorem C. Assume 0 is homeomorphic to a circle and let p : T — PGL(d,R) be
irreducible and (1,1,2)-hyperconvex. Then the Zariski closure G of p(I') is simple
and the highest weight of the induced representation ® : G — PGL(d, R) is a multiple
of a fundamental weight associated to a root whose root-space is one-dimensional.

In light of the following examples it is unclear if further restrictions can occur.

Example 1.4. Any pair of representations p : mS — G and ® : G — PGL(V)
in each of the following classes (and small deformations), gives rise to a (1,1, 2)-
hyperconvex representation via post-composition ® o p. In particular the limit set
of p in the specified flag manifold of G is a C'** curve:

- G is split, p : mS — G is Hitchin, and ® satisfies x¢ = nw, for any
ae A and n € Nog. This is non-trivial and requires results from Fock-
Goncharov [20] and Labourie [35] together with Lusztig’s canonical basis
[36, Proposition 3.2] (see S. [50, §5.8] for details). As a result the limit set
of p in any maximal flag manifold Fy,y of G is a C'™ curve.

- p:mS — PO(p, q) is O-positive and P has highest weight w, for any root a
in the interior' of © (P.-S.-Wienhard [12, Theorem 10.3], see also Beyrer-P.
[3, Remark 4.6]). In particular the limit set in any flag manifold of the form
Isg(RP?) for k< p—2isa C'_curve. When p is moreover Zariski-dense,
we can consider any ® with X$ = nw, for any a € int ©® and n € N g.

- for all k = 1, k-positive representations p : 71,5 — PSL(d, R) introduced in
Beyrer-P. [7] are (1,1, 2)-hyperconvex.

For these examples also the following applies:

Corollary B. Assume 0T is homeomorphic to a circle, let G be a simple Lie group
and let p: T — G have Zariski-dense image. Assume there exist {a,b} A distinct
such that both ®, 0 p and Py, 0 p are (1,1,2)-hyperconvex. Then:

(i) The image of 120} . or — F(apy 18 Lipschitz and the Hausdorff dimension
of the points where it is non-differentiable is £™*{2:b}
(ii) If the opposition involution i on g is non-trivial and b = ia then

ﬁmax{a,b} _ ﬁ(a+b)/2.

Remark 1.5. A different approach to Theorem B, relying on Theorem C and The-
orem 1.3, would be to code the action of 7S on 0m S via Bowen-Series and ap-
ply Jordan-Kessebohmer-Pollicott-Stratmann [29, Theorem 1.1]. This method, fol-
lowed by Pollicott-Sharp [40] for two representations in the Teichmiiller space of S,

Lie ais only connected to roots in © in the Dynkin diagram of A



is not applicable for groups other than 715, in particular this approach cannot be
used in the generality of Theorem A.

1.3. Hyperplane vs directional conicality. To prove Theorems A and B we
introduce the concept of hyperplane conicality, a generalization of directional coni-
cality from Burger-Landesberg-Lee-Oh [14].

Let G be a real-algebraic semi-simple Lie group of non-compact type, a < g a
Cartan subspace, ® < a* the associated root system and A < ® a choice of simple
roots with associated Weyl chamber a*.

Consider a non-empty # < A and let ag be the associated Levi space. Fix a
f-Anosov representation p : [ — G and denote by Ly , < ag its 0-limit cone. We
will recall in § 4.3 that, when p(I") is Zariski-dense, there are natural bijections

int P(ng) — Q.97p = {(p € (ae)* Ny = 1}
- {Patterson—Sullivan measures supported on gg(ar)}.

For ¢ € Qg , welet u, € int P(Lg ,) be the associated direction and p¥ the associated
Patterson-Sullivan measure.

Consider now a hyperplane W c ay and assume, for the notion to be interesting,
that W intersects the relative interior of Lg ,. Then x € JI is W-conical if there
exists a conical sequence (v,)F < I' converging to x, a constant K and a sequence
(wn)F € W such that for all n one has

lao (p(1n)) — wa | < K,

where ag : G — a; is the #-Cartan projection. The set of W-conical points will be
denoted by dw ,I = dwrl. Inspired by [14], in Theorem 4.16 we show the following.

Theorem D. Let p : I — G be a Zariski-dense 0-Anosov representation and W
be a hyperplane of ag intersecting non-trivially the interior of Lg ,. Then for every
€ Qg , with u, € P(W) one has p¥(owl) = 1.

1.4. Strategy of the proof of Corollary A. Corollary A is a consequence of
Theorem B where p is the dual representation of p. We sketch a direct proof of
Corollary A serving as a guide-path for the general result.

Let p : m1.5 — SL(3,R) be the holonomy of a strictly convex projective structure
dividing the convex set 2. We consider the L distance on the product (P(R?), dp) x
(P((R3)*),dp), which is equivalent to the Riemannian distance, and thus induces
the same Hausdorff dimension.

As a replacement of Sullivan’s shadows we use coarse cone type at infinity, in-
spired by Cannon’s work on cone types [15] (see also §4.1). Fix a finite symmetric
generating set on 7.5 and let || be the associated word length. For v € 715 and
¢ > 0, the coarse cone type at infinity €5, () of 7 is the set of endpoints at infinity
of (¢, c)-quasi geodesic rays based at y~! passing through the identity. See Figure
2.

We let £ : 0m.S — 0 be the natural identification via the action of p(m1.S) on
Q, and analogously £ : ™S — 0Q*. We denote by & := (£,€) : m S — 0Q x 0Q*
the flag curve. Consider x € 0m S and let a; — x be a geodesic ray on mS. The
following fact is a consequence of Proposition 5.6.

Fact. For big enough i, the subset §(ai€§0 (ai)) c 09 is coarsely the intersection of
a ball of radius e~ ™(*) about &(x) with 0Q. By duality, one has &(,C () < o0
is coarsely the intersection of a ball of radius ™) about &(x) with OQ*.
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FI1GURE 2. The coarse cone type of y € I' (left). The set v-C% () (right).
Pictures from P.-S.-Wienhard [43].

The coarse constants and the minimal length ¢ required in the above statement
depend only on the representation and not on the point .

_ e—T1(pa;)

E N e (T

§(x)

FIGURE 3. The image of the cone type ;€% (a;) by the graph curve &
in the C' ™ -torus 0Q x 9Q*.

For any point = € 071 S we distinguish two complementary situations that don’t
depend on the choice of the geodesic ray (a;);en converging to x:
i) For all R > 0 there exists N € N with |7 (a(«;)) — 72(a(a;))| = R for all
i > N,
ii) There exists R > 0 and an infinite set of indices [ = N such that for all k €[
one has |11 (a(ak)) — m2(alak))| < R. We say in this case that x is b-conical
(b stands for "barycenter of the chamber’).

In the first case one is easily convinced by looking at Figure 3 that the rectangle
becomes flatter along one of its sides (see §8 for details in the general case). Fur-
thermore, since 71 (a(;)) — 71(a(@;41)) is uniformly bounded, its sign is eventually
constant, and thus the longer side only depends on the point. As a result x is
necessarily a differentiability point of the graph curve &, with either horizontal or
vertical derivative.

We are thus bound to understand the set of b-conical points. We show (see
Corollary 8.1):

Fact. The non-differentiabilty points of the curve €(0m1S) and the b-conical points
coincide.

The main idea for this is to show that if a b-conical point x were a differen-
tiability point, then the derivative could not be horizontal nor vertical, and thus
(by Proposition 7.2) 2 would be bi-Lipschitz. In turn, this would force the periods
of the two roots to agree, which in turn would imply that the representation is
Fuchsian, contradicting the assumption that €2 is not an ellipse.



It remains to understand the Hausdorff dimension of the set of b-conical points.
The upper bound (Proposition 5.11)

dimyge ({b — Conical}) < pmax{nim} (1.4)

follows readily: since for a b-conical point the lengths e~ () and e~ (@) are
comparable independently on k£ € [, one can replace the rectangle in Figure 3 by
the (smaller) square of length

e~ max{ri(a(ar)),m2(a(ax))}
and still get a covering” (this time by balls on the L metric) of the set {b—conical}.
Standard arguments on Hausdorff dimension give Equation (1.4).

Finding a lower bound for the Hausdorff dimension is more subtle; we use here
an appropriate Patterson-Sullivan measure to study how the mass of a ball of radius
r scales with r.

Since €(0mS) is a subset the full flag space F(R?) and

[0lloo := max{[r ()], [2(v)[}

is a norm on apsy(3,r), We can apply results by Quint [14] to determine a linear form
o € a* whose associated growth direction is the barycenter # = ker(m — 72). By
Quint [44, Proposition 3.3.3]

At g,
where | ||! is the operator norm on a* defined by | |, which turns out to be the
L' norm |ar; + bra|' = |a| + |b]. The form ¢ additionally admits an associated

Patterson-Sullivan probability measure, namely a measure u® such that for all
v € S one has (see Corollary 4.14)

1 (Z(1€5, (7)) < Ce—%5 () (1.5)

A key extra information available in the case of PSL(3,R) is that the form ¢p°
is explicit and doesn’t depend on p. For this we need a small parenthesis on the
critical hypersurface Q, of p, depicted in Figure 4, and characterized by

Q,={pea*: 5% =1},

where the critical exponent of a functional ¢ € a* is

1
A7 = lim — log #{vemS:plaly)) <t} €(0,0].

The critical hypersurface Q,  a* is a closed analytic curve that bounds a strictly
convex set (S. [46] and Potrie-S. [41]), and thus by Quint [44], the linear form ¢p°
is uniquely determined by

I I' = inf {ol" - ¢ € Qp}. (1.6)

Again by [11] one has {r;,72} = Q,. Since both Q, and the norm ||! are
invariant by the opposition involution i (see again Figure 4) we deduce that, if we
let H= (71 + 72)/2, then

o = A% H = A" min{r, n}. (1.7)

2Choosing the longer side e~ min{ri(a(ex))m2(al@r))} gives the bound dimye (071 S) < 1.
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Lpgc = ﬂHH

Q

FIGURE 4. The critical hypersurface of a strictly convex projective
structure on S. Since H is a convex combination of {r1,72} one has
[H|' = 1 and thus |¢F|* = #".

In particular, using Equation (1.6), we obtain that prmaxitut — 4H Moreover,
since the geodesic flow is Anosov (by Benoist [5]) we can apply Bowen’s charac-
terization of entropy [10] (and Remark 4.13), to obtain that the Hilbert entropy
hop = A1

After this small parenthesis on the critical hypersurface, we come back to the
lower bound on the Hausdorff dimension. Since & is a graph, €(0m15) has the same
intersection with the rectangle in Figure 3 than with the larger square of size

e~ min{ﬁ(a(ai))ﬂ(a(ai))};

this square is now a ball (for the L* metric) of radius e~ ™in{7i(a(@i)).m2(a(@i))}  Thys
for all i, & (a;C% () is coarsely a ball of the latter radius and one has

1 (B (x), e ™o mle@l) < 1 (9 (0, €5, (o)) < Com# ()
< C(e_ min{Tl(a(ai))a‘l’z(a(ai))})ﬁH7

where the last inequalities follow from Equations (1.5) and (1.7). This gives a
possibly bigger constant C” such that, for all r,

p*(B(%(z),r)) < "

Again, classical Hausdorff dimension arguments (c.f. Corollary 5.8 below) give that,
for any measurable subset £ < &(dm1.S) with full p® mass, one has dimyy(E) >
A

Since PSL(3,R) has rank smaller than 3 and p is A-Anosov we can apply Burger-
Landesberg-Lee-Oh [14, Theorem 1.6] to obtain that u®({b-conical}) = 1 and thus
we have the desired lower bound

dimyges ({b—conical}) > s

which combined with the upper bound (1.4) and the equality #™a{m.m2} — #H
gives the proof of Corollary A.

In the general case [14, Theorem 1.6] is not applicable and we replace it with
Theorem D. (Il
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Structure of the paper. The preliminaries of the paper are standard facts about
linear algebraic groups, recalled in §2, the work of S. [49] about linear cocycles over
the boundary of a hyperbolic group (in §3), as well as basic facts about Anosov
representations and their Patterson-Sullivan theory recalled from [25, 9, 43, 49]
in the first part of §4. In the rest of §4 we prove Theorem 4.16 a more precise
statement than Theorem D, discussing the Patterson-Sullivan measure of (W, ¢)-
conical points. The heart of the proof is to construct and study a rank 2 flow whose
recurrence set is related to (W, ¢)-conical points.

In §5 we consider two locally conformal representations. We prove Theorem 5.3,
stating that for such a pair the Hausdorff dimension of the set of #-conical points
belongs to

(6477 min{A™" 647" +1 — 6}].
The lower bound is obtained by analyzing properties of the linear form ¢ whose
associated growth direction is (#,1); its Patterson-Sullivan measure %+ gives full
mass to the set of #-conical points thanks to Theorem 4.16. Using cone-types we
can show that for a fine set of balls u#* (B(z,r)) < Cr=%"". The upper bound
uses results of [43] to construct a fine covering of the set of #-conical points with
balls of radius e~ ™77} In §6 we prove Theorem A.

In §7 we prove that if the graph map between R-hyperconvex representations
has an oblique derivative, then the map is bi-Lipschitz (Proposition 7.2). This only
relies on basic properties of hyperconvex representations, and is crucial for the proof
of Theorem B, achieved in §8, as it allows the identification of b-conical points and
points of non-differentiability.

Acknowledgements. We thank Katie Mann, Gabriele Viaggi, Anna Wienhard
and Maxime Wolff for insightful conversations and Andrés Navas for pointing us to
useful literature.

2. LINEAR ALGEBRAIC GROUPS

Throughout the text G will denote a real-algebraic semi-simple Lie group of
non-compact type and g its Lie algebra.

2.1. Linear algebraic groups. Fix a Cartan involution o : g — g with associated
Cartan decomposition g = ¢ @ p. Let a < p be a maximal abelian subspace and let
® < a* be the set of restricted roots of a in g. For a € &, we denote by

ga={ueg:[a,u] =ala)uVacE a}

its associated root space. The (restricted) root space decomposition is g = go @
P, 9a; Where go is the centralizer of a. Fix a Weyl chamber a® of a and let ¢+
and A be, respectively, the associated sets of positive and simple roots. Let W be
the Weyl group of ® and i: a — a be the opposition involution: if u : @ — a is the
unique element in W with u(a®) = —a%t then i = —u.

We denote by (-,-) both the Killing form of g, its restriction to a, and its asso-
ciated dual form on a*, the dual of a. For x, € a* let

oy =20

(1, 9)
The restricted weight lattice is defined by
M= {pea*:{payeZVace d}.
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It is spanned by the fundamental weights {w, : a € A}, defined by
(wa, by = dadap (2.1)

for every a,b € A, where d, = 1 if 2a ¢ ®* and d, = 2 otherwise. §
A subset § ¢ A determines a pair of opposite parabolic subgroups Py and Py
whose Lie algebras are

Po = @ 9. @ @ 9-a,

aedt u{0} ae(A—-0)
130 = @ gD @ da-
acd+ u{0} ae{A—0)

The group Py is conjugated to the parabolic group Piy. We denote the flag space
associated to 6 by Fy = G/Py. The G orbit of the pair ([Pg],[Pg]) is the unique

open orbit for the action of G in the product Fy x Fip and is denoted by ff"éZ).

2.2. Cartan and Jordan projection. Denote by K = expt and A = expa. The
Cartan decomposition asserts the existence of a continuous map a : G — a™, called
the Cartan projection, such that every g € G can be written as g = ke®9)] for some
k,le K.

We will need the following uniform continuity of the Cartan projection:

Proposition 2.1 (Benoist [2, Proposition 5.1]). For any compact L < G there
exists a compact set H < a such that, for every g € G, one has

a(LgL) c a(g) + H.

By the Jordan’s decomposition, every element g € G can be uniquely written as
a commuting product ¢ = g.gssg, Where g. is conjugate to an element in K, gss
is conjugate to an element in exp(a®) and g, is unipotent. The Jordan projection
A= Xg: G — a’ is the unique map such that g, is conjugated to exp (A(g)).

Definition 2.2. Let I' € G be a discrete subgroup, then its limit cone Lr is the
smallest closed cone of the closed Weyl chamber a™ that contains {\(g) : g € I'}.

We will need the following results by Benoist.

Theorem 2.3 (Benoist [3, 1]). Let I' = G be a Zariski-dense sub-semigroup, then
its limit cone Lr has non-empty interior. Moreover, the group gemerated by the
Jordan projections {\(g) : g € T'} is dense in a.

2.3. Representations of G. The standard references for the following are Fulton-
Harris [21], Humphreys [27] and Tits [51].

Let ® : G — PGL(V) be a finite dimensional rational® irreducible representation
and denote by ¢¢ : g — sl(V) the Lie algebra homomorphism associated to ®. The
weight space associated to x € a* is the vector space

Vy ={veV:o¢as(a)v = x(a)v Va € A}.

We say that x € a* is a restricted weight of ® if V, # 0. Tits [51, Theorem 7.2]
states that the set of weights has a unique maximal element with respect to the
partial order x > ¢ if x — v is a N-linear combination of positive roots. This is

3Namely a rational map between algebraic varieties.
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called the highest weight of ® and denoted by x¢. By definition, for every g € G
one has

M (2(9)) = xa(M9)), (2.2)

where A; is the logarithm of the spectral radius of ®(g).
We denote by M(¢) the set of restricted weights of the representation ¢q

N(¢) = {xea®: v, #{0}},

these are all bounded above by x¢ (see for example Humphreys [27, §13.4 Lemma
BJ), namely every weight x € M(¢) has the form

Xo — Z n,a for n, € N.
aeA

The level of a weight x is the integer )} na., the highest weight is thus the only
weight of level zero. Additionally, if x € M(¢g) and a € ®T then the elements of
M(¢qe) of the form x + ja, j € Z form an unbroken string

X +Ja, j € [-rq]

and r —q = {x, a)y. One can then recover algorithmically the set (¢4 ) level by level
starting from y¢, as follows:

- Assume the set of weights of level at most k is known and consider a weight
x of level k.

- For each a € A compute (Y, a), this gives the length r — ¢ of the a-string
through x. The weights of the form yx + ja, for positive j, have level smaller
than k£ and are thus known, thus we can decide whether x — a is a weight
or not, determining the set of weights of level k + 1.

The following lemma follows at once from the algorithmic description above. Let
g = @, 9; be the decomposition in simple factors of a semi-simple real Lie algebra
of non-compact type. Recall that if a; < g; is a Cartan subspace, then a = @, a;
is a Cartan subspace of g. Any ¢ € (a;)* extends to a functional on a, still denoted
¢, by vanishing on the remaining factors. The restricted root system of g is then
Ay =JAy,. The associated simple factor to a € Ag is g, such that a € A,.

Lemma 2.4. Let g be a semi-simple real Lie algebra of non-compact type and ¢ be
an irreducible representation of g whose highest restricted weight is a multiple of a
fundamental weight, x4 = kw, for some a € A. Then ¢ factors as a representation
of the simple factor associated to a.

Proof. Proceeding by induction on the levels of ¢, one readily sees that for every
T € Aj for j # i and all x € M(¢) one has (x,7) = 0. Thus the associated root
space (g;)—- acts trivially on every weight space of ¢ and so the whole factor g;
acts trivially. O

The following set of simple roots plays a special role in representation theory.

Definition 2.5. Let ® : G — PGL(V) be a representation. We denote by 0 the
set of simple roots a € A such that ye — a is still a weight of ®. Equivalently

b = {ac A:{xs,ay# 0}. (2.3)

The following lemma will be needed in the proof of Theorem C.
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Lemma 2.6. Let g be semi-simple of non-compact type and ¢ : g — gl(V) an
irreducible representation. For a € 0y and v € V,, — {0}, the map n — ¢(n)v is
injective when defined on g_,.

Proof. By definition of x4 every n € g, acts trivially on V,,. For y € g_, — {0},
there exists x € g, such that {x,y, h.} spans a Lie algebra isomorphic to sly(R),
where h, is defined by p(ha) = {p,ay for all ¢ € a*. If ¢(y)v = 0 then, since
¢(x)Vy, = 0 one concludes ¢(h,)v = 0 and since V,, is a weight-space one has
¢(ha)Vy, = 0. This in turn implies that

<X¢a a> = Xfi)(ha) =0,
contradicting that a € 6. (|

We denote by | |¢ an Euclidean norm on V invariant under ®K and such that ®A
is self-adjoint, see for example Benoist-Quint’s book [6, Lemma 6.33]. By definition
of xo and || |s, and Equation (2.2) one has, for every g € G, that

log [®glle = xa(alg))- (2.4)

Here, with a slight abuse of notation, we denote by || |¢ also the induced operator
norm, which doesn’t depend on the scale of || ||.

Denote by W, the ®A-invariant complement of V, . The stabilizer in G of W,
is pgq), and thus one has a map of flag spaces

(Cos ) : T4 (G) = Gl (V). (2:5)

P
This is a proper embedding which is an homeomorphism onto its image. Here, as
above, Gr((fizn v, (V) is the open PGL(V)-orbit in the product of the Grassmannian
of (dim VX(],)—di;lensional subspaces and the Grassmannian of (dimV — dimV,, )-
dimensional subspaces. One has the following proposition (see also Humphreys [28,
Chapter XIJ).

Proposition 2.7 (Tits [51]). For each a € A there exists a finite dimensional
rational irreducible representation ®, : G — PSL(V,), such that xo, is an integer
multiple [,, of the fundamental weight and dimV,, = 1.

We will fix from now on such a set of representations and call them, for each
a € A, the Tits representation associated to a.

2.4. The center of the Levi group Pyn Py. We now consider the vector subspace
ag = ﬂ ker a.
acA—0

Denoting by Wy = {w € W : w(v) = v Vv € ag} the subgroup of the Weyl group
generated by reflections associated to roots in A — 6, there is a unique projection
Ty : @ — ag invariant under Wy.

The dual (ag)* is canonically identified with the subspace of a* of mp-invariant
linear forms. Such space is spanned by the fundamental weights of roots in 6,

(ag)* ={pe€a*:pom =} =(walag:aeb).
We will denote, respectively, by
ag=m9oa:G— qy

)\9=W90>\:G—>a9,
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the compositions of the Cartan and Jordan projections with my.

2.5. The Buseman-Iwasawa cocycle. The [wasawa decomposition of G states
that every g € G can be written uniquely as a product lzu with [ € K, z € A and
u € Up, where Up is the unipotent radical of Pa.

The Buseman-Iwasawa cocycle of G is the map b : G x F — a such that, for all
g€ G and k[Pa] € T,

b(g, k[Pa]) = log(2)

where log : A — a denotes the inverse of the exponential map, and gk = lzu is
the Iwasawa decomposition of gk. Quint [45, Lemmes 6.1 and 6.2] proved that the
function by = 7 o b factors as a cocycle by : G x Fy — ag.

The Buseman-Iwasawa cocycle can also be read from the representations of G.
Indeed, Quint [45, Lemme 6.4] shows that for every g € G and x € Fy one has

|®a(9)v]@

: (2.6)
lvlle

lawa(b(g, 7)) = log
where v € (g, (x) € P(V,) is non-zero, and [, is as in Proposition 2.7.
2.6. Gromov product and Cartan attractors. Let K be either C or R. For a

decomposition K¢ = /@ V into a line £ and a hyperplane V together with an inner
(Hermitian) product o on K¢, one defines the Gromov product by

0 lp(v)] .
V,0) = G°(V,0) := 1 =1 NUASY

for any non-vanishing v € £ and ¢ € (K%)* with kerp = V.
This induces, for any semisimple Lie group G and subset 8 < A, a Gromov
product Gy : 3'“(52) — ap defined, for every (z,y) € 9’;2) and a € 6, by
lawa (96’(37’ y)) = 9(1)3 (C(Iﬂ;axv <¢3y> = IOg sin 40 (<<I>ay7 <$a$)7

where (§_and (g, are the equivariant maps from Equation (2.5), and the Hermitian
product o is induced by an Euclidean norm | |¢, invariant under ®,K.

From S. [17, Lemma 4.12] one has, for all g € G and (x,y) € fféz),

So(g9, gy) — So(x,y) = —(ibie(g,2) + bo(g,y)). (2.7)

If g = kexp(a(g))! is a Cartan decomposition of g € G we define its 6-Cartan
attractor (resp. repeller) by

Up(g) = k[Pol € Fo and  Uig(g~") = 17" [Pg] € Fip.
The Cartan basin of g is defined, for a > 0, by
By.a(g) = {z € Fo: @G (Uin(g™"),z) > —a, Vaeb}. (2.8)

Remark 2.8. Observe that a statement of the form w,G¢(x,y) = —« for all a € 6 is
a quantitative version (depending on the choice of K) of the transversality between
x and y; in particular it implies that x and y are transverse.

Neither the Cartan attractor nor its basin are uniquely defined unless for all
a € 0 one has a(a(g)) > 0, regardless one has the following:
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Remark 2.9. Given a > 0 there exists a constant K, such that if y € Fy belongs to
Bp.o(g) then one has

las(9) = bo(g, y)]| < K- (2.9)

Indeed, using Tits’s representations of G and Equations (2.4) and (2.6) this boils
down to the elementary fact that if A € GL4(R) verifies* 71 (a(A)) > 0 then for every
v € R? one has

|Av|

log 11 > log 4] +logsin £ (R v, Ug1(47))

(see for example [9, Lemma A.3]).

3. HOLDER COCYCLES ON ol

Let I be a finitely generated group, and fix a finite generating set S. A group I'
is Gromov hyperbolic if its Cayley graph Cay(I", S) is a Gromov hyperbolic geodesic
metric space. In this case we denote by dI its Gromov boundary, namely the
equivalence classes of (quasi)-geodesic rays. It is well known that, up to Holder
homeomorphism, dI' doesn’t depend on the choice of the generating set S. We will
denote by 02T the set of distinct pairs in oI:

O°T = {(z,y) e T x |z # y}.

For a finitely generated, non-elementary, word-hyperbolic group ' we denote by
g = (g : Ul — UN),_, the Gromov-Mineyev geodesic flow of T (see Gromov [23]
and Mineyev [38]). Throughout this section we will have the same assumptions as
in S. [49, §3], namely that g is metric-Anosov and that the lamination induced on
the quotient by Weu = {(z,-,") € Uli} is the central-unstable lamination of g.

Since we will mostly recall needed results from S. [19, § 3] we do not overcharge
the paper with the definitions of metric-Anosov and central-unstable lamination: by
Bridgeman-Canary-Labourie-S. [11], word-hyperbolic groups admitting an Anosov
representation verify the required assumptions.

Definition 3.1. Let V be a finite dimensional real vector space. A Hélder cocycle
is a function ¢ : ' x 0 — V such that:

- for all v, h € T one has c(yh,x) = c(h,x) + c(’y, h(;z:)),
- there exists a € (0, 1] such that for every v € I' the map c¢(v, ) is a-Holder
continuous.

Recall that every hyperbolic element® v € T has two fixed points on oI, the
attracting v, and the repelling v_. If € oI — {~v_} then "z — 7, as n — o0. The
period of a Holder cocycle for a hyperbolic v € T is £.(v) := c(y,’y*). A cocycle
c*: T x dI' > R is dual to ¢ if for every hyperbolic v € [ one has

Lox ('7) =L (771) .

4Recall from Equation (1.1) that we denote by 7; the simple roots of GLg(R)
5Namely an infinite order element
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3.1. Real-valued coycles. Assume now V' = R and consider a cocycle k with
non-negative (and not all vanishing) periods. For ¢ > 0 we let

Re(k) = {[7] € [I'] hyperbolic : £,(v) <t}

and define the entropy of k by

1
/iy, = limsup - log #R; (k) € (0, oo].

t—o0 t

For such a cocycle consider the action of I on 0T x R via x:

v ($7y,t) = (’yxv’yyvt_ﬁ(’%y)) (31)
The following is a straightforward consequence of S. [49, Theorem 3.2.2].

Proposition 3.2. Let k be a Hélder cocycle with non-negative periods and finite
entropy. Then, the above action of T on 0°T x R is properly-discontinuous and co-
compact. If moreover c is another Hélder cocycle with non-negative periods and fi-
nite entropy then there exists a I -equivariant bi-Holder-continuous homeomorphism
E: 0T x R — 0T x R which is an orbit equivalence between the R-translation ac-
tions.

We recall the notion of dynamical intersection, a concept from Bridgeman-
Canary-Labourie-S. [11] for Holder functions over a metric-Anosov flow, that can
be pulled back to this setting via the existence of the Ledrappier potential of k from
S. [49, §3.1].

The dynamical intersection of two real valued cocycles k, ¢ is

1 ()

I(k,c) = lim —— . (3.2)
R ()
We record in the following proposition various needed facts about I:
Proposition 3.3 ([11, §3]). The dynamical intersection defined above is well de-

fined, linear in the second variable and for all positive s satisfies I(sk,c) = I(k,c)/s.
If also ¢ has non-negative periods and finite entropy then I(k,c) = #%./%.. More-
over, if I(k,c) = #%./%. then for every v €T one has %ly(y) = Alo(7).

We will also need the following definitions.

Definition 3.4.
- A Patterson-Sullivan measure for k of exponent 6 € R, is a probability
measure g on 0 such that for every v € I' one has

d’Y*M () _ 6764{(7_1, . )

i (3.3)

- Let k* be a cocycle dual to x, then a Gromov product for the ordered pair
(k*, k) is a function [-,-] : 02 — R such that for all v € [ and (x,y) € 0*T
one has

[y, vy] = [z,y] = = (5" (7, 2) + K(7,9))-
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3.2. The critical hypersurface and intersection. Let now ¢ : [ x o — V be
a Holder cocycle. Its limit cone is denoted by

Le=JRs -Le(y)
~el

and its dual cone by (LC)* = {¢p € V* : 9|z, = 0}. Observe that for every

@ € int (LC)*, @ o ¢ is a real-valued cocycle, so the concepts from Section 3.1
apply. We denote by

Q. — {<p it (Lo)* : fpoe = 1}, (3.4)
Do = {peint (£o)": Agec € (0,1)},
respectively the critical hypersurface and the convergence domain of c.
For ¢ € int (Lc)* we consider the linear map I, = I : V* — R defined by
L(¢) :==I(poc,voc),
as in Equation (3.2). The natural identification between the set of hyperplanes in

V* and P(V) is used in the next proposition.

Corollary 3.5 (S. [19, Cor. 3.4.3]). Assume L. has non-empty interior and that
there exists ¥ € (Lc)* such that 7%, < o0. Then D. is a strictly convex set with

boundary Q.. The latter is an analytic co-dimension one sub-manifold of V. The
map u¢: Q. — P(V) defined by

o ug = TypQ. = kerl,
is an analytic diffeomorphism between Q. and int (P(L.)).
3.3. Ergodicity of directional flows. It follows from Proposition 3.2 that if there
exists ¢ € (Lc)* with 7%, < oo then the M-action 0% x V
Y&, y,0) = (va, vy, 0 — (1,9))

is properly discontinuous.

Definition 3.6. A Holder cocycle c¢ is non-arithmetic if the periods of ¢ generate
a dense subgroup in V.

We fix ¢ € Q. and denote by u, € u, the unique vector in £.nu, with ¢(u,) = 1.
We define then the directional flow w? = (wf : T\(0?F x V) — '\ (%I x V))te[R by

t-(z,y,v) = (z,y,v — tuy).

Assumption 3.7. We assume there exists:

- a dual cocycle (o c)*,

- a Gromov product [, |, for such a pair,

- Patterson-Sullivan measures, u? and ¥, respectively for each of the co-
cycles; (the exponent of both measures is then necessarily Z, = 1 S. [49,
Proposition 3.3.2]).

Consider then the ¢-Bowen-Margulis measure Q¥ on '\ (0T x V) defined as the
measure induced on the quotient by the measure

el @ uf @ Leby, (3.5)
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for a V-invariant Lebesgue measure on V. We denote by X(w¥) the recurrence set
of the directional flow w?:
K(w?) := {pe\(¢T x V)| 3B open bounded, t,, — o with w{ (p) € B}.

Corollary 3.8 (S. [19, Cor. 3.6.1]). Assume that ¢ is non-arithmetic, and that
there ezists ¢ € Q. satisfying Assumptions 3.7. If dimV < 2 then the directional
flow w? is Q%-ergodic, and K(w?®) has total mass. If dimV = 4 then K(w?) has
measure zero.

4. SUBSPACE CONICALITY FOR ANOSOV REPRESENTATIONS: THEOREM D

4.1. Gromov hyperbolic groups and cone types. Let [ = (S) be a finitely
generated non-elementary Gromov hyperbolic group, and recall from §3 that we
denote by 02T the set of distinct pairs in its Gromov boundary or.

Definition 4.1. A divergent sequence {7V, }nen < ' converges to a point x € oI’
conically if for every y € oI — {z} the sequence (v;, 'y, v, 'x) remains on a compact
set of 02T.

Remark 4.2. Tt is easy to verify that a sequence {v,}nen converges conically to
x € or if and only if it lies in an uniform neighborhood of any geodesic ray (a,)J
converging to z, namely there exists K > 0 and a subsequence {a,, } such that for
all k one has dr (o, , %) < K.

Given v € [ we denote by C(v) the cone type of v € ', namely
C(v) == {heT|d(e,vh) = d(e,7) + d(e, h)}.

Cannon showed [15] the set of cone types of a Gromov hyperbolic group is finite,
see for example Bridson-Haefliger’s book [12, P. 455]. We denote by €y (vy) < oF
the set of points x that can be represented by a geodesic ray contained in C(7).

We will also need a coarse version of these. Recall that a sequence (a;)f is a
(¢, C)-quasigeodesic if for every pair 7,1 it holds

1
E|j — 1| - C <dr(aj,qq) < cli =1+ C.

The coarse cone type at infinity of an element - is the set of endpoints at infinity
of quasi-geodesic rays based at y~! passing through the identity:

CL(v) = {[(aj)gc] € a| (a;) is a (¢, ¢)-quasi-geodesic, ag = 7y~ *, e € {aj}}.

e ()
Vo

@

FIGURE 5. The coarse cone type at infinity, picture from P.-S.-Wienhard [12].
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4.2. Anosov representations. Fix a subset § — A. Let I be a finitely generated
group and denote by || the word-length associated to a finite generating set S.

Definition 4.3. Following® Kapovich-Leeb-Porti [30], a representation p : I — G
is 6-Anosov if there exist positive constants C' and p such that for all v € ' and
a € 6 one has

a(a(py)) = phl = C.
The constants p and C' are usually referred to as the domination constants of p. If
G = PGL(d,R) and 6 = {71} we say that p is projective Anosov. In order to easy
the notation we ill identify in what follows v with p(7).

Anosov representations were introduced by Labourie [35] and further developed
by Guichard-Wienhard [25]. They have played a central role in understanding the
Hitchin component of split groups (see below) and are considered nowadays as the
higher-rank generalization of convex co-compact groups. We refer the reader to the
surveys by Kassel [31] and Wienhard [52] for further information.

Remark 4.4. A Zariski-dense representation p : [ — G is #-Anosov if and only if p is
a quasi-isometric embedding and its limit cone £, does not meet any wall ker a for
a € 0 : this follows from the definition since by Benoist [3], if p(I') is Zariski-dense
then the limit cone £, equals the asymptotic cone.

A useful property of #-Anosov representations is that their limit set Ar < Fy,
namely the minimal [-invariant subset in Fy, is parametrized by the Gromov
boundary of the group I', see Kapovich-Leeb-Porti [30], Guéritaud-Guichard-Kassel-
Wienhard [241]. We will need the following precise statement.

Proposition 4.5 (Bochi-Potrie-S. [9, Proposition 4.9 |). If p: T — G is 8-Anosov,
then for any geodesic ray (ow,)E with endpoint x, the limits

&(@) = lim Up(an) & (x) == lim Uip(a)

exist and do not depend on the ray; they define continuous p-equivariant transverse
maps £ 1 0T — Fp, €9 : 0T — Fig. If vy € T is hyperbolic, then v is O-proximal with
attracting point %(vT) = (v)4.

We conclude the section with a number of quantitative results that will be needed
in the paper. For an Anosov representation p there exists a constant §, quantifying

transversality of Cartan-attractors along (quasi)-geodesic rays:

Proposition 4.6 (Bochi-Potrie-S. [0, Lemma 2.5]). If p : [ — G is #-Anosov
and ¢ > 0 is given, then there exist L € N and 6, . > 0, depending only c and the
domination constants of p, such that for every (c, c)-quasi-geodesic segment through
the identity {c;}* . with k,m > L one has, for all a € 0, that

@90 (Uio(—m), Us(po)) = 10g 0.

Combining Proposition 4.5 and Proposition 4.6 we obtain:

m

Corollary 4.7. Up to decreasing 0., for every vy € I and every x € €5, (vy) one has

@G0 (Uio(v1),&5(x)) = logd.c.
In particular, if we let o = —logd, . then (recall Equation (2.8))

£,(C5(7)) € Bo.a(7)- (4.1)

6See also Bochi-Potrie-S. [9] and Guéritaud-Guichard-Kassel-Wienhard [24].
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Definition 4.8. Let p : [ — G be #-Anosov and ¢ > 0, then the constant J, .
verifying both Proposition 4.6 and Corollary 4.7 will be called the fundamental
constant of p and c. If we consider geodesics instead of quasi-geodesics (i.e. (¢,C) =
(1,0)) we let 6, be the fundamental constant associated to p.

The following two results will be needed in Section 7.1.

Proposition 4.9 (cfr. P.-S.-Wienhard [13, §5.1]). Let p: I — SL(d,K) be projec-
tive Anosov and consider ¢ > 0. Then there exists a constant K, depending on c
and on p such that for every large enough v € [ one has

&1 (7€ (7)) < B(Ur(y), Ke @),

Proof. Using Corollary 4.7 for 6 = {7}, the result follows as in P.-S.-Wienhard [43,
§5.1]. O

Proposition 4.10. Let p : I — SL(d,K) be projective Anosov. For every o > 0
there exist C and p > 0 such that for every £y, 0y € P(K9) with

5, Usa(v™h) = —a, i=1,2
it holds dp(p(7)01, p(7)l2) < Ce#Nld(ly, L)

Proof. For an Hermitian product on C¢, and every o > 0 there exists C' > 0 such
that if h € GL(d,C) is such that 7 (a(h)) > 0, then for all ¢1,¢; € P(C?) with
A(;,Ug_1(h™1)) > a one has

dp(hly, hty) < Ce ™ @) dn (e, 0,),

(a proof follows, for instance, by applying [13, Lemma 2.8] to g = h™!, P = Uy (h)
and @ = hUz—1(h)). The result then follows by applying Definition 4.3. a

The following technical result will be useful in the proof of Proposition 4.23.
Given an Anosov representation, we can use the Gromov product to determine the
endpoint of a conical sequence (recall Definition 4.1):

Lemma 4.11. Let p : T — G be 0-Anosov. If {v,} < T is a conical sequence,
x € 0, and there exists a € 6 such that @,5G¢ (Uig(’yn),fe(l')) — —o0, then v, — x.

Proof. We denote by y the endpoint of the conical sequence ~,,. Proposition 4.5 and
Remark 4.2 imply that Uig(y,) — &(y). Since, however, @,SGg(Uig(7n), &% (2)) —
—0, we deduce that £(y) is not transverse to £ (z) (recall Remark 2.8). Since &7
is transverse, we deduce that x = y. O

It will be useful in the proof of Proposition 4.23 to know that the endpoints of
conical sequences belong to pushed Cartan basins:

Lemma 4.12. Let p : I — G be 0-Anosov, x € . If vy, — x conically, then
there exists a only depending on the sequence and the representation p such that

for every n, £%(x) € ¥, Bo.a(Vn)-

Proof. We know from Remark 4.2 that ~, is contained in a neighbourhood of a
geodesic ray to z, or equivalently there exist a constant ¢ such that y~1z € C5 (vy,).
The result is then a consequence of Equation (4.1). ]
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4.3. Patterson-Sullivan theory of Anosov representations. If pis a #-Anosov
representation, then we can pullback the Buseman-Iwasawa cocycle of G using the
equivariant maps: the refraction cocycle associated to a 6-Anosov representation
p:T—>Gis B:T x dI — ay given by

ﬁ(’% JJ) = 697/)(77 LIJ) = bg (p(7)7 fg(l‘))
Bridgeman-Canary-Labourie-S. [11, Theorem 1.10] show that the Mineyev geodesic
flow of a group I' admitting an Anosov representations is metric-Anosov, and thus

§ 3 applies to 8. Moreover, the following fact places S in the assumptions required
in §3.1 and §3.2, see S. [19] for details.

Fact. The periods of the refraction cocycle equal the 0-Jordan projection: S(v,y%) =
Ao(7). For any a € 0 the real valued cocycle w,f has finite entropy.

We import the following concepts of cocycles to the setting of Anosov represen-
tations:

- The limit cone of 3 will be denoted by £y , and referred to as the 0-limit
cone of p; it is the smallest closed cone that contains the projected Jordan
projections {Ag(7y) : y€T}.

- The interior of the dual cone int (L97p)* C aj consists of linear forms whose

entropy
o1
#hp = lim —log #{[7] € []: p(Ne(7)) < 1}
is finite.
- The 6-critical hypersurface, resp. 6-convergence domain, of § will be de-
noted by

Qg = {cp € int (Lgyp)* Ny = 1},

De,p = {(p € int (L97p)* /g € (0, 1)}
- If £y, has non-empty interior, then we have a duality diffeomorphism be-
tween Qp , and intP(Lg ,) given by
@ u, = T,9,
More information on these objets can be found on S. [49, §5.9].
Remark 4.13. It it proven in Glorieux-Monclair-Tholozan [22, Theorem 2.31 (2)

(see also S. [19, Corollary 5.5.3]) that if p is 6-Anosov then for every ¢ € int (Lg,)"
the entropy %, equals the critical exponent

.1
A% = lim n log #{v €T : pla(v)) < t}.
In particular the #-convergence domain is also given by

Doy, = {gp € (ag)* : Z e~ < OO},
~yel

see S. [19, §5.7.2].

We observe that for ¢ € int (ng)* Assumptions 3.7 are guaranteed for f, :=
o (. Indeed the cocycle

B(y,x) = ibig (7, (2))
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is dual to 3, from Equation (2.7) the function [-, -], : 0*T — R

(.91 = (50 (67 (2). € ) )

is a Gromov product for the pair (BW B,), and we have the following result guaran-
teeing existence of Patterson-Sullivan measures u? and 7i¥, as well as their values
on Cartan basins defined in Equation (2.8).

Corollary 4.14 (S. [19, Cor. 5.5.3+Lemma 5.7.1]). For every ¢ € int (L97p)* there
exists a B,-Patterson-Sullivan measure p¥ of exponent %, moreover for every
there exists a constant C' such that for every v €T one has

1 (€)1 (vBg.a (7)) < Ce~e#(a)

4.4. Subspace-conicality. In this section we are interested in a notion of coni-
cality along higher dimensional subspaces of the ambient Levi space.

Definition 4.15. Let p: [ — G be #-Anosov and consider a subspace W c ag. A
point x € 0l is W-conical if there exists a conical sequence {v,}J < I' converging
to z, a constant K and {w,} < W such that for all n one has

a0 (vn) = wn < K.
The set of such points will be denoted by dw I = dwl.

Assume from now on that W intersects the relative interior of £y ,, and consider
@ € int (Lg,p)* with u, < W. The intersection W, = W n ker ¢ has co-dimension
1 in W and has trivial intersection with the limit cone L ,. Consider the quotient
space
V= Cle/WLP

equipped with the quotient projection IT : ag — V. We say that p is (W, p)-non-
arithmetic if the group spanned by {II(Ag(7)) : v € '} is dense in V. In this section
we prove the following.

Theorem 4.16. Let p : I — G be 6-Anosov, W be a subspace of ag intersecting
non-trivially the relative interior of Lo ,, and ¢ € (ag)™ with u, < W. Assume p is
(W, ¢)-non-arithmetic, then:

o if W has codimension 1 then p?(owln) = 1;

o if codimW = 3 then u¥(owl) = 0.

Remark 4.17. If p is Zariski-dense then Theorem 2.3 (Benoist [1]) guarantees
(W, p)-non-arithmeticity for every ¢ € (ag)* with u, € P(W), thus Theorem 4.16
readily implies Theorem D.

The remainder of the section is devoted to the proof of Theorem 4.16. Let
V* = Ann(W,) = {¢ € (ap)* : ¥|W,, = 0},

with a slight abuse of notation we will identify the dual of V' with V* < (ag)* <
a* (recall from Section 2.4 that we are identifying (ag)* with the subspace of a*
consisting of mp-invariant linear forms).

The composition of the refraction cocycle of p with II is a V-valued Hoélder
cocycle v : I x ol = V|

v(v,2) = I(B(7,2)).
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Its periods are ¢(7,74+) = II(Ag(7)), and thus its limit cone is £, = II(Lg,,). By
(W, ¢)-non-arithmeticity, £, < V has non-empty interior.

The heart of the proof of Theorem 4.16 consits on relating (W, ¢)-conical points
with elements of X (w?), where w? is the directional flow on M2 x V associated
to the cocycle ¢ as in §3.3. The first step is thus to observe that we can apply
Corollary 3.8 to ¢, a task we enter at this point.

Since ¢ € Qg ,, it has in particular finite entropy. Moreover, by definition of V*
one has ¢ € V*. Consequently, the cocycle ¢ verifies assumptions in Corollary 3.5.
One can moreover transfer existence properties from (3 to ¢, indeed one has the
following.

Proposition 4.18. The cocycle 7 = 110 3 is a dual cocycle for v. For each v € Q,
there exist Paterson-Sullivan measures for v and © and the projection w(H([, ]))
is a Gromov product for the pair i o v, o 7.

Proof. Since ¢ € Q, = Qg , n V* we can apply Corollary 4.14 to ¢ to obtain the
desired Patterson-Sullivan measure, the remaining statements follow trivially as the
equalities are linear. [

Since we are assuming (W, ¢)-non-arithmeticity, the cocycle « is non-arithmetic
and thus Corollary 3.8 gives the following dynamical information, observe that
dimV = codimW + 1.

Corollary 4.19. If codimW < 1 then the directional flow w? is Q% -ergodic, in
particular K(w?) has total mass. If codimW > 3 then X(w?¥) has measure zero.

Observe that modulo the understood identifications Q, = Qg , N V*, hence
T,Q9, = (TyQp,) N V*

and thus the map u” : Q, — intP(£,) from Corollary 3.5 verifies uf, = II(u,).
So measuring W-conicality with respect to pu¥ translates to directional conicality
along the direction u,, which we now recall. We fix an arbitrary norm | | on V" and

define, for £ € P(V) and r > 0, the r-tube about £ by
T,.(0) :={veV|qwel|v—w| <r}

Definition 4.20. A point y € dI" is u,-conical if there exists r > 0 and a conical
sequence {y,}§ < I with v, — y such that for all n one has II(ag(p(n))) € T, (u3).

The next statement follows from the definitions.

Lemma 4.21. A point y € ol is W-conical if and only if it is uf,-conical.

If we are allowed to worsen the constants, we can replace, in Definition 4.20, the
conical sequence (7,,) with an infinite subset of a geodesic ray:
Lemma 4.22. A point y € oI is uf,-conical if and only if there exists r > 0, a
geodesic ray (o) converging to y and an infinite set of indices | = N such that
for all k €1 one has

I (ag(ou)) € T, (ug,).

Proof. Assume y is u-conical, then since {¥n}% is conical, for any geodesic ray

(o) converging to y there exists K > 0 and a subsequence {ay, } such that for
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all k one has dr(an, ,7x) < K (Remark 4.2). Proposition 2.1 implies then that for
all k£ one has

la(om, ) — aly)ll
is bounded independently of k. This implies the result. O

We now relate uf-conicality with the recurrence set K(w¥). By definition of
K(w¥), a point (z,y,v) € 0°T x V projects to K(w¥) if and only if there exist
divergent sequences (vy,) < I' and ¢, — +00 in R such that

wf v Ny v) = (v e, vy v — (vt y) — taug) (4.2)

is contained in a subset of the form {(z,w) € 0°T : d(z,w) > k} x B(v, K) for some
distance d on dI'. One has the following

Proposition 4.23. A point y € 0T is uf,-conical if and only if for every x € or —{y}
and v €V the point (x,y,v) projects to K(w?).

Proof. The implication (=) follows exactly as in the proof of S. [19, Proposition
5.13.4]. The other implication also follows similarly but with a minor difference we
now explain.

Assume that (x,y,v) projects to X(w?) and consider sequences {7,} and ¢, as
in Equation (4.2). Since (v,'z,7,'y) remains in a compact subset of ¢°T, the
sequence {v,} is conical, we will show now that 7, — y. Indeed, since t,, — 400
necessarily #(vy, !, y) — —oo.

Consider now any root a € 6, with associated fundamental weight w, € (Lg’p)*,
and Tits representation ®, : G — V. Since p is #-Anosov, the Holder cocycle S,
has positive periods and finite entropy. Since ¢(v,,',y) — —oo Proposition 3.2
implies that

ﬂwa (77:13 y) — —0.
By definition of the cocycle 8, and Equation (2.6) we have

[®a (v D)ol
o]

for a non-zero v € (3(£(y)), (recall that the map ¢, : Fo(G) — P(V) was defined
in Equation (2.5)). Setting dim V' = d, a standard linear algebra computation (for
example in Bochi-Potrie-S. [9, Lemma A.3]) gives

[@a (v )l
[l

-0 (4.3)

> | @a ()| sin £ (GE(y), Ua—1(®avn))
> a0 (Us (7))

and thus, by Equation (4.3) and Lemma 4.11 one has ~,, — y, as desired.

The point &(y) lies then in the pushed Cartan basin vy, By o(75) for an o inde-
pendent of n (Lemma 4.12), and thus Equation (2.9) gives a constant K such that
for all n one has

K = [ag(1n) = B(vm: v )| = [ao(n) + By, w)]

implying, by Equation (4.2), that y is u,-conical, as desired. a
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The proof of Theorem 4.16 follows now along the same lines as in S. [19, Theorem
5.13.3]. We include the arguments here for completeness.

For y € dw,l,x € oI — {y} we fix neighbourhoods A~ and A" of z and y
respectively and T > 0 small enough so that the quotient projection p : 0*I' x V —
M\l x V is injective on B = A~ x AT x B(0,T). We can thus use Equation (3.5)
to compute the measure of B = p(B).

For K (w¥) = p~ (K(w?)), Proposition 4.23 asserts

A™ x (AT A dw,M) x B(0,T) = X(w?) n B.
If codimW = 1 by Corollary 4.19 Q¢(B) = Q¢(X(w*?) n B), which implies that
p?(AT\ow,,I) = 0 and thus p¥(0w,,l) = 1. On the other hand, if codimW > 3,
then we have Q% (X(w?)) = 0 so u?(A" A dw,,) = 0 and the theorem is proved.

5. LOCALLY CONFORMAL REPRESENTATIONS: HAUSDORFF DIMENSION OF
#-CONICAL POINTS

In this section we let K = R, C or H, the non-commutative field of Hamilton’s
quaternions. A Cartan subspace a of SL(d,KK) is the subspace of R? consisting of
vectors whose coordinates sum 0. For g € SL(d,K) we denote by

a(g) = (al(g)a T 7ad(g)) €a’

the coordinates of the Cartan projection. We recall Definition 1.1.

Definition 5.1. Let p € [2,d — 1]. A {71, Tq—p}-Anosov representation p : [ —
SL(d,K) is (1,1, p)-hyperconvez if, for every pairwise distinct triple (x,y,z) € or'®),
one has

(€' (@) + €4 ()) N €77(2) = {0}

If in addition one has az(p(v)) = ap(p(v)) Vv, we say that p is locally conformal.
As before, we identify from now on v and p(v).

The terminology is justified by Proposition 5.6 below stating that for such rep-
resentations pushed coarse cone types are coarsely balls, a small refinement of an
analogous result from P.-S.-Wienhard [13].

In this section we will study conicality from §4.4 on a specific situation that we
now explain. Later, in §6, we will relate this section to the notion of #-concavity
and in §8 to differentiability properties of the map &£ o €1

Consider K € {R,C,H} and two locally conformal representations p : I —
SL(d,KK) and 5 : T — SL(d,K), with projective equivariant maps

€ :0r — P(K%)
£:0r - P(KY).

The product representation (p,p) : I — SL(d,K) x SL(d,K) is 6-Anosov for § =
{m1,7p,T1,Tp} with {7, 77}-limit map the ”graph map”

g = (&€ ar - P(KY x P(K").

We consider a Cartan subspace of the product group SL(d, K) x SL(d, K) and let ag
be the associated Levi space. Its dual (ag)™* is spanned by the fundamental weights
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of roots in 6. We let

Pwr _pr

Ti=—
p—1

_ pwr, — w7,

T = —
p—1

Both 7,7 € (ap)* and under the assumption as(y) = a,(y) for all v of Definition
5.1, it holds on £, that /4 = 7 and 7 = 71 (if p = 2 the equality holds on a).

Definition 5.2. Fix # € (0,1]. A point x € oI is #-conical if it is conical as in
Definition 4.15 for the product representation (p,p) with respect to the hyperplane

{veag:dr(v) =7(v)} =ker(dr — 7).

Equivalently, there exist R, a geodesic ray (a,)g” < ' with a,, — z, and a subse-
quence {ny} such that for all & one has

|67 (a(an,)) — T(a(@y,))| < R.
Consider also the critical exponent
1 o
£OE tlinolo n log #{7 € I : max {¢7(a(7)),7(a(¥))} < t},

and recall from Equation (3.2) the dynamical intersection defined by

. 7(A(9)
L.(7) = lim IR () > EzeTen) (5.1)

YeR (T

where R,(7) = {[7] € [[]: 7(A(7)) < t}.
In this section we compute the Hausdorff dimension of the image under the graph
map & of the set of #-conical points with respect to a Riemannian metric:

Theorem 5.3. Let p, 5 be locally conformal representations over K and K respec-
tively. Assume the group generated by {(T(A(7)),T(AN(F))) : v € T} is dense in R2.
Then, for every & € (0,1] with
L. (7) > & > 1/I=(7),
one has
64" < dimpye @ ({#—conical points}) < min{A™, A% + (1 — £)}
< min{/+, 4./}
= max{%,, #=}.
The proof of the above result is completed in §5.5.
Recall that if #™ = A7t and the representations are not gap-isospectral, then
Proposition 3.3 gives Iz, (11) > 1. Theorem 5.3 studies then #-conical points for

any ¢ with I» (71) > 1/¢ > 1. As the following result shows, the equality between
entropies is rather natural for K = R.

Theorem 5.4 (P.-S.-Wienhard [13]). Let p : I — SL(d,KK) be locally conformal,
then

ﬁ/T = dimef (f(ar))
Moreover, when K = R and 0T is homeomorphic to a p — 1-dimensional sphere,
for =p— 1.
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When I is a surface group we can also weaken the assumption on the density of
periods:

Corollary 5.5. Assume oI is homeomorphic to a circle and let p and p be non-
gap-isospectral real (1,1, 2)-hyperconver representations of I'. Then

dimpgee ?({1fconica1 points}) =A% < 1.

Proof. Proposition 6.3 below states that under our assumptions the group generated
by {(t(A(7)), 7(A(¥))) : v € T} is dense in R2. Theorem 5.4 guarantees that I, (7) >
1. The equality then follows from Theorem 5.3. (]

Kim-Minsky-Oh [32] have established realted Hausdorff dimension computations
when p and p are convex-co-compact representations in SO(n, 1) without any as-
sumption on I.

5.1. Cone types are coarsely balls. In [43] P.-S.-Wienhard gave a concrete de-
scription of the images under the boundary map of the cone types at infinity. We
discuss here a slight extension of that result adapted to our needs. We denote by
dp the distance on P(K¢) induced by the choice of an inner (Hermitian) product
on K¢ and by B(f,r) c P(K?) the associated ball of radius r about /.

Proposition 5.6. Let p : [ — SL(d,K) be locally conformal. Then there exist
positive constants ¢, ki, ks and L € N such that for every x € o', every geodesic ray
(o) with endpoint x and every n > L one has

B(é(x),kle—n(a(an))) n&(r) c g(anego(an)) c B(é’(m)7k2€—‘r1(a(an))).

Proof. The desired inclusions are proven in [43] for thickened cone types at infinity.
We briefly explain here how to deduce from it the result we need.

Following [13] we denote by X (7), for v € T, the thickened cone type at infinity,
namely the tubular neighborhood in P(K?) of £(Cu (7)) of radius d,/2, where 4,
is the fundamental constant from Definition 4.8. In [43, Corollary 5.10] it is es-
tablished that there exists ¢; > 0 and Ly > 0 only depending on the domination
constants of p such that for all i > Ly one has

B(f(ac), cle_Tl(a(a"’))> N &) € a; X oo ().
By definition the thickened cone type X () is contained in the Cartan basin

Br},a(y) for @ = —2logé,. So P.-S.-Wienhard [42, Proposition 3.3] provides the
existence of ¢ and Ly such that for v € I with |y| > Lo, one has

Xoo(7) nE(aN) = £(C5 (7))

Combining both equations one has, for all ¢+ > Lg that

B(f(x), cle_Tl(a(o‘i))) n&(or) c f(aiego(ai» c B(f(x),Ke_“(“(o‘i))), (5.2)

the second inclusion following from Proposition 4.9. This concludes the proof. [
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5.2. Hausdorff dimension and related concepts. Recall that, given a metric
space (X,d) and a real number s > 0, the s-capacity of X is

3°(X, d) = lim mf{ > diam U*

U open covering of A, sup diam U < 5}

Jeu Uel
and that
dimper(X) = inf{s| H*(X) = 0} = sup{s| H*(X) = o0}. (5.3)
The following can be verified directly from the definition:
Lemma 5.7. If X = |J,,cn X0 then

dimpss(X) = sup dimpss (X5,).
We will use the following consequence of Theorem 1.5.14 from Edgar’s book [19]:

Corollary 5.8. Let E c R? be a measurable subset equipped with a probability
measure v. If the upper density

—a v(B(z,r)n E

D" (x) = limsup —( (@.7) )

r—0 re
is v-essentially bounded above, then dimyer(F) = .
5.3. The lower bound dimpyy;(%{#—conical points}) = £4%°¢. We import some
tools from the proof of Theorem 4.16. Consider the vector space
V* := span{r,7}

together with its radical Ann(V*) = ker 7 nker 7 and the quotient vector space V =
ag/ Ann(V*). Any element of V* vanishes on Ann(V*) and thus V* is naturally
identified with the dual space of V. Using the preferred basis {7, 7} of V* we identify
V and R? via the isomorphism v — (7(v),7(v)) and we let

H:a9—>[R2

be the quotient projection (composed with the above isomorphism). The image of
the hyperplane ker £7 — 7 under the composition of II and the identification of V'
with R? is the line passing through (1, #),

I (ker(47 —7)) = {veV:ér(v) =7(v)}.
We consider the quadrant
VH={r>=0}n{7 =0}

Let v = v(,5 : [ x dF — V be the composition of the refraction cocycle 3,5y of
the pair with II. Its periods are

2(17) = (r(A). 7(A@)).

so by assumption # is non-arithmetic. As in §4.4 one has Q, = V* n Qg ,; by
non-arithmeticity, the cone £, has non-empty interior and thus Corollary 3.5
gives that Q, is a strictly convex curve. We consider the max norm |v|es =
max{#Z|7(v)], |7(v)|} on V, and its dual (operator) norm on V* denoted by | |**.
Let ¢ € Q, be the unique form such that

||1,ﬁ

lo M = inf o™ - o € Qu}.
In the following lemma the role of the assumptions on dynamical intersection in
Theorem 5.3 becomes clear:
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1

Lemma 5.9. The functional ©F /|¢F is a convexr combination séT + (1 — s)T

with s € (0,1) if and only if
L(7) > 6 > 1/I(7). (5.4)
In this case one has TyrQ, = span{fr — T}.

Proof. Recall from Corollary 3.5 that T4 _,Q, = kerI;_, and Q, is strictly convex.
Furthermore, by definition the functional ¢y is the point of Q,, that minimizes the
norm | |4, The level set {|¢|!* = 1} is a rhombus with vertices (#7,7) (in blue in
Figure 6), the tangent to Q, at /4,7, in red in Figure 6, is the level set I;_.(-) =1,
whence its intersection with the 7-axis is 7/14_-(7), and the the tangent to to Q,
at /%+T is the level set I,_=(-) = 1, and it intersects the 7-axis is 7/I;_#(7).

Equation (5.4) is thus equivalent to the fact that the slope of the side of the
rhombus, equal to —1/#, is between the slope of the tangent at 4,7, which is equal
to —#%./14.+(T) = —1/1.(T), and the slope of the tangent at /4=7, which is equal
to —Iﬁ??(’r)/ﬁ? = —I?(T).

Strict convexity of Q, ensures that this is equivalent to having a unique point in
Q, n{tT : t > 0} x {s7: s > 0} tangent to the side of the rhombus, which is the
desired functional ¢3. O

frT + TﬁTTQv

F1GURE 6. The situation of Lemma 5.9.

We thus obtain the following key properties of 3 :

Lemma 5.10. Under the assumptions of Theorem 5.3 one has
(i) U = M(ker(&T — 7));
(i) for any ve VT one has
©F (v) = A% Emin{r(v),7(v)}.
Moreover one has A% < min{/fi=, %, /6}.
Proof. Lemma 5.9 implies that
(1) TyrQ, = span{ét — 7} and thus

Uge = Ann(R - (67 — 7)) = H(ker(47 — 7)).
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(ii) ¢%/|pF|"* = sét+ (1— )7 for some s € (0,1) and hence’, since # € (0, 1],

of = lpg |V 6 min{r, 7},

L4 Since
ooHl,ﬁ

3 I

In order to prove item (ii), we need to show that A% < [p¥
7 (as((p,2)7)) < [(as((p, 2)7)) 0.l 0 |, we deduce, for all s > |

S esManGAles < 3 = CNF I 0F (a0 (@) < o
~yel ~yel

where last inequality holds as £%7 = 1 (by Equation (3.4) and Remark 4.13).
The last assertion follows directly from the definitions:

A2 = lim %log #{7 el: max{ﬁT(a(’Y))f(aW))} < t}

t—0
1 .
< Jim + log#{yel:dr(a(y)} <t} =#"/6 = 1%./8,

where the last equality follows from Remark 4.13. The inequality £%°¢ < /= is
analogous. ([

Let /ﬂf be the Patterson-Sullivan measure associated to ¢} by Corollary 4.14.
Combining Equation (2.8), Equation (4.1) and Corollary 4.14 we deduce that, for
every ye I,

WA (165, (7)) < Ce9% ((0Pm) ¢ e amin{ra) (@G} (5.5)

where the last inequality comes from Lemma 5.10. 7
By Proposition 5.6 there exist constants ¢, k1 and ky such that if (a;)F is a
geodesic ray from id to x then for all ¢ the subsets

£(iC (i) and €(a;C% ()
contain balls on the corresponding projective spaces of radi
ke T(@(@) and ke T(@(@)

respectively where k;,k; depend on the representations but not on i. Since &(ar)
is a graph, the preceding radius computation implies that the image of the cone
type Z(aiego(ai)) contains the intersection of dI' x dI' with a ball, for the product

metric on P(K9) x P(K9), of radius
fe~min {(a(e0) Fa@))} (5.6)

for some uniform constant k. This set of balls forms a fine set of neighbourhoods
around any point € 0. Combining this with Equation (5.5) and the fact that
u?i is supported on oI, one has, possibly enlarging the constant C, that for all r
the measure of the ball of radius r about &(x) is

e (B(z,r)) < Cr=""",

7Indeed7 ifz,y >0, se (0,1) and & € (0, 1] one has: séz + (1 — s)y = #min(z,y): Assume for
example that y > z (the other case follows smilarly), then

stex+ (1—s)y—dx=2(1-s)(1—-48)zxz=0.
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Since dim V* = 2 and #(, 5 is assumed non-arithmetic, Theorem 4.16 states
that the subset of #-conical points has full z## measure. Applying Corollary 5.8
one concludes that

dimges (?{ﬁ — conical points}) > A%,
5.4. The upper bound. We now prove the second inequality.

Proposition 5.11. Let p,5 be locally conformal representations over K and K.
For every 6 < 1,

dimps (${# — conical points}) < min{£*", 64" + (1 — £)}.

Proof. We say that a point x is (R, &)-conical if there exists a geodesic ray (o );en
converging to x and such that for an infinite subset [ = N of indices and for every
kel

‘ﬁr(a(ak)) - ?(a(&k))‘ <R. (5.7)
We denote by CF the set of (R, #)-conical points. By Lemma 4.22 one has
U Cl ={redl:xis & — conical},
R>0
and thus by Lemma 5.7 it suffices to show that for every R one has
dimyes (Cf’) < A%,
For any constant K > 0 and any v € ' we denote by B;na"’K the open ball of
P(K?) x P(K?) given by:
pmexK B((Ul(v), UL (7)), Ke™ ™2 {ﬁr(a(w))f(aﬁ))}),
and denote by
uk .= {B;naX’K| vl =T}

Let K, resp. K, be the constants given by Proposition 4.9 for the representation p
(resp. P). B
We first observe that for C' = 2e® max{K, K} and every T > 0, the set U$ covers
G(CH). Indeed, if € CF consider the geodesic ray (;)ien converging to z, and
the set [ of indices for which Equation (5.7) holds. Then for every k € [ one has,
since # < 1, that
T(a(pak)) > ﬁT(a(ak)) > max{ﬁr(a(ak)),?(a(ak))} — R, (5.8)
7(a(@k)) > max {#7(a(ar)), 7(a(@k))} — R. (5.9)
Let now T be fixed and choose k € [, k > T. Since x € a;CS, (), Proposition 4.9
together with Equation (5.9) give

d(ﬁ(x)a Ux (Oék)) < Ce™ 18 {ﬁT(a(O‘k))f(a(ak))}
d(&(x), Ur(ar)) < Ce™ ™™ {67 (atan) 7 (a@n) §

)

as desired.
Furthermore, by definition of A%+, for every s > A%,

Z diam U® < 2°C* 2 e—smax{ﬁT(a('y)),?(a(?))} <+,

Ueug v|=T
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whence, Equation (5.3) yields dimper(CE) < £°7. In order to obtain the second
upper bound we observe that, if « € [ satisfies Equation (5.7), the set €(aCS(a))
can be covered with e(!=#)7(a(®) balls of radius 2Ce~7(*(*) We denote by Uz the
collection of open balls, that only take into account elements o € I' with |a| > T
that verify (5.7), which in particular covers the set CI. Using Equation (5.8) we
obtain

M diamU* < 220° Y 0-Omaln)morle()

UelUr [v|=T
< 2°C" Z e~ (s—(1=#))7(a(7))
=T
< 9505 3 o~ TG max{r(a()),7(a(7))}

[v[=T
Since the latter quantity is finite whenever &{ﬁ)) > A%% we deduce
dimpg (CF) < 6497 + (1 — 4).
O
We conclude this subsection computing the Hausdorff dimension of the image
of the whole boundary through the graph map. See [17] for examples of homeo-

morphisms between Cantor sets for which the Hausdorff dimension of the graph
exceeds the maximal Hausdorff dimension of the factors.

Proposition 5.12. Let p: I — SL(d,K), p: I — SL(d,K) be locally conformal.
Then
dimp (€(0r)) = max{A", A"}

Proof. This follows as in the proof of Proposition 5.11 considering the covers of
€ (0T) given by U := {B2"C||y| > T} with

pminK B((Ul(v), U(7)), Ke™ min{r(a(v))f(a(ﬁ))}),

and C' = 2max{K, K} where K (resp. K) is the constant given by Proposition 4.9
for the representations p (resp. p). To conclude it is enough to observe that

ﬁmin{r,?} _ max{ﬁT, ﬁ?}’
a fact proven for example in P.-S.-Wienhard [12, Lemma 5.1]. |

It is easy to generalize Proposition 5.12 to an arbitrary number of factors. as an
application we get.

Corollary 5.13. Let p: T — SL(d,K) and 8 < A be such that for all 7, € 0, &, 0p
is (1,1, 2)-hyperconvex. Then
dimpee (£9(0r)) = max A7
TiEG

5.5. Proof of Theorem 5.3. The first inequality is established in § 5.3, the second
inequality is proven in Proposition 5.11, the third inequality follows from Lemma
5.10 and the fourth from Theorem 5.4.The last equality was stablished in Proposi-
tion 5.12.
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6. #-CONCAVITY AND #-CONICALITY: FINAL STEPS FOR THE PROOF OF
THEOREM A

The goal of this section is to prove the following more general version of Theorem
A. As before, fix {i,K} < {R,C,H} together with locally conformal representations
p:T — SL(d,K) and p : I — SL(d,K) of an arbitrary word-hyperbolic group T.
For & € (0,1] recall that = : £(al) — () is &-concave at x € o if there exists
yr — x such that the incremental quotients

dp (£(x),E ()
dp (£(x), & (r))”

are bounded away from 0 and oo (independently of k). We also let }C(ﬁp@ be the
set of x € JI that are #-concavity points of Z. Finally, recall that p and p are not
gap-isospectral if there exists v € I' such that 7(a(y)) # 7(a(7)).

(6.1)

Theorem 6.1. Let p,p be locally conformal representations acting irreducibly, on
K¢ and K¢ respectively, as real vector spaces, and that are not gap-isospectral.
Consider any & € (0,1] with 1.(T) > & > (I=(1)) !, then

- if {K, K} < {R,C} one has

647" < dimper(H ) < min{A27, 647 + (1 - 4)}

’ < min{/%=, %, /8}
< dimye (Z(0N)) (6.2)
= max{/%,, fz}; (6.3)

- if K =H (resp. K = H), Equation (6.2) holds if we further assume that the
real Zariski closure of p(I') (resp. of p(I')) does not have compact factors.

6.1. Hyperplane conicality and the concavity condition. We commence with
a lemma relating £-conicality to the desired concavity properties of the equivariant
map = : £(ar) — &(an).

Lemma 6.2. Let p and p be locally conformal representations over K and K re-
spectively, and & € (0,1]. Then one has {#—conical points of (p,p)} = U—(iﬁ

Proof. Let (a;)ien denote a geodesic ray converging to z. Proposition 5.6 gives
constants Cq,Cs,C1,Cy and L € N such that, for every n € N and every y, €
anCS (an)\an+1.CS (a4 1), it holds

Cle—r(a(an)) < dp (€<yn)75($>) < CQe_T(a(an))’
Cre @) < dp(E(yn), E(x)) < Coe @), (6.4)

Assume first that x is #-conical. By Definition 5.2 we obtain a geodesic ray
(o), an infinite set of indices | = N and a number R, such that for all k € [ one
has

|67 (a(ay)) — T(a(ak))| < R. (6.5)
For each such k we choose a point yi, € agCS (o) \ak+1CS (ak+r). By construc-
tion gy converges to z. Combining both equations, for every k € [ it holds

e—Rzlﬁ < M < 6126717
" de (€(yr), () e
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so the incremental quotient (6.1) is uniformly far from 0 and oo. Whence {# —
conical points} J—fﬁ’ﬁ.

Conversely, assume that x is not #-conical. The Cartan projections of two con-
secutive elements a; and «;41 make uniformly bounded gaps (Proposition 2.1), and
thus there exists C such that for all n € N one has

|T(a(an+1)) — T(a(an))| <C.

As a consequence, we can assume, up to switching the roles of p and p, that for any
R there exists ngr such that for every n > ng one has

67 (a(an)) — 7(a(@n)) > R.

In turn this implies, thanks to Equation (6.4), that for every y € ay,,CS (any,),

dp(Ew). &) _ 5T
dp (£(y), ()" c,’

Since R is arbitrary, and the sets a,,,CS (ar, ) form a system of neighborhoods
of the point z, we deduce that the limit in Equation (6.1) exists and equals 0. This
concludes the proof. O

6.2. Non-arithmeticity of periods. In this section we establish a non-arithmeti-
city condition, necessary to apply later Theorem 5.3. This is established in a rather
general setting. Recall that a subgroup A < SL(d,K) is K-prozimal if it contains a
K-proximal element, i.e. there exists g € A such that 71(\(g)) > 0.

Proposition 6.3. Let A be a finitely generated group. Let p : A — SL(d,K) and
p: A — SL(d,K) be two K-prozimal representations that act irreducibly on K%

and K94 respectively, as real vector spaces. Assume there exists v € A such that
T1(A(p7)) # T1(A(Y)). If {K,K} < {R,C}, then the group generated by the pairs

{( ()7 06m)) 7 e 4}

is dense in R2. IfIK = H we further assume that the Zariski closure over R of p(A)
has no compact factors, and the same for p(A) if moreover K = H, then the same
concluston holds.

To prove the proposition we need Lemmas 6.4 and 6.5 below.

Lemma 6.4. Let K be either R or C. Let A < SL(d,K) be a subgroup acting irre-
ducibly on K% as a real vector space and assume A contains a K-prozimal element.
Then the real Zariski closure of A is semi-simple, has finite center and without
compact factors.

Proof. If K = R the Lemma is the content of S. [18, Lemma 8.6] and the proof over C
is a slight modification of the latter. Indeed, let G be the Zariski closure of p(A) over
the reals, by the irreducibility assumption it is a reductive (real-algebraic) group.
By Schur’s Lemma the elements commuting with A consist only on homotheties,
but since we’re in special linear group one has that the center of G is finite.

The group G is then semi-simple and we let K be the identity component of
the product of all the compact simple factors of G. We also let H be the identity
component of the product of all the non-compact simple factors of G. The groups
H and K commute and one has H K has finite index in G.
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Consider a proximal g € G, up to a fixed power we may write g = kh with k € K
and h € H. Since K is compact, its eigenvalues have modulus one so we conclude
that h is proximal and that g, = h,. The attracting line of h is thus invariant
under K. Since K is connected, an element of K acts on h, as multiplication by
some element of S*.

By irreducibility we may find a basis of C? consisting on fixed attracting lines
of proximal elements of H. This basis simultaneously diagonalizes K, so we get
an injective map from K to a compact group isomorphic to a d-dimensional torus.
Consequently K is abelian, and since it commutes with H we conclude that K is
contained in the identity component of the center of G, which we proved earlier to
be trivial. O

Lemma 6.5. Let G be a semi-simple real-algebraic Lie group with finite center and
no compact factors. Fiz 9,9 < Ag two non-empty subsets with 9 n 9 = . Let
A be a group and » : A — G a representation with Zariski-dense image. Then, for
every closed cone with non-empty interior € < int £,.4y, the group spanned by the
pairs

{(mino(A(rg). minF(Arg))) : g € A and M) <

oed

is dense in R2.

Proof. Define the piecewise linear maps 7,7 : at — R by:
7(v) = min {o(v) : 0 € ¥}
7(v) = min {o(v) : 7 € J}.

The vanishing set of the difference 7 — 7 is contained the union of ker(a — b) for
arbitrary a € ¥ and b € ¢. Since ¢ and 9 are disjoint, this is a union of hyperplanes
of a, from which we deduce that the set of zeroes of 7 — 7 has empty interior.

Since € < int £,.(4) has non-empty interior, the difference 7 — 7 does not iden-

tically vanish on . Since 7 and T are piecewise linear, we can choose a possibly
smaller closed cone with non-empty interior

€ @6,
and a € ¥, b € ¥ such that for all v € €’ one has
T x 7(v) := (7(v),7(v)) = (a(v), b(v)).

Since a and b are distinct simple roots the map (a,b) : a — R? is surjective.

By Benoist [3, Proposition 5.1] there exists a sub-semigroup A’ < A such that
#(A") is a Zariski-dense Schottky semi-group with £, 4,y = €’. In particular, for
all v € A’ one has

T xT(A()) = (a(A(#7)),b(A(#7)))-

By Benoist’s Theorem 2.3, stating that the group generated by the Jordan projec-
tions A(#), for v € A’, is dense in a, we conclude that the group spanned by

{(@Oe). b)) ) s e 2}

is dense in R2, giving in turn the desired conclusion. [
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Proof of Proposition 6.3. Denote by G and G the Zariski closures of p(A) and p(A)
respectively. Both G and G are semi-simple, have finite center, and don’t have
compact factors: if {I, K} = {R,C} then this is the content of Lemma 6.4, if either
K and/or K equals H then this is an assumption. We let 1: A — Gand7: A — G
be the respective inclusions.

If we let ¢ : G — SL(d,K) and ¢ : G — SL(d, K) be the associated real represen-
tations, so that p = ¢ o and p = ¢ o7, we have from §2.3 two subsets of simple

roots 6 := 04 and 0 := 93 such that for all a € aé and b e c% one has

7(a) := 71(¢(a)) = min {a(a) : a € 6}
7(b) :=71(¢(b)) = min {a(b) : 3 € 6}. (6.6)

In particular, for every v € A one has 7 (A\(y)) = 7(Ac(y)), and similarly for p.
Since ¢ and ¢ are faithful, 6 and 6 contain at least one root of each factor of,
respectively, G and G. If ¥ < 0 then we let

7 (v) = mino(v), v € ag.
oed

If H is a non-trivial product of simple factors of G then we let ¢y : 4 — H be the
composition of ¢ with the projection of G onto H. By Zarisk-density of ¢(A), each
representation ty has Zariski-dense image (though unlikely to be discrete). We also
let

9H =0n AH.

Each 6y is non-empty. We analogously define 7, 6" and 7.

We now let L be the largest product of simple factors, simultaneously of G and
G, so that ¢ is conjugated (up to finite index) to 7. Let H and H be the remaining
factors of G and G respectively, i.e.

G=LxHand G=L xH,
and moreover, by definition of L, the representation »: A — L x H x H

79— (w(9),75(9), tn(9)) (6.7)

has Zariski-dense image, see for example Bridgeman-Canary-Labourie-S. [11, Corol-
lary 11.6]. We remark that we are not assuming that any of L, H or H is non-trivial
(they can’t, of course, be all trivial).

If (u,v,w) € a_ x ag x ay we naturally think of (u,v) as an element of ag and of
(u,w) as an element of ag. We now write

e = 9|_ N gL,
@L = 0L\®7
O, =8.\60.

One has, for all (u,v,w) € a_ x ag x ay that
7(u, w) = min {TGL (u), 7 (u), 7% (w)}
7(u,v) = min {TéL (w), 7 (u), 7% (v)}. (6.8)

By assumption, there exists g € A such that p(g) and p(g) are proximal and
T(Ac(rg)) # T(Ag(Zg)). Assume, without loss of generality, that

T(Ac(19)) < T(Ag(29))- (6.9)
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By means of Equations (6.8) we see that in this situation one has

7O (N6 (1g)) = T(Ac(1g)) < T(Ag(79)),

in particular the union O Uy must be non-empty. Moreover, this strict inequality
yields the existence of a small closed cone with non-empty interior €y < £, ag
about R; Ag(pg) such that

7Y% (4) = 71 (a) Va € B. (6.10)

Consider now the representation 7 : A — L x H x H from (6.7) and a closed cone
with non-empty interior € < £,4) < af X a% X a',: whose natural projection onto
af =af x o} is Go.

Lemma 6.5 applied to the group G' = L x H x H, the representation », the disjoint
non-empty subsets ¥ = O U Oy and ¥ = O U 0 and the cone €, provides the
desired conclusion. O

We conclude with the following Corollary that we don’t need but is of indepen-
dent interest.

Corollary 6.6. Let p: T — SL(d,K) and p : T — SL(d,K) be R-irreducible and
{r1,T2}-Anosov and {T1,T2}-Anosov respectively. If K = H assume moreover the
Zariski closure of p(I') does not contain compact factors, and analogously for p. If
p and p are not gap-isospectral then

I?l (Tl) > ﬁ71/ﬁ7'1'

Proof. Since both representations are projective-Anosov they are K-proximal. Pro-
position 6.3 implies then that, since they are not gap-isospectral, the group spanned
by the pairs {(71(A(7)),71(A(7))) : 7 € T'} is dense. Since both representations are
also Anosov with respect to 2-dimensional stabilizers, the functionals 7 and 71 lie
in the Anosov-Levy space of p and p respectively, we can apply Proposition 3.3 to
obtain the desired strict inequality. (I

6.3. Proof of Theorem 6.1. Theorem 6.1 follows from Proposition 6.3 giving the
desired non-arithmecity of periods, Lemma 6.2 identifying the set 3{?5 with the set
of #-conical points of (p,p) and Theorem 5.3 computing the Hausdorfl dimension
of the latter when the periods are non-arithmetic. The last equality is a direct
consequence of Proposition 5.12. [l

7. THEOREM C: ZARISKI CLOSURES OF REAL-HYPERCONVEX SURFACE-GROUP
REPRESENTATIONS

In this section we prove Theorem C giving a preliminary classification of Zariski
closures of irreducible real (1,1,2)-hyperconvex representations of surface groups.
For most of the section we work with a pair of (1,1, 2)-hyperconvex representations
and eventually reduce the proof of Theorem C to a situation like this; we will
crucially use Theorem 1.3.

7.1. When = has oblique derivative. We prove here a result of independent
interest, albeit possibly known to experts. This subsection only requires §4.1 and
§4.2 and will be needed not only for Theorem C but also for Theorems B and 8.6.
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Either we let I have boundary homeomorphic to a circle, either we let it be a
Kleinian group. In the first case we let

p,p: T — Diff' " (Sh)

be Holder conjugated to action of I on its boundary; if instead ' < PSL(2,C) is
a Kleinian group we let p,p : [ — PSL(2,C) be two convex co-compact represen-
tations that lie in the same connected component of the subset of the character
variety X(I', PSL(2,C)) consisting of convex cocompact representations.

We let X be either the circle or dH3. To simplify notation we will denote the
action of v € ' on X via p by +, the action via p by 7, and the limit sets of p and
7 by oI, of < X respectively.

In both situations there exists a Holder-continuous map

X - X

conjugating p and p. Indeed while in the surface case this holds by definition, in the
Kleinian case this is a theorem by Marden [37], see also Anderson’s survey [1, page
32]: the equivariant limit map = : oI — 0l conjugating the actions p and p on their
respective limit sets extends to a -equivariant, Holder continuous homeomorphism
of the whole Riemann sphere dH3. We study differentiability points of = with oblique
derivative.

We let d be either a visual distance on X (in the complex case) or a distance
inducing the chosen C! structure on the circle St.

Definition 7.1. An action p admits a Lipschitz-compatible cover if there exists a
finite open cover B of X and a map [ — B, v — B () such that
(i) for any a,b e T so that |ab| = |a| + |b| one has
(a) bBo(ab) € By(a),
(b) Beo(ab) © Boo(b);
(ii) there exist A > 0, C' and L € N such that if |y| > L and z,y € By () then

d(yz,vy) < Ce "Rd(z, y);

(iii) there exist constants 71,79 and a function 7 : I — R with 7(y) = A|y| such
that for every v € I' and every x € Co (),

B(z,r1e™M) ¢ 4B, (y) € B(z,ree” ™).

The goal of the subsection is to prove the following result, similar arguments can
be found in Guizhen [26] in the context of conjugacies of expanding circle maps.

Proposition 7.2. Let p, p be as above and assume both admit a Lipschitz compatible
cover. If there exists p € O such that = has a finite non-vanishing derivative
(complez derivative in the Kleinian case) at p then Z|0T is bi-Lipschitz.

We work under the assumptions of Proposition 7.2 and begin its proof with the
following lemma. For v € I we denote its derivative at z € X by +/(z) € K defined,
according our two situations, by

X =S! : the derivative /(%) of a lift of v to the universal cover R of S!, and a lift
Z € R of x, the number 4/(%) is independent of these choices;

X = 0H3: we fix an arbitrary point oo ¢ oI, identify X — {00} with K via the stereo-
graphic projection and let +/(z) be the standard complex derivative.
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Lemma 7.3. Let p : I — Diff*™"(X) admit a Lipschitz compatible cover. There
exists a constant k > 0 and N € N such that for all v € T with |y| = N and
x,y € By () one has

[log |/ ()| —log |/ ()] < kd(z,y)".

Proof. We consider L from Definition 7.1, so that for every n € I with |n| = L and
Z,y € By(n) one has

d(nz,ny) < Ce™MAd(z, ). (7.1)

Since the action is C'™ we can find a positive K such that for every 3 with
|8] < L and u,w € X one has

|10g|ﬁ’(u)\ —log |8'(w H Kd(u,w) (7.2)

We let then K’ = max{K, KC"}. We begin by showing, by induction on k, that
if |7| = kL then for all z,y € By (), one has

|log |7/ ()| —log |7 (y Z AN d (2, )" (7.3)

Equation (7.2) gives the base case, so assume that the result holds up to k& — 1.
We write v = n with |8] = L, || = (k — 1)L. By Definition 7.1 (ib) we have

B () = Boo(n)- (7.4)
Applying the chain rule gives that for every u € X one has
log |7/ (u)| = log |(8)' (nu)| + log [(8)' (u)]
and thus, when z,y € By (7),

[log |[7/(2)] = log |7 ()] < [log |8 (nz)| —log |5"(ny)I| + [log ' (x)| — log |1’ (y)]]
k—2
< Kd(nz,ny)” + K'( Z e_”)‘Li)d(x, y)” (by (7.2) and induction)
i=0
k—2 _
< KC%e M Ad(z,y)” + K'( Z e MY d(z,y)”  (by (7.4) and (7.1)).
i=0

This shows Equation (7.3) which implies that for kg = K'/(1 — e %), every
v € I whose word-length is an integer multiple of L, and z,y € By () one has

|log |7/ ()| — log |7 (v)]| < wod(z,y)"

To conclude the lemma we consider an arbitrary v with |fy| =mL+tandt < L.
We write v = 8n with |8] = mL. By Definition 7.1 (ia) it holds

NBoo(7) = B (B). (7.5)
Applying the chain rule gives then

|log |7/ (z)| —log |7 (y)|| < |log |8 (nx)| —log |8’ (ny)|| + |log [0 ()| — log |’ (y)|
< kod(nz,ny)” + Kd(z,y)”  (by (7.2) and (7.5))
< (koC¥e™ ™ + K)d(z,y)”  (by (7.1))

so taking kK = K + koC”e~* we conclude the proof. O
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Proof of Proposition 7.2. Let p € 0 be such that = has a derivative at p that is
neither horizontal nor vertical. Fix a geodesic ray (o, )’ through the identity with
a, — p. By definition for all n one has p € @,,Cq (). Without loss of generality
we may also assume that

p=0=EZ(0)

and we may write the derivative as the incremental limit
=/(0) = 1im =¥ e K — {0},
y—0 'y

For each n we let s, = rie~7(®) | so that by Definition 7.1 (iii),
B(0,5,) € anBo(ay).
We consider the scaling map
gn : B(0,1) = a, B (ay)

defined by g, (2) = spz.

Let a,, be an arbitrary point at distance s,, from 0 and let §,, = Z(a,). Observe
that since = is differentiable at zero, for n big enough the image Z(B(0, s,)) is
coarsely a ball around zero of size comparable to that of @, Co (@, ), and in particular
we can assume, since the cover {B (7)} is Lipschitz compatible (Definition 7.1 (iii)),
that Z(B(0, sp,)) is contained in &y, By (@ ). Furthermore we deduce that there exist
positive constants d, D such that for every n
7267?(a")

d< < D.

|3n]
Here we denote by 7;, \, C,7 the constants and function associated to the Lips-
chitz compatible cover {By(7)} for the action p. We consider the scaling map

by z — 2§,.
Since s, — 0 and Z'(0) ¢ {0, 00} exists, the composition
. E(zsn) Snz  Z(z8n) Sn Z(zsn) S,

—1= - RLIA . TR = ’ ’
9n _.gn(Z) 3, Sn 2 SnZ Sn, N SnZ E(Sn) :

converges uniformly on compact subsets to the identity map.
On the other hand, one has
ﬁ;lagn = grjlanaarzlgnn
We now study the maps f,, := a;,! o g, and fr = g, L o@,. Since the coverings B
and B are finite, we can assume, up to extracting a subsequence that there exists
sets By, € B, By, € B so that, for every n, Boy(an) = By (resp. By (an) = Bo).
Observe that for every x € B(0,1) one has

log | fy ()] = log |(e,, ") (gn)| + log |sn| = —log|al, (ay, ' gn)| + log |sn].

Now by definition of g,, we have that g,z € a,By(a,) and thus a;'(g,z) €
By (). For n large enough we can apply Lemma 7.3 to «,, to obtain k so that
for every pair z,y € B(0,1) it holds

|log | £;,(x)] = log | f7,(y)]] < wd(z,y)".
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We conclude that the family of maps (f,,) is uniformly bi-Lipschitz on B(0, 1) and
thus, since (f,,0) is bounded, Arzela-Ascoli’s Theorem applies to give a subsequence
(still denoted by f,,) that converges to a bi-Lipschitz map f defined on B(0,1).

A similar reasoning applies to the maps f defined on B.,, and we obtain that,
about 0, Z can be written as a composition of bi-Lipschitz maps and is thus bi-
Lipschitz. Using the action of ' we extend the Lipschitz property of = to the whole
ol, concluding the proof. O

The following Lemma guarantees we can later apply the results of this section
to the situation of our interest.

Lemma 7.4.

- Assume 0T is homeomorphic to a circle and let p : T — SL(d,R) be (1,1,2)-
hyperconvex. Then the induced action of p(T) on the C'*" circle £(aT)
admits a Lipschitz compatible covering.

- If T is a convex-co-compact Kleinian group then the action of T on 0,H?
admits a Lipschitz compatible cover.

Proof. Recall from Section 4.1 that we have fixed a word metric on ' and we denote
by Cx(y) € I € X the set of endpoints of geodesic rays contained in the cone
type €(7).

Let ¢, be the fundamental constant of p from Definition 4.8, and let B (y) =
X5 (7) be the §,/2-neighbourhood of € (v) inside S'. This is the thickened cone
type at infinity considered in [43, Section 5] (see also the proof of Proposition 5.6).
It is a proper subset of S' by Corollary 4.7. The cover B is finite since there are
only finitely many cone types [12, p. 455].

Property (i) holds since the same property holds for Cy (), Property (ii) is a
consequence of Proposition 4.10. Finally, Property (iii) was proven in [43, Corollary
5.10] choosing 7(y) := T1(ap(7y)) (see also the proof of Proposition 5.6). Observe
that in the real case by considering X = S! we are implicitly considering only the
intersection with the limit set, while in the Kleinian group case it is not necessary
to intersect with the limit set since the I-action on the whole X is conformal. [

We now establish the following corollary that will be used in the sequel.

Corollary 7.5. Assume 0l is homeomorphic to a circle. Let p: .S — PGL(d,R)
and p : m S — PGL(d,R) be (1,1,2)-hyperconvez, consider the map between C*+”
circles

E=Co& ! g(0mS) — £(0mS).
If = has a differentiability point with finite non-vanishing derivative then p and p
are gap-isospectral.

Proof. By Lemma 7.4 we can apply Proposition 7.2 to obtain that = is bi-Lipschitz.
The following standard lemma from linear algebra (see for example Benoist [5] and
S. [46, Lemma 3.4]) gives the period computation completing the proof. a

Lemma 7.6. Let g € PGL(d,R) be provimal with attracting point g, € P(R?) and
repelling hyperplane g € P((RY)*). Let Vy, () be the sum of the characteristic
spaces of g whose associated eigenvalue is of modulus exp A2(g), Then for every
v ¢ P(g-), with non-zero component in Vy, (), one has

lim logdp(g”(v),g+) _ —7'1(/\(9))

n—o0 n
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7.2. Limit curves in non-maximal flags. We proceed with another intermediate
step for the proof of Theorem C describing differentiability points of boundary maps
in partial flag manifolds JFy, py for {a, b}-Anosov representations. This step follows
from the combination of Theorem 1.3 and Corollary 7.5.

Let G be real-algebraic and semi-simple. Let {a,b} < A be two distinct simple
roots. The partial flag space Fy, ,y carries two transverse foliations that are the
level sets of the natural projections Fy, py — Fiay and Fy, by — Fy,y. We will refer
to these as the canonical foliations of Fy, py.

Corollary 7.7. Let G be real-algebraic and semi-simple and let {a,b} c A distinct.
Let p : m S — G be Zariski-dense and {a,b}-Anosov. If both curves (0w S) and
£2(0m1S) are C' then every differentiability point of £82:°} (0w, S) is tangent to one
of the canonical foliations of T, ).

Proof. By Benoist’s Theorem 2.3 the limit cone of p has non-empty interior, in
particular there exists v € m1.5 such that

a(A(7)) # b(A(7))- (7.6)

Consider the Tits representations ®, and P}, associated to a and b. Since p(m1.5)

is Zariski-dense, both representation ®,p and ®,p are irreducible and since p is

{a, b}-Anosov both representation ®,p and ®pp are projective Anosov. Recall that
by definition of ®,, for every g € G one has

m1(A(@a(9))) =2(Mg)),
so by Equation (7.6) the representations ®,p and ®pp are not gap-isospectral.
Since the maps (, and (, are analytic, both projective curves (,£2(0m1S) and
(p€P (01 9) are C! and thus by Zhang-Zimmer’s Theorem 1.3 the representations
®,p and Ppp are (1,1, 2)-hyperconvex.
The natural embedding F, py — P(Va) x P(V4,) sends ¢lab} to the graph of the
map Z from Corollary 7.5 and thus the corollary implies the result. (I

7.3. Proof of Theorem C. The goal of the section is to prove Theorem C, stat-
ing that the Zariski closure G of the image of an irreducible (1,1, 2)-hyperconvex
representation p : 1S — PGL(d, R) is simple and the highest weight of the induced
representation ® : G — PGL(d, R) is a multiple of a fundamental weight associated
to a root whose root-space is one-dimensional.

It is known that an irreducible subgroup G < PGL(d,R) containing a proximal
element is semi-simple without compact factors (see S. [48, Lemma 8.6] for an
explicit argument following a suggestion by Quint).

We consider the induced representation py : [ — G and denote by ® : G —
PGL(d,R) the linear representation so that p = ®pg. Let x = xo € a* be the
highest weight of ®. As in Definition 2.5 we consider

=0 =1{acA:x—aisaweight of } = {ae A:{y,a) # 0}.

It is enough to show that 6 is reduced to a single root {ap}; indeed, if this is the
case, upon writing x in the basis of fundamental weights {w, : a € A} (recall their
defining Equation (2.1)) one has

X = Z<X7 a>wa = <X7 30>wag>
aeA
Moreover this gives:
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- G is simple by Lemma 2.4;

- the weights on the first level consist solely on x —a and its associated weight
space is ¢(g_a)Vy,. Since p(I') is {m2}-Anosov one has that ¢(g—.)Vy, is
one-dimensional, but by Lemma 2.6 no element of g_, acts trivially on V,,
SO g_, is 1-dimensional, as desired.

We proceed now to show that in the present situation 6 consists of only one
element. By definition of 8 one has, for every g € G, that

(A (®(9) = mip{20c(o)}-

Consequently, the limit cone £,, < ag does not intersect the walls of elements in 6
and, since pg : [ — G is a quasi-isometry, Remark 4.4 implies that the representation
po is -Anosov.

Recall from Equation (2.5) that we have a ®-equivariant analytic embedding
o : G/Py — P(R?). One has moreover that f; = (goggo. In particular the boundary
map &7 has Cl-image. Composing with the projections Fy — Fy one sees that, for
any 6’ c 6 the curve 52; (o) is a C' circle.

Assume now there exists two distinct roots a, b in 6. By the previous paragraph
the curve £12P}(ar) is C'. Corollary 7.7 gives then that £1P}(Ar) is necessarily
contained in one of the leaves of the canonical foliations of Fy, 1), thus giving that
one of the maps £ or £° is constant, achieving a contradiction. ([l

8. NON-DIFFERENTIABILITY AND 1-CONICALITY: THE PROOF OF THEOREM B

8.1. Non-differentiability and 1-conicality. By means of §7.1 we can improve
Lemma 6.2 when we deal with a pair of real hyperconvex representations of surface
groups, this is the missing ingredient for Theorem B:

Corollary 8.1. Assume 0T is homeomorphic to a circle. Let p,p two (1,1,2)-
hyperconvex representations over R of I that are not gap-isospectral. Then, the set
of non-differentiability points of = coincides with the set of 1-conical points.

Proof. We choose a C! identification of the C* torus £(AI) x £(I') < P(R?) x P(R?)
with the quotient of the square [—1,1] x [—1, 1] preserving the product structure,
and such that the point (z,Z=(z)) corresponds to (0,0). In these coordinates the
graph of = is a monotone curve [—1,1] — [—1, 1] passing through the origin. Since
the chosen identification is C, it is in particular K-bi-Lipschitz for some K, so
we can write (coarsely in a small neighbourhood of z) d(£(y),&(x)) = |y| and
d(€(y), (@) = [E(y).

From Lemma 6.2 we know that x is 1-conical if and only if either lim,_, EGI

lyl
exists and is far from 0 and oo, either it does not exist. The proposition is settled if

we show that the first situation cannot happen, so let’s assume it does. However,
since E is monotone we can remove the || and we get that z is a differentiability
point of = with oblique derivative. Corollary 7.5 implies then that for all v € ' one
has 71 (A(7)) = T1(A(¥)), contradicting our assumption. O

8.2. Proof of Theorem B and an analogous for Kleinian groups. We begin
with the proof of Theorem B by recalling the following result from Beyrer-P. [7]
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Corollary 8.2 (Beyrer-P. [7]). Assume 0 is homeomorphic to a circle and let
p: T — PGL(d,R) be (1,1, 2)-hyperconvex. Then there exists an irreducible (1,1,2)-
hyperconver representation py : I — PGL(m,R) such that, for every v € I one
has

1 (A(Y)) = 71 (A(po7))-

We now prove Theorem B. Since there exists v € [ with 71 (A(v)) # 71 (A(¥)),
Corollary 8.2 allows us to apply Proposition 6.3 to obtain the density assumption
in Theorem 5.3, so one has

dimpys Z({1-conical points}) = A7},

Corollary 8.1 states that the set of 1-conical points coincides with the set of non-
differentiability points of Z. The inequality 2% < 1 follows from the strict convexity
of the critical hypersurface Q,, where ¢ is the cocycle studied in Section 5.3. This
completes the proof of Theorem B.

8.3. Proof of Corollary B. We conclude the paper proving Corollary B. Recall
from Section 2.3 that for every simple root a of G we chose a Tits representation
®, : G — PSL(V,).

Corollary 8.3. Assume 0l is homeomorphic to a circle and let G be a simple Lie
group. Let p: T — G have Zariski-dense image. If for a,b € A the representations
®, 0p and Py 0 p are (1,1, 2)-hyperconvez, then
(i) the image of the limit curve £} : oI — Fapy 15 Lipschitz and the Haus-
dorff dimension of the points where it is non-differentiable is A™ax{2:b},
(ii) If the opposition involution i on g is non-trivial and b = ia then

ﬁmax{a,b} _ ﬁ(a+b)/2.

Proof.

(i) Since the map ®, : F, — P(V,) is analytic, and ®,0£2(dr) is a C'-submanifold
(Theorem 1.3), £€2(l) is a C' submanifold as well. The curve £{2b} .= Frapy N
(€2(ar) x &5(ar)) is the graph of the homeomorphism = and is thus a Lipschitz
curve. The second claim is then a direct consequence of Theorem B.

(ii) Assume the opposition involution i of g is non-trivial and that b = ia. Using
notation from Section 5.3 with a = 7 and b = ia = 7 we let V* = span{a, b},
V = ag/Ann(V*), I : ay — V the quotient projection, | | = max{|al, |b[}, || its
dual norm on V* and ¢% € Q, the only form minimizing | |'.

Since ia = b, the space V* is preserved by i and the fact that A\(g~!) = i\(g)
(for all g € G) implies that Q, is i-invariant. Moreover, the norm | |! is i-invariant
and by definition of ¢} one has ip} = ¢f. However, (a + b)/2 is also i-invariant
and %£(+2)/2(a + b)/2 € Q, whence

oy = ﬁ(a+b)/2(a +b)/2.
In order to prove the result it is thus enough to show that
Ameas) = o, (8.1)

We conclude the proof deducing this equality from Quint’s [44, Proposition 3.3.3].
We consider the counting measure

v= Z 51_[@9(“/)

~yel
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on the vector space & = V and the norm N = || |,. We then have, in the notation
of [14, §3], that 7V = A™a{2b} and, by Remark 4.13, oY = inf,eq, [¢['. Thus, in
order to deduce Equation (8.1) from [44, Proposition 3.3.3] it is enough to verify
that the counting measure v is of concave growth as in [44, §3.2]. In turn this is a
consequence of Lemma 8.4 below, an adaptation of [14, Proposition 2.3.1] (see also
Kim-Oh-Wang [33, Lemma 3.8] where similar arguments are explained for the ag
counting measure). O

Lemma 8.4. Let ||| be a norm on V. Let A < G be Zariski-dense and {a,b}-
Anosov. Then there exists a product map m : A x A — A with the following
properties:

(i) there exists a real number k = 0 such that, for all v1,72 € A,

[Tag(m(71,72)) — Hag(y) — Hag(y2)| < #;

(ii) for every real R = 0 there exists a finite subset H of A such that, for
Y1, Y2V, Vs i A with |Hag(v;) — Hag(v))| < R fori = 1,2, then

m(y1,72) = m(V1,vs) = i € viH, fori=1,2.

Proof. Tt is enough to consider the generic product map 7 : A x A — A constructed
in [44, Proposition 2.3.1], which satisfies the analogous properties with respect to
the Cartan projection a : G — a and a norm | | on a. The first property is satisfied
since we can assume that the projection Ilomy : @ — V is norm non-increasing. The
second follows from the Anosov property: by the construction in [44, Proposition
2.3.1] one can choose H to be the set of elements v such that [IIag(y)| < R’ for
some R’ depending on R. Such set is finite because, by definition of II, there exists
R” depending on R’ and the norm | || such that if |TIag ()| < R’ then a(a(y)) < R”,
which in turn implies by Definition 4.3 that |y| < R”/u+ C, and thus 7 belongs to
a finite subset. O

8.4. The PSL(2,C)-case. If p,p: [ — PSL(2,C) are convex co-compact represen-
tations that are connected by convex-co-compact representations, it was proven by
Marden [37] that the natural map = : A, — Az conjugating the respective actions
extends to a Hélder homeomorphism Z : CP! — CP? that is (p, p)-equivariant. We
consider in this case the complex derivative of such an extension = and say that =
is C-differentiable at a given x € A, if, conformally identifying 0H? — {point} to C,
the limit
)

[1]
[1]

E'(z) := lim

(z) =

<

exists or is infinite. We let now NDiff, 5 be the set of points z € A, where the
extended conjugating map = is not C-differentiable and let
The proof of the following works verbatim as in Corollary 8.1.

Proposition 8.5. Let p,p: [ — PSL(2,C) be non-gap-isospectral and in the same
connected component of

{Q : T — PSL(2,C) : o is convex co — compaCt}~

Then, the set of non-C-differentiability points of = coincides with the set of 1-conical
points.
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Density of the group generated by the pairs {(A(7y), A(¥)) : v € '} follows readily
from Benoist [1] (see Theorem 2.3), from this point on the exact same proof of
Theorem B gives the following.

Theorem 8.6. Let p,p: [ — PSL(2,C) be non-gap-isospectral convex co-compact
representations that are connected by convex co-compact representations. Assume
without loss of generality that /iz > %,. If1.(T) > 1, then dimpee(NDiff, 5) = 2.
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