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Abstract. We provide a link between Anosov representations introduced by Labourie and dom-
inated splitting of linear cocycles. This allows us to obtain equivalent characterizations for
Anosov representations and to recover recent results due to Guéritaud–Guichard–Kassel–Wienhard
[GGKW] and Kapovich–Leeb–Porti [KLP2] by different methods. We also give characterizations
in terms of multicones and cone types inspired by the work of Avila–Bochi–Yoccoz [ABY] and
Bochi–Gourmelon [BG]. Finally, we provide a new proof of the higher rank Morse Lemma of
Kapovich–Leeb–Porti [KLP2].
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1. Introduction

The aim of this paper is to point out and exploit connections between the following two
areas:

1. linear representations of discrete groups;
2. differentiable dynamical systems.

More specifically, we show that Anosov representations are closely related to dominated
splittings. This relation allows us to recover some results about Anosov representations,
and to give new characterizations of them.

Anosov representations were introduced by Labourie [Lab] in his study of the Hitchin
component [Hit]. They provide a stable class of discrete faithful representations of word-
hyperbolic groups into semisimple Lie groups, which unifies examples of varying nature.
Since then, Anosov representations have become a prominent object of study, featuring
in various deep results (see for example [GW], the surveys [BCS, Wie] and references
therein). Recently, new characterizations of Anosov representations have been found in
[GGKW, KLP1, KLP2, KLP3], considerably simplifying the definition. It is now fairly
generally accepted that Anosov representations are a good generalization of convex co-
compact groups to higher rank.

In differentiable dynamical systems, the notion of hyperbolicity as introduced by
Anosov and Smale [Sma] plays a central role. Early on, it was noted that weaker forms of
hyperbolicity (partial, nonuniform, etc.) should also be studied: see [BDV] for a detailed
account. One of these is the notion of dominated splitting, which can be thought of as a
projective version of hyperbolicity: see Section 2.

As mentioned above, in this paper we benefit from the viewpoint of differentiable
dynamics in the study of linear representations. For example, it turns out that a linear
representation is Anosov if and only if its associated linear flow has a dominated splitting:
see Subsection 4.3 for the precise statements.

Let us summarize the content of this paper.
In Section 2 we describe the basic facts about dominated splittings that will be used

in the rest of the paper. We present the characterization of dominated splittings given by
[BG, Theorem A]. We rely on that theorem in different contexts throughout the paper.

In Section 3 we introduce dominated representations ρ of a given finitely generated
group 0 into GL(d,R). The definition is simple: we require the gap between some con-
secutive singular values to be exponentially large with respect to the word-length of the
group element, that is,

σp+1(ρ(γ ))

σp(ρ(γ ))
< Ce−λ|γ | for all γ ∈ 0,

for some constants p ∈ {1, . . . , d − 1} and C, λ > 0 independent of γ ∈ 0.
We show that the existence of dominated representations implies that the group 0

is word-hyperbolic: see Theorem 3.2. Word-hyperbolicity allows us to consider Anosov
representations, and in Section 4 we show that they are exactly the same as dominated rep-
resentations. Many of the results in Sections 3 and 4 are not new, appearing in the recent
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works of [GGKW] and [KLP1, KLP2, KLP3] with different terminology. Our proofs are
different and make use of the formalism of linear cocycles and most importantly of non-
trivial properties of dominated splittings. At the end of Section 4 we pose a few questions
where the connection with differentiable dynamics is manifest.

In Section 5 we give yet another equivalent condition for a representation to be
Anosov, which uses the sofic subshift generated by the cone types instead of the geodesic
flow of the group: see Theorem 5.9. This condition is very much inspired by [ABY, BG]
and provides nice ways to understand the variation of the limit maps, as well as a quite
direct method to check if a representation is dominated. This criterion is used in Section 6
to recover a basic result from [BCLS] on the analyticity of the limit maps for Anosov
representations: see Theorem 6.1.

Section 7 shows how [BG, Theorem A] implies a Morse-Lemma-type statement for
the symmetric space of PSL(d,R). That result is contained in the recent work of [KLP2],
but we provide a different approach. This section only relies on Section 2.

In Section 8 we replace GL(d,R) with a real-algebraic noncompact semisimple Lie
group. Representation theory of such groups allows one to reduce most of the general
statements to the corresponding ones in GL(d,R) by a fairly standard procedure. Never-
theless, more work is needed to obtain a Morse Lemma for symmetric spaces of noncom-
pact type; this occupies most of Section 8.

The sections are largely independent; dependence is indicated in Fig. 1.

2

3.1 7

3.2 to 3.7 4 5 8

6

Fig. 1. Dependence between sections.

The results of this paper were announced at [EHY].

2. Dominated splittings

In the 1970s, Mañé introduced the notion of dominated splitting, which played an impor-
tant role in his solution of Smale’s Stability Conjecture: see [Sam] and references therein.
Independently, dominated splittings had been studied in the theory of ordinary differential
equations by the Russian school at least since the 1960s, where they were called expo-
nential separation: see [Pa] and references therein. Dominated splittings continue to be
an important subject in dynamical systems [CP, Sam] and control theory [CK].
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2.1. Definition and basic properties of dominated splittings

Let X be a compact metric space. Let T be either Z or R. Consider a continuous action
of T on X, that is, a continuous family {φt : X → X}t∈T of homeomorphisms such that
φt+s = φt ◦ φs . We call {φt } a continuous flow.

Let E be a real vector bundle with projection map π : E → X and fibers Ex :=
π−1(x) of constant dimension d . We endow E with a Riemannian metric (that is, a con-
tinuous choice of an inner product on each fiber). Suppose {ψ t : E → E}t∈T is a contin-
uous action of T on E by automorphisms of the vector bundle that covers {φt }, that is,
π ◦ ψ t = φt ◦ π . So the restriction of ψ t to each fiber Ex is a linear automorphism ψ tx
onto Eφt (x). We say that {ψ t } is a linear flow which fibers over the continuous flow {φt }.

The simplest situation is when T = Z and the vector bundle is trivial, i.e.,E = X×Rd
and π(x, v) = x; in that case the linear flow {ψ t } is called a linear cocycle, and in order to
describe it, it is sufficient to specify the maps φ = φ1

: X → X and A : X → GL(d,R)
such that ψ1(x, v) = (φ(x), A(x)v). With some abuse of terminology, we sometimes call
the pair (φ,A) a linear cocycle.

Suppose that the vector bundle E splits as a direct sum Ecu
⊕ Ecs of continuous1

subbundles of constant dimensions.2 This splitting is called invariant under the linear
flow {ψ t } if for all x ∈ X and t ∈ T,

ψ t (Ecu
x ) = E

cu
φt (x), ψ t (Ecs

x ) = E
cs
φt (x).

Such a splitting is called dominated (with Ecu dominating Ecs) if there are constants
C, λ > 0 such that for all x ∈ X, t > 0, and unit vectors v ∈ Ecs

x , w ∈ Ecu
x we have

‖ψ t (v)‖

‖ψ t (w)‖
< Ce−λt . (2.1)

Note that this condition is independent of the choice of the Riemannian metric for the
bundle. It is actually equivalent to the following condition (see [CK, p. 156]): for all
x ∈ X and all unit vectors v ∈ Ecs

x , w ∈ Ecu
x we have

lim
t→+∞

‖ψ t (v)‖

‖ψ t (w)‖
= 0. (2.2)

The bundles of a dominated splitting are unique given their dimensions; more generally:

Proposition 2.1. Suppose a linear flow {ψ t } has dominated splittings Ecu
⊕ Ecs and

F cu
⊕ F cs, with Ecu (resp. F cu) dominating Ecs (resp. F cs). If dimEcu

≤ dimF cs then
Ecu
⊂ F cs and Ecs

⊃ Ecu.

See e.g. [CP] for a proof of this and other properties of dominated splittings.

1 In fact, continuity of the bundles follows from condition (2.1): see e.g. [CP].
2 cu and cs stand for center-unstable and center-stable respectively. This terminology is usual in

differentiable dynamics.
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One can also define domination for invariant splittings into more than two bundles.
This leads to the concept of finest dominated splitting, whose uniqueness is basically a
consequence of Proposition 2.1; see [BDP, CP].

The existence of a dominated splitting can be characterized in terms of cone fields
(see e.g. [CP]); we will use these ideas later in Section 5.

2.2. Domination in terms of singular values

Another indirect way to detect the existence of a dominated splitting can be formulated
in terms of the “nonconformality” of linear maps. Results of this kind were obtained in
[Yo, Len] for dimension 2, and later in [BG] in more generality.3 Let us explain this
characterization.

If A is a linear map between two inner product vector spaces of dimension d, then its
singular values

σ1(A) ≥ · · · ≥ σd(A)

are the eigenvalues of the positive semidefinite operator
√
A∗A, repeated according to

multiplicity. They equal the semiaxes of the ellipsoid obtained as the A-image of the unit
ball; this is easily seen by using the singular value decomposition [HJ, §7.3].

If p ∈ {1, . . . , d−1} and σp(A) > σp+1(A), then we say that A has a gap of index p.
In that case, we denote by Up(A) the p-dimensional subspace containing the p largest
axes of the ellipsoid {Av : ‖v‖ = 1}. Equivalently, Up(A) is the eigenspace of

√
AA∗

corresponding to the p largest eigenvalues. We also define Sd−p(A) := Ud−p(A−1). Note
that Sd−p(A)⊥ = A−1(Up(A)) and Up(A)⊥ = A(Sd−p(A)) (see Fig. 2).

Sd−p(A)

A
Up(A)

Fig. 2. Spaces associated to a linear map A.

The following theorem asserts that the existence of a dominated splitting can be de-
tected in terms of singular values, and also describes the invariant subbundles in these
terms:

Theorem 2.2 (Bochi–Gourmelon [BG]). Let T = Z or R. Let {ψ t }t∈T be a linear
flow on a vector bundle E, fibering over a continuous flow {φt }t∈T on a compact met-
ric space X. Then the linear flow {ψ t } has a dominated splitting Ecu

⊕ Ecs where the
dominating bundle Ecu has dimension p if and only if there exist c, λ > 0 such that for
every x ∈ X and t ≥ 0 we have

σp+1(ψ
t
x)

σp(ψ tx)
< ce−λt .

3 For a recent generalization to Banach spaces, see [BM].
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Moreover, the bundles are given by

Ecu
x = lim

t→+∞
Up(ψ

t
φ−t (x)

), (2.3)

Ecs
x = lim

t→+∞
Sd−p(ψ

t
x), (2.4)

and these limits are uniform.

(To make sense of the limits above it is necessary to metrize the Grassmann bundle asso-
ciated to E; the particular way of doing so is irrelevant to the statement.)

In [BG], the Multiplicative Ergodic Theorem of Oseledets is used to basically reduce
the proof of Theorem 2.2 to some angle estimates. Since we will explicitly need such esti-
mates in other parts of this paper, we will also present a sketch of the proof of Theorem 2.2
in §A.4.

Remark 2.3. Consider the case of complex vector spaces, bundles, etc. Dominated split-
tings can be defined analogously; so can singular values and the subspaces Up, Sd−p.
Theorem 2.2 also extends to the complex case; indeed, it can be deduced from the real
case.

2.3. Domination for sequences of matrices

Next, we describe some consequences of Theorem 2.2 for sequences of d × d matrices.4

Given K > 1, define the following compact set:

D(K) := {A ∈ GL(d,R) : ‖A‖ ≤ K, ‖A−1
‖ ≤ K}.

If I is a (possibly infinite) interval in Z, we endow D(K)I with the product topology,
which is compact and is induced e.g. by the following metric:

d((An), (Bn)) :=
∑
n∈I

2−|n|(‖An − Bn‖ + ‖A−1
n − B

−1
n ‖).

Let p ∈ {1, . . . , d − 1} and µ, c > 0. For each interval I ⊂ Z, let D(K, p,µ, c, I )
denote the set of sequences (An) ∈ D(K)I such that for allm, n ∈ I withm ≥ n we have

σp+1

σp
(Am · · ·An+1An) ≤ ce

−µ(m−n+1).

Let I = Z. Let ϑ denote the shift map on the space D(K, p,µ, c,Z), and let
A : D(K, p,µ, c,Z) → GL(d,R) denote the projection on the zeroth coordinate. The
pair (ϑ,A) determines a linear cocycle (in the sense explained in §2.1). Note that the
hypothesis of Theorem 2.2 is automatically satisfied. So we obtain:5

4 We note that similar sequences have been considered in [GGKW], namely sequences that have
what they call coarsely linear increments (CLI) in certain Cartan projections.

5 For a similar statement with different notation and not relying on Theorem 2.2, see [GGKW,
Theorem 5.3].
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Proposition 2.4. Fix constantsK > 1, p ∈ {1, . . . , d − 1}, and µ, c > 0. Then, for each
sequence x = (An) ∈ D(K, p,µ, c,Z), the limits

Ecu(x) := lim
n→+∞

Up(A−1A−2 · · ·A−n),

Ecs(x) := lim
n→+∞

Sd−p(An−1An−2 · · ·A0)

exist and are uniform over D(K, p,µ, c,Z). Moreover,Ecu
⊕Ecs is a dominated splitting

for the linear cocycle (ϑ,A) defined above.

By a compactness argument, the theorem above yields information for finite sequences of
matrices (throughout, N = {0, 1, 2, . . . }):

Lemma 2.5. GivenK > 1 and µ, c > 0, there exist `1 ∈ N and δ > 0 with the following
properties. Suppose I ⊂ Z is an interval and (Ai)i∈I is an element of D(K, p,µ, c, I ).
If n < k < m all belong to I and min{k − n,m− k} > `1 then

]
(
Up(Ak−1 · · ·An+1An), Sd−p(Am−1 · · ·Ak+1Ak)

)
> δ.

Proof. The proof is by contradiction. Assume that there exist numbers K > 1 and
µ, c > 0 and sequences j̀ → ∞ and δj → 0 such that for each j there exist an in-
terval Ij ⊂ Z, an element (A(j)i )i∈Ij of D(K, p,µ, c, Ij ), and integers nj < kj < mj in
Ij such that min{kj − nj , mj − kj } > j̀ and

]
(
Up(A

(j)

kj−1 · · ·A
(j)
nj ), Sd−p(A

(j)

mj−1 · · ·A
(j)
kj
)
)
≤ δj .

Shifting indices, we can assume that kj = 0 for every j . By a diagonal argument, passing
to subsequences we can assume that for each i ∈ Z, the matrices A(j)i (which are defined
for sufficiently large j ) converge to some matrix Ai as j → ∞. The resulting sequence
x = (Ai)i∈Z belongs to D(K, p,µ, c,Z). If Ecu(x) and Ecs(x) are the limit spaces as in
Proposition 2.4, then their angle is zero, which contradicts domination. ut

3. Domination implies word-hyperbolicity

In this section, we define dominated linear representations of a finitely generated group,
and prove that groups that admit such representations are word-hyperbolic.

3.1. Dominated representations and the word-hyperbolicity theorem

Let 0 be a finitely generated group. Fix a symmetric generating set S of 0. We denote
by |γ | the word-length of γ ∈ 0, i.e. the minimum number of elements of S required to
obtain γ as a product of elements of S. The word-metric is defined as

d(γ, η) := |η−1γ |. (3.1)

Then the action of 0 into itself by left multiplication is isometric.
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Recall that the group 0 is called word-hyperbolic if it is a Gromov-hyperbolic metric
space when endowed with the word-metric (3.1); this does not depend on the choice of
the generating set S (see [Gr, CDP, GH, BH]).

A representation ρ : 0→ GL(d,R) is p-dominated if there exist constants C, λ > 0
such that

σp+1(ρ(γ ))

σp(ρ(γ ))
≤ Ce−λ|γ | for all γ ∈ 0. (3.2)

It is easy to see that the definition does not depend on the choice of S though the constants
C and λ may change.

Remark 3.1. Since σi(A) = σd+1−i(A
−1)−1 for each i, the property |γ−1

| = |γ | im-
plies that if a representation ρ is p-dominated, then it is also (d − p)-dominated.

The purpose of this section is to show:

Theorem 3.2. If a group 0 admits a p-dominated representation in GL(d,R) then 0 is
word-hyperbolic.

Theorem 3.2 follows from a more general result recently obtained by Kapovich, Leeb, and
Porti [KLP2, Theorem 1.4]. Their result concerns not only dominated representations, but
quasi-isometric embeddings of metric spaces satisfying a condition related to domination.
Here we use the results from Section 2 to give a direct and more elementary proof.

Let us mention that a related but different notion of domination was recently studied
by other authors [DT, GKW].

Remark 3.3 (Representations in SL(d,R)). Given a representation with target group
GL(d,R), we can always assume that it has its image contained in matrices with deter-
minant ±1 by composing with the homomorphism A 7→ |detA|−1/dA, which does not
affect p-domination.

Remark 3.4 (Representations in PGL(d,R)). We can define p-dominated representa-
tions in PGL(d,R) in exactly the same way, since the quotients σp+1/σp are well-defined
in the latter group. Obviously, composing any p-dominated representation in GL(d,R)
with the quotient map π : GL(d,R) → PGL(d,R) we obtain a p-dominated represen-
tation. Conversely, given any p-dominated representation ρ : 0 → PGL(d,R), we can
find a group 0̂, a 2-to-1 homomorphism f : 0̂ → 0, and a p-dominated representation
ρ̂ : 0̂→ GL(d,R) (with determinants ±1) such that π ◦ ρ̂ = f ◦ ρ. Theorem 3.2 shows
that 0̂ is word-hyperbolic, and it follows (see [GH, p. 63]) that 0 is word-hyperbolic
as well.

Remark 3.5 (General semisimple Lie groups). By using exterior powers, any p-domi-
nated representation in GL(d,R) induces a 1-dominated representation in GL(k,R) for
k =

(
d
p

)
. In Subsection 8.5 we shall see that every representation ρ : 0 → G, where G

is an arbitrary (real-algebraic noncompact) semisimple Lie group, can be reduced to the
case of PGL(d,R) for some d via a similar construction.
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Remark 3.6. Given Theorem 3.2, one may wonder whether every hyperbolic group ad-
mits a dominated representation. This is far from true, since there exist hyperbolic groups
that are nonlinear, i.e. every linear representation of such a group factors through a finite
group: see [Kap, Section 8]. On the other hand, one can ask if every linear hyperbolic
group admits a dominated representation.

3.2. Criterion for hyperbolicity

In order to show word-hyperbolicity the following sufficient condition will be used:

Theorem 3.7 (Bowditch [Bow]). Let 0 be a group which acts by homeomorphisms on
a perfect compact metrizable topological spaceM in such a way that the diagonal action
of 0 on the (nonempty) space

M(3)
:= {(x1, x2, x3) ∈ M

3
: xi 6= xj if i 6= j}

is properly discontinuous and cocompact. Then 0 is word-hyperbolic.

We recall that a continuous action of 0 on a topological space X is:

• properly discontinuous if given any compact subset K ⊂ X there exists n such that if
|γ | > n then γK ∩K = ∅;
• cocompact if there exists a compact subset K ⊂ X such that 0x ∩ K 6= ∅ for every
x ∈ X.

Remark 3.8. Theorem 3.7 also implies that the set M is equivariantly homeomorphic
to ∂0. Here ∂0 denotes the visual boundary of the group 0, defined as the set of equiv-
alence classes of quasi-geodesic rays (i.e. quasi-geodesic maps from N to 0) under the
equivalence relation defined as being at finite Hausdorff distance from each other; see for
example [GH, Chapitre 7] or [CDP, Chapitre 2]). The topology in ∂0 is given by point-
wise convergence of the quasi-geodesic rays with the same constants and starting at the
same point. In Section 6 we will also comment on the metric structure on the boundary.

A group is called elementary if it is finite or virtually cyclic; elementary groups are triv-
ially word-hyperbolic.

The converse of Theorem 3.7 applies to nonelementary word-hyperbolic groups. In
the proof of Theorem 3.2 we must separate the case where the group is elementary, since
elementary groups may admit dominated representations while Theorem 3.7 does not
apply to them.

3.3. Some preliminary lemmas for p-dominated representations

The Grassmannian Gp(Rd) is the set of all p-dimensional subspaces of Rd . As we explain
in detail in the Appendix, the following formula defines a metric on the Grassmannian:

d(P,Q) := cos](P⊥,Q);
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here ⊥ denotes orthogonal complement, and ] denotes the smallest angle between pairs
of vectors in the respective spaces. The Appendix also contains a number of quantitative
linear-algebraic estimates that we use in this section.

In particular, in the Appendix there are precise statements and proofs of the following
results we will use:

• Lemmas A.4 and A.5 estimate the distance from Up(A) to Up(AB) and from BUp(A)

to Up(BA) in terms of the norms of B±1 and the gaps between singular values of A.
Lemma A.12 is a reinterpretation of these facts in terms of dominated sequences of
matrices.
• Lemma A.6 shows that if there is a large gap between the p-th and p + 1-th singular

values of A then AP will be close to Up(A) for every P which makes a given angle
with Sd−p(A).
• Lemma A.10 estimates the dilatation of the action of A in Gp(Rd) for subspaces far

from the subspace which is mapped to Up(A).
• Corollary A.14 is a consequence of classical properties of dominated splittings in the

context of sequences of matrices in D(K, p,µ, c,N).
Throughout the rest of this section, let ρ : 0 → GL(d,R) be a p-dominated representa-
tion with constants C ≥ 1 and λ > 0 (cf. (3.2)). Let

K := max
g∈S
‖ρ(g)‖ ≥ 1, (3.3)

where S is the finite symmetric generating set of 0 fixed before. Also fix `0 ∈ N such that

Ce−λ`0 < 1, (3.4)

and in particular (recalling the notation introduced in §2.2) the spacesUp(ρ(γ ))∈Gp(Rd)
and Sd−p(ρ(γ )) ∈ Gd−p(Rd) are well-defined whenever |γ | ≥ `0.

Suppose that γ , η are large elements in 0 such that the spacesUp(ρ(γ )) andUp(ρ(η))
are not too close; then the next two lemmas respectively assert that d(γ, η) is comparable
to |γ | + |η|, and that Up(ρ(γ )) and Sd−p(ρ(η−1)) are transverse.

Lemma 3.9. There exist constants ν ∈ (0, 1) and c0, c1 > 0 with the following proper-
ties. If γ, η ∈ 0 are such that |γ |, |η| ≥ `0 (where `0 is as in (3.4)) then

d(γ, η) ≥ ν(|γ | + |η|)− c0 − c1
∣∣log d

(
Up(ρ(γ )), Up(ρ(η))

)∣∣.
Proof. Let γ, η ∈ 0, each with word-length at least `0. Assume |γ | ≤ |η|, the other case
being analogous. Applying Lemma A.4 to A = ρ(η) and B = ρ(η−1γ ), and using (3.2)
and (3.3), we obtain

d
(
Up(ρ(η)), Up(ρ(γ ))

)
≤ K2|η−1γ | Ce−λ|η|, (3.5)

or equivalently

d(γ, η) = |η−1γ | ≥
λ|η| − logC −

∣∣log d
(
Up(ρ(η)), Up(ρ(γ ))

)∣∣
2 logK

.

Using |η| ≥ (|γ | + |η|)/2, we obtain the lemma. ut
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Lemma 3.10. For every ε > 0 there exist `1 ≥ `0 and δ ∈ (0, π/2) with the following
properties: If γ, η ∈ 0 are such that

(i) |γ |, |η| > `1, and
(ii) d(Up(ρ(γ )), Up(ρ(η))) > ε,

then ](Up(ρ(γ )), Sd−p(ρ(η−1))) > δ.

Proof. Let γ, η ∈ 0, each with word-length at least `0. Let ε > 0, and suppose the
hypothesis (ii) is satisfied. Write γ = g1 · · · gn with each gi in the symmetric generating
set of 0 and with n minimal, that is, n = |γ |. Similarly, write η = h1 · · ·hm with each hi
in the symmetric generating set of 0 and with |η| = m.

Let γi := g1 · · · gi and ηi := h1 · · ·hi . Note that for j > i we have d(γi, γj ) =
|γ−1
i γj | = |gi+1 · · · gj | = j − i so that the sequence {γi} is a geodesic from id to γ . The

same holds for {ηi} (but note that {η−1
i } is not necessarily a geodesic).

By the domination condition (3.2) and Lemma A.12, we can find `∗ = `∗(ε) > `0
such that if n ≥ i > `∗ then

d
(
Up(ρ(γi)), Up(ρ(γ ))

)
< ε/3,

and analogously if m ≥ j > `∗ then

d
(
Up(ρ(ηj )), Up(ρ(η))

)
< ε/3.

In particular, if both conditions hold then hypothesis (ii) implies that

d
(
Up(ρ(γi)), Up(ρ(ηj ))

)
> ε/3. (3.6)

Let ν ∈ (0, 1) and c0, c1 be given by Lemma 3.9. Let c := max{2`∗, c0+c1 log(3/ε)}.
We claim that

d(γi, ηj ) = |η
−1
j γi | ≥ ν(i + j)− c for all i ∈ {1, . . . , n}, j ∈ {1, . . . , m}. (3.7)

To prove this, consider first the case when j ≤ `∗. Then

d(γi, ηj ) ≥ d(γi, id)− d(ηj , id) = i − j ≥ i + j − 2`∗ ≥ ν(i + j)− c,

as claimed. The case i ≤ `∗ is dealt with analogously. The remaining case where i and j
are both bigger than `∗ follows from Lemma 3.9 and property (3.6). This proves (3.7).

As a consequence of (3.2) and (3.7), we obtain

σp+1

σp
(η−1
j γi) ≤ Ĉe

−µ(i+j) for all i ∈ {1, . . . , n}, j ∈ {1, . . . , m}, (3.8)

where Ĉ := Ceλc and µ := λν. Now consider the following sequence of matrices:

(A−n, . . . , A−1, A0, A1, . . . , Am−1)

:=
(
ρ(gn), . . . , ρ(g1), ρ(h

−1
1 ), ρ(h−1

2 ), . . . , ρ(h−1
m )

)
.
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So A−1A−2 · · ·A−i = ρ(γi) and Aj−1Aj−2 · · ·A0 = ρ(η
−1
j ). It follows from (3.2) and

(3.8), together with the facts that Ĉ > C and µ < λ, that the above sequence of matrices
belongs to the set D(K, p,µ, Ĉ, I ), where I := {−n, . . . , m − 1} and K is defined
by (3.3). Now let `1 and δ be given by Lemma 2.5. Then

]
(
Up(A−1 · · ·A−n), Sd−p(Am−1 · · ·A0)

)
> δ

provided that |γ | = n and |η| = m are both bigger than `1. This concludes the proof. ut

3.4. Candidate for boundary of 0

In this subsection we define a candidate forM in Theorem 3.7 using the domination of the
representation and show some of the topological properties ofM required in Theorem 3.7.
The set we shall consider is

M :=
⋂
n≥`0

{Up(ρ(γ )) : |γ | ≥ n} ⊂ Gp(Rd), (3.9)

where `0 is as in (3.4). This set has been considered before and named limit set by Benoist
(see [Be, Section 6]) in the Zariski dense context and extended in [GGKW, Definition 5.1]
to a more general setting.

The first properties to be established about M are the following:

Proposition 3.11. The set M is compact, nonempty, and ρ(0)-invariant.

Proof. The fact that M is compact and nonempty follows at once since it is a decreasing
intersection of nonempty closed subsets of the compact space Gp(Rd).

Let us show that M is ρ(0)-invariant. Fix η ∈ 0 and P ∈ M . Choose a sequence
(γn) in 0 such that |γn| → ∞ and Up(ρ(γn))→ P . Note that the spaces Up(ρ(ηγn)) are
defined for large enough n (namely, whenever |γn| ≥ `0+|η|); moreover, by Lemma A.5
and the domination condition (3.2), we have

d
(
ρ(η)Up(ρ(γn)), Up(ρ(ηγn))

)
≤ ‖ρ(η)‖ ‖ρ(η)−1

‖Ce−λ|γn|→ 0 as n→∞.

This shows that Up(ρ(ηγn))→ ρ(η)P as n→∞, and in particular ρ(η)P ∈ M , as we
wished to prove. ut

If one manages to show that M(3) is nonempty then one of the assumptions of Theo-
rem 3.7 is satisfied:

Lemma 3.12. If the set M has at least three points then it is perfect.

We first show the following lemma:

Lemma 3.13. Given ε, ε′ > 0, there exists ` > `0 (where `0 is as in (3.4)) with the
following properties: If η ∈ 0 is such that |η| > ` and P ∈ M is such that

d
(
P, Up(ρ(η

−1))
)
> ε,

then
d
(
ρ(η)P, Up(ρ(η))

)
< ε′.
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Proof. Let `1 ≥ `0 and δ > 0 be given by Lemma 3.10, depending on ε. Let ` > `1 be
such that Ce−λ` < (ε′ sin δ)/2, where C and λ are the domination constants, as in (3.2).
Now fix η ∈ 0 and P ∈ M such that |η| > ` and d(P,Up(ρ(η−1))) > ε. Choose a
sequence (γn) in 0 such that |γn| → ∞ and Up(ρ(γn))→ P . Without loss of generality,
we can assume that for each n we have |γn| > `1 and

d
(
Up(ρ(γn)), Up(ρ(η

−1))
)
> ε.

It follows from Lemma 3.10 that

]
(
Up(ρ(γn)), Sd−p(ρ(η))

)
> δ.

Using Lemma A.6 and the domination condition (3.2), we obtain

d
(
ρ(η)(Up(ρ(γn))), Up(ρ(η))

)
<
σp+1

σp
(ρ(η))

1
sin δ

<
ε′

2
.

Letting n→∞ yields d(ρ(η)P,Up(ρ(η))) ≤ ε′/2. ut

Proof of Lemma 3.12. Let P1, P2, P3 be distinct points in M , and let ε′ > 0. We will
show that the 2ε′-neighborhood of P1 contains another element of M .

Let ε := 1
2 mini 6=j d(Pi, Pj ). Let ` > `0 be given by Lemma 3.13, depending on ε

and ε′. Choose η ∈ 0 such that |η| > ` and d(Up(ρ(η)), P1) < ε′. Consider the space
Up(ρ(η

−1)); it can be ε-close to at most one of the spaces P1, P2, P3. In other words,
there are different indices i1, i2 ∈ {1, 2, 3} such that for each j ∈ {1, 2} we have

d
(
Pij , Up(ρ(η

−1))
)
> ε.

In particular, by Lemma 3.13,

d(ρ(η)Pij , P1) ≤ d
(
ρ(η)Pij , Up(ρ(η))

)
+ ε′ < 2ε′.

By Proposition 3.11, the spaces ρ(η)Pi1 and ρ(η)Pi2 belong to M . Since at most one of
them can be equal to P1, we conclude that the 2ε′-neighborhood of P1 contains another
element of M , as we wished to prove. ut

So we would like to ensure thatM has at least three points (provided 0 is nonelementary).
This requires some preliminaries. First, we show the following estimate:

Lemma 3.14. M has at least two elements.

Proof. Using Lemma 2.5 we can find `1 ∈ N and δ > 0 such that if γ , η ∈ 0 have
lengths both bigger than `1, and |ηγ | = |η| + |γ |, then

]
(
Up(ρ(γ )), Sd−p(ρ(η))

)
> δ. (3.10)

We already know that M is nonempty, so assume for a contradiction that it is a
singleton {P }. Take n > `1 such that if an element γ ∈ 0 has length |γ | > n then
d(Up(ρ(γ )), P ) <

1
2 sin δ. Now fix arbitrary elements γ , η ∈ 0 with lengths both bigger

than `1 such that |ηγ | = |η| + |γ |. Then d(Up(ρ(γ )), Up(ρ(η−1))) < sin δ. The space
Up(ρ(η

−1)) either contains or is contained in Ud−p(ρ(η−1)) = Sd−p(ρ(η)). Using the
trivial bound (A.4), we contradict (3.10). ut
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Recalling Remark 3.3, assume for convenience for the remainder of this subsection that

|det ρ(γ )| = 1 for every γ ∈ 0.

Let jac(·) denote the jacobian of a linear map, i.e., the product of its singular values. The
next step is to prove the expansion property expressed by the following lemma:

Lemma 3.15. There exists a constant ` ∈ N such that for every γ ∈ 0 with length
|γ | ≥ ` there exists P ∈ M such that jac(ρ(γ )|P ) ≥ 2.

Proof. As a rephrasing of Lemma 3.14, there exists ε > 0 such that for each Q ∈ M
there exists P ∈ M such that d(P,Q) > 2ε. Let `1 ≥ `0 and δ ∈ (0, π/2) be given by
Lemma 3.10, depending on ε. Let

δ′ := min 1
2 {ε, 1− cos δ}.

Let `2 ≥ `1 be such that the setsM and
{
Up(ρ(γ )) : γ ∈ 0, |γ | ≥ `

}
are each contained

in the δ′-neighborhood of the other. Fix a large ` ≥ `2; how large will be clear at the end.
Now fix γ ∈ 0 with length |γ | ≥ `. Take Q ∈ M such that d(Q,Up(ρ(γ−1))) < δ′.

Let P ∈ M with d(P,Q) > 2ε. Let η ∈ 0 be such that |η| ≥ ` and d(P,Up(ρ(η))) < δ′.
Then

d
(
Up(ρ(η)), Up(ρ(γ

−1))
)
≥ d(P,Q)− d

(
Up(ρ(η)), P

)
− d

(
Q,Up(ρ(γ

−1))
)

> 2ε − 2δ′ > ε.

Therefore Lemma 3.10 guarantees that

]
(
Up(ρ(η)), Sd−p(ρ(γ ))

)
> δ.

So, by identity (A.8),

cos]
(
P, Sd−p(ρ(γ ))

)
= d

(
P, Sd−p(ρ(γ ))

⊥
)

≤ d
(
P,Up(ρ(η))

)
+ d

(
Up(ρ(η)), Sd−p(ρ(γ ))

⊥
)

= d
(
P,Up(ρ(η))

)
+ cos]

(
Up(ρ(η)), Sd−p(ρ(γ ))

)
≤ δ′ + cos δ < 1.

Write A := ρ(γ ) for simplicity. We must estimate the jacobian of A|P . We will use some
facts about exterior powers: see Subsection A.5. Let ι(P ) ∈ G1(3

pRd) be the image of
P under the Plücker embedding, and take a nonzero w ∈ ι(P ). Then

jac(A|P ) =
‖(3pA)w‖

‖w‖
(by (A.16))

≥ σ1(3
pA) sin]

(
w, S(dp)−1(3

pA)
)

(by (A.11))

= σ1(A) · · · σp(A) sin]
(
ι(P ), ι(Sd−p(A)

⊥)⊥
)

(by (A.19) and (A.22))

≥ σ1(A) · · · σp(A)[sin](P, Sd−p(A))]min{p,d−p} (by (A.18))



Anosov representations and dominated splittings 3357

The sine can be bounded from below by a positive constant. On the other hand, since the
product of the singular values of A is |detA| = 1, we have

σ1(A) · · · σp(A) =
[σ1(A) · · · σp(A)]

(d−p)/d

[σp+1(A) · · · σd(A)]p/d
≥

[
σp(A)

σp+1(A)

]p(d−p)/d
,

which is exponentially large with respect to |γ | ≥ `. We conclude that jac(A|P ) ≥ 2 if `
is large enough. ut

As a last digression, we show that virtually abelian groups cannot have a dominated rep-
resentation unless they are virtually cyclic.

Lemma 3.16. Let ρ : 0→ GL(d,R) be a p-dominated representation. Let 0′ be a finite-
index subgroup of 0, and let m ≥ 2. Then there exists no surjective homomorphism
ϕ : 0′→ Zm with finite kernel.

Proof. Assume for a contradiction that 0 contains a subgroup 0′ which admits a homo-
morphism ϕ onto Zm with finite kernel, where m ≥ 2. Let Z be the standard symmetric
generating set for Zm, with cardinality 2m; then ϕ−1(Z) is a finite symmetric generating
set for 0′. Since 0′ is a finite-index subgroup of 0, the inclusion 0′ ↪→ 0 is a quasi-
isometry (using e.g. the Švarc–Milnor lemma [BH, Proposition I.8.19]), and therefore the
restriction of ρ to 0′ is p-dominated. For simplicity of notation, we assume that 0 = 0′,
with generating set S = ϕ−1(Z). Fix constants C, λ, K , and `0 satisfying (3.2)–(3.4).

Fix g ∈ 0 such that ϕ(g) ∈ Z, say (1, 0, . . . , 0). Since the representation is p-
dominated and (gn)n∈Z is a geodesic in 0, it follows from Lemma 2.5 that there exist
`1 > `0 and δ > 0 such that

]
(
Up(ρ(g

n)), Sd−p(ρ(g
n))
)
> δ for all n > `1.

The space Sd−p(ρ(gn)) = Ud−p(ρ(g−n)) either contains or is contained in Up(ρ(g−n));
so the trivial bound (A.4) yields

d
(
Up(ρ(g

n)), Up(ρ(g
−n))

)
≥ sin δ for all n > `1. (3.11)

Fix n > `1. Since m ≥ 2, we can find γ0, γ1, . . . , γ4n ∈ 0 with the following
properties:

γ0 = g
n, γ4n = g

−n, |γ−1
i+1γi | = 1, |γi | ≥ n.

Indeed, we can take a preimage under ϕ of an appropriate path in Zm, sketched in Fig. 3
for the case m = 2.

(n, 0)(−n, 0)

Fig. 3. A path in Z2.



3358 Jairo Bochi et al.

Now we estimate

d
(
Up(ρ(g

n)), Up(ρ(g
−n))

)
≤

4n−1∑
i=0

d
(
Up(ρ(γi)), Up(ρ(γi+1))

)
≤

4n−1∑
i=0

K2|γ−1
i+1γi |Ce−λ|γi | (by estimate (3.5))

≤ 4nK2Ce−λn.

Taking n large enough, we contradict (3.11). This proves the lemma. ut

Now we are ready to obtain the last topological property of M required by Theorem 3.7.
(Later we will have to check the hypotheses about the action on M(3).) Recall that 0 is
elementary if it is finite or virtually cyclic (i.e. virtually Z).

Proposition 3.17. If 0 is nonelementary then the set M is perfect.

Proof. By Lemma 3.12, it is enough to show thatM is infinite. Recall thatM is nonempty.
We assume for a contradiction that M is finite, say M = {P1, . . . , Pk}.

By Proposition 3.11, the setM is ρ(0)-invariant. Consider the set 0′ ⊂ 0 of those el-
ements such that ρ(γ )Pi = Pi for all i. Then 0′ is a finite-index subgroup of 0. Consider
the map ϕ : 0′→ Rk defined by

0′ 3 γ 7→ (log jac(ρ(γ )|Pi ))i=1,...,k.

Invariance of the subspaces Pi implies that the jacobian is multiplicative and so ϕ is a
homomorphism. By Lemma 3.15, the kernel of ϕ is finite. On the other hand, the image
of ϕ is a subgroup of Rk and therefore is abelian, without torsion, and finitely generated
(since so is 0′); therefore this image is isomorphic to some Zm. Lemma 3.16 now yields
m = 1, and so 0 is elementary. This contradiction concludes the proof. ut

3.5. Proper discontinuity

Given a triple T = (P1, P2, P3) ∈ M
(3), let

|T | := min
i 6=j

d(Pi, Pj ). (3.12)

Note that for any δ > 0, the set {T ∈ M(3)
: |T | ≥ δ} is a compact subset of M(3);

conversely, every compact subset of M(3) is contained in a subset of that form.

Proposition 3.18. For every δ > 0 there exists ` ∈ N such that if T ∈ M(3) satisfies
|T | > δ and η ∈ 0 satisfies |η| > `, then |ρ(η)T | < δ.

Proof. Given δ > 0, let ` be given by Lemma 3.13 with ε = ε′ = δ/2. Now con-
sider (P1, P2, P3) ∈ M(3) such that |T | > δ and η ∈ 0 such that |η| > `. Note
that d(Up(η−1), Pi) > δ/2 for at least two of the spaces P1, P2, P3, say P1 and P2.
Lemma 3.13 yields d(ρ(η)Pi, Up(ρ(η))) < δ/2 for each i = 1, 2. In particular,
d(ρ(η)P1, ρ(η)P2) < δ and so |ρ(η)T | < δ, as we wanted to show. ut
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3.6. Cocompactness

The purpose of this subsection is to prove the following proposition which will complete
the proof of Theorem 3.2. Recall notation (3.12).

Proposition 3.19. There exists ε > 0 such that for every T ∈ M(3) there exists γ ∈ 0
such that |ρ(γ )T | ≥ ε.

We need some preliminaries. Recall that a geodesic ray from the identity is a sequence
(ηj )j≥0 such that η0 = id, ηj = g1 · · · gj where each gj belongs to S (the fixed symmetric
generating set of 0), and |ηj | = j . Then we have the following characterization of M:

Lemma 3.20. For every P ∈ M there exists a geodesic ray (ηj )j≥0 from the identity such
that Up(ρ(ηj ))→ P as j →∞.

Proof. Fix P ∈ M . By definition, there exists a sequence (γi) in 0 with ni := |γi | → ∞
such thatUp(ρ(γi))→ P . We can assume that n1 < n2 < · · · . Write each γi as a product
of elements of S, say γi = g

(i)
1 g

(i)
2 · · · g

(i)
ni . By a diagonal argument, we can assume that

each of the sequences (g(i)j )i stabilizes; more precisely, for every j ≥ 1 there exist gj ∈ S

and kj such that nkj ≥ j and g(i)j = gj for every i ≥ kj .
Consider the geodesic ray (ηj ) defined by ηj := g1 · · · gj . Let ij := max{k1, . . . , kj }.

We will prove that

d
(
Up(ρ(ηj )), Up(ρ(γij ))

)
→ 0, (3.13)

which has the desired property Up(ρ(ηj ))→ P as a consequence.
Consider the truncated products γ [j ]i := g

(i)
1 g

(i)
2 · · · g

(i)
j . Using Lemma A.4 and the

fact that the representation ρ is p-dominated (or equivalently using estimate (3.5)), we see
that d(Up(ρ(γ

[j ]
i )), Up(ρ(γ

[j+1]
i ))) can be bounded by a quantity exponentially small

with respect to j and independent of i. Therefore d(Up(ρ(γ
[j ]
i )), Up(ρ(γi))) is also ex-

ponentially small with respect to j . Applying this to i = ij , we obtain (3.13). ut

Lemma 3.21 (Expansivity). There exist constants δ > 0 and ` ∈ N with the following
properties. For every P ∈ M there exists γ ∈ 0 with |γ | ≤ ` such that if P ′, P ′′ belong
to the δ-neighborhood of P in Gp(Rd) then

d(ρ(γ )P ′, ρ(γ )P ′′) ≥ 2d(P ′, P ′′).

Proof. By compactness of M , it is sufficient to prove that for every P ∈ M there exists
γ ∈ 0 such that if P ′, P ′′ belong to a sufficiently small neighborhood of P in Gp(Rd)
then d(ρ(γ )P ′, ρ(γ )P ′′) ≥ 2d(P ′, P ′′).

Given P ∈ M , by Lemma 3.20 there exists a geodesic ray (ηn) such that Up(ρ(ηn))
→ P . Write ηn = g1 · · · gn, where each gn is in S. Consider the sequence of matrices
(A0, A1, . . . ) given by An := ρ(g−1

n−1). By the domination condition (3.2), the sequence
belongs to some D(µ, c,K, d − p,N). Note that Sp(An−1 · · ·A0) equals Up(ρ(ηn)) and
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therefore converges to P . Applying Corollary A.14 to the sequence of matrices, we find
P̃ ∈ Gd−p(Rd) such that, for all n ≥ 0,

](ρ(η−1
n )P̃ , ρ(η−1

n )P ) ≥ α,
‖ρ(η−1

n )|P ‖

m(ρ(η−1
n )|

P̃
)
< c̃e−µ̃n,

where α, c̃, µ̃ are positive constants that do not depend on P . Let b > 0 be given by
Lemma A.10, depending on α. Fix k such that bc̃−1eµ̃k > 2, and let γ := η−1

k . Apply-
ing Lemma A.10 to A := ρ(γ ), we conclude that for all P ′, P ′′ in a sufficiently small
neighborhood of P in Gp(Rd) we have

d(ρ(γ )P ′, ρ(γ )P ′′) ≥ 2d(P ′, P ′′),

as we wanted to show. ut

Proof of Proposition 3.19. Let δ and ` be given by Lemma 3.21. Let

ε := inf {d(ρ(γ )P, ρ(γ )P ′) : γ ∈ 0, |γ | ≤ `, P, P ′ ∈ Gp(Rd), d(P, P ′) ≥ δ/2}.

So 0 < ε ≤ δ/2. We claim that

∀T ∈ M(3)
∃γ ∈ 0, |ρ(γ )T | ≥ min{2|T |, ε}. (3.14)

Indeed, given T = (P1, P2, P3) ∈ M
(3), we can suppose that |T | < ε, otherwise we

simply take γ = id. Permuting indices if necessary we can assume that d(P1, P2) = |T |.
We apply Lemma 3.21 and find γ ∈ 0 such that the action of ρ(γ ) on Nδ(P1) (the δ-
neighborhood of P1) expands distances by a factor of at least 2. Since ε ≤ δ/2, for each
pair {i 6= j} ⊂ {1, 2, 3} we have

{Pi, Pj } ⊂ Nδ(P1) or d(Pi, Pj ) ≥ δ/2.

So d(ρ(γ )Pi, ρ(γ )Pj ) ≥ min{2|T |, ε}, thus proving the claim (3.14). Now the proposi-
tion follows by an obvious recursive argument. ut

3.7. Conclusion

Now we join the pieces and obtain the main result of this section:
Proof of Theorem 3.2. Consider a p-dominated representation ρ : 0→ GL(d,R). If 0 is
an elementary group then it is word-hyperbolic and there is nothing to prove. So assume
that 0 is nonelementary. Using the representation ρ, we define an action of 0 on Gp(Rd).
Consider the setM ⊂ Gp(Rd) defined by (3.9), which is perfect (by Proposition 3.17) and
invariant under the action of 0 (by Proposition 3.11). The diagonal action of 0 on M(3)

is properly discontinuous (by Proposition 3.18) and cocompact (by Proposition 3.19).
Therefore Theorem 3.7 ensures that 0 is word-hyperbolic. ut

4. Anosov representations and dominated representations

The main goal of this section is to show that being p-dominated (cf. condition (3.2)) and
satisfying the Anosov condition as defined by Labourie [Lab] (and extended by Guichard–
Wienhard [GW] to arbitrary hyperbolic groups) are equivalent. That equivalence (among



Anosov representations and dominated splittings 3361

others things) is contained in the results of [KLP1, KLP2, KLP3]. Our approach also
yields a slightly different characterization directly related to dominated splittings (see
Proposition 4.6).

In the final subsection we discuss relations to characterizations of [GGKW], and pose
some questions.

We first introduce the notion of Anosov representation in GL(d,R), which requires
introducing the geodesic flow of a hyperbolic group.

4.1. The geodesic flow

In order to define the Anosov property for a representation of a hyperbolic group, we need
to recall the Gromov geodesic flow of 0.

Given a word-hyperbolic group 0 we can define its visual boundary ∂0 (cf. Re-
mark 3.8). Denote ∂(2)0 := {(x, y) ∈ ∂0 × ∂0 : x 6= y}. We define a flow on the
space Ũ0 := ∂(2)0 × R, called the lifted geodesic flow, by φ̃t (x, y, s) := (x, y, s + t).

A function c : 0 × ∂(2)0→ R such that

c(γ0γ1, x, y) = c(γ0, γ1(x, y))+ c(γ1, x, y) for any γ0, γ1 ∈ 0 and (x, y) ∈ ∂(2)0

is called a cocycle. Recall that every infinite order element γ ∈ 0 acts on ∂0 leaving only
two fixed points, an attractor γ+ and a repeller γ−. Let us say that a cocycle c is positive
if c(γ, γ−, γ+) > 0 for every such γ .

Given a cocycle, we can define an action of 0 on Ũ0 by γ ·(x, y, s) = (γ ·x, γ ·y, s−
c(x, y, γ )), which obviously commutes with the lifted geodesic flow. Gromov [Gr] (see
also [Mat, Ch, Mi]) proved that there exists a positive cocycle such that the latter action
is properly discontinuous and cocompact. This allows us to define the geodesic flow φt

of 0 on U0 := Ũ0/0, the unit tangent bundle of 0.
There is a metric on Ũ0, well-defined up to Hölder equivalence, such that 0 acts by

isometries, the lifted geodesic flow acts by bi-Lipschitz homeomorphisms, and its flow
lines are quasi-geodesics.

Remark 4.1. If 0 = π1(M) is the fundamental group of a negatively curved closed
manifold M then the geodesic flow on the unit tangent bundle UM is hyperbolic and
equivalent to the abstract geodesic flow defined above. In that case, the unit tangent bundle
of the universal cover M̃ is homeomorphic to Ũ0 by means of the Hopf parametrization.
For details, see [Led].

Lemma 4.2. For any compact set K ⊂ Ũ0, there exist a > 0 and κ > 1 such that if
t ∈ R and γ ∈ 0 satisfy

φ̃t (K) ∩ γ (K) 6= ∅

then
κ−1
|t | − a ≤ |γ | ≤ κ|t | + a.

Proof. Take a ball B(u0, r) containingK . From the construction (see e.g. [Mat, Theorem
IV.1(ii)] or [Mi]) of the metric in Ũ0 one deduces that the map 0 3 γ 7→ γ u0 ∈ Ũ0 is a
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quasi-isometry, so there exist κ > 1 and b > 0 such that for all γ1, γ2 ∈ 0 we have

κ−1d(γ1, γ2)− b ≤ d(γ1u0, γ2u0) ≤ κd(γ1, γ2)+ b.

In particular,
κ−1
|γ | − b ≤ d(γ u0, u0) ≤ κ|γ | + b.

Now assume that t and γ satisfy φ̃t (K) ∩ γ (K) 6= ∅, that is, there exist u1, u2 ∈ K such
that φ̃tu1 = γ u2. So6

|t |
∗
= d(φ̃tu1, u1) = d(γ u2, u1)

{
≤ d(γ u0, u0)+ 2r,
≥ d(γ u0, u0)− 2r.

The desired inequalities follow. ut

4.2. Equivariant maps and the definition of Anosov representations

Let ρ : 0→ GL(d,R) be a representation of a word-hyperbolic group 0. The definitions
here can be adapted to representations in general semisimple Lie groups and the results
are equivalent. In order to be able to present our results in a more elementary manner, we
have deferred the introduction of the general context to Section 8.

We say that the representation ρ is p-convex if there exist continuous maps ξ : ∂0→
Gp(Rd) and θ : ∂0→ Gd−p(Rd) such that:
• (transversality) for all x 6= y ∈ ∂0 we have ξ(x)⊕ θ(y) = Rd ,
• (equivariance) for every γ ∈ 0 we have ξ(γ ·x) = ρ(γ )ξ(x) and θ(γ ·x) = ρ(γ )θ(x).

Using the representation ρ, it is possible to construct a linear flowψ t over the geodesic
flow φt of 0 as follows. Consider the lifted geodesic flow φ̃t on Ũ0, and define a linear
flow on Ẽ := Ũ0 × Rd by

ψ̃ t ((x, y, s), v) := (φ̃t (x, y, s), v),

Now consider the action of 0 on Ẽ given by

γ · ((x, y, s), v) := (γ · (x, y, s), ρ(γ )v)

where the action of 0 in Ũ0 is the one explained in Subsection 4.1. It follows that ψ̃ t

induces in Eρ := Ẽ/0 (which is a vector bundle over U0) a linear flow ψ t which
covers φt . See Fig. 4.

When the representation ρ is p-convex, by equivariance there exists a ψ t -invariant
splitting of the form Eρ = 4 ⊕ 2; it is obtained by taking the quotients of the bundles
4̃(x, y, s) := ξ(x) and 2̃(x, y, s) := θ(y) with respect to the 0-action.

We say that a p-convex representation ρ is p-Anosov if the splitting Eρ = 4⊕2 is
a dominated splitting for the linear bundle automorphism ψ t , with 4 dominating 2. This
is equivalent to the bundle Hom(2,4) being uniformly contracted by the flow induced
by ψ t (see [BCLS]).

6 To get exact equality in (∗) we need the construction in [Mi], for which orbits of the flow are
geodesics. If instead we use [Ch] or [Mat], the orbits of the flow are quasi-geodesics, so the equality
(∗) is only approximate, which is sufficient for our purpose.
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Ẽ Ẽ

Eρ Eρ

ĂUΓ ĂUΓ

UΓ UΓ

ψ̃t

ψt

φ̃t

φt

φt

Fig. 4. A commutative diagram. The ↓ arrows are vector bundle projections. The ↘ arrows are
quotient maps with respect to the corresponding actions of 0. The→ arrows are the flow actions,
as indicated.

Conversely, dominated splittings for the linear flow ψ t must be of the form 4⊕2 as
above: see Propositions 4.6 and 4.9 below.

Let us mention that by [GW, Theorem 1.5], if the image of the representation ρ is
Zariski dense, then being p-Anosov is a direct consequence of being p-convex.

Remark 4.3. As before, it is possible to use exterior powers to transform a p-Anosov
representation into a 1-Anosov one. The latter are called projective Anosov and are dis-
cussed in Section 8 where it is shown that any Anosov representation in an arbitrary
semisimple Lie group can be transformed into a projective Anosov one. See also [BCLS,
Section 2.3].

4.3. Equivalence between the definitions

We will show that a representation ρ : 0 → GL(d,R) is p-dominated if and only if it is
p-Anosov. Note that the definition of a p-Anosov representation requires the group to be
word-hyperbolic. On the other hand, we have shown in Section 3 that if ρ is p-dominated
then the group 0 is automatically word-hyperbolic. So we can assume in what follows
that 0 is word-hyperbolic.

Let us first show the following:

Lemma 4.4. Endow Eρ with a Riemannian metric.7 Then there exist constants κ > 1,
a > 0, and C > 1 with the following properties:

(i) For every z ∈ U0 and t ∈ R, there exists γ ∈ 0 such that

κ−1
|t | − a ≤ |γ | ≤ κ|t | + a, (4.1)

C−1σp(ψ
t
z) ≤ σp(ρ(γ )) ≤ Cσp(ψ

t
z) for every p = 1, . . . , d − 1. (4.2)

(ii) Conversely, for every γ ∈ 0 there exist z ∈ U0 and t ∈ R such that (4.1) and (4.2)
hold.

7 The Riemannian metric allows us to consider singular values for the linear maps ψ tx .
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Proof. Using the covering map Ẽ → Eρ , we lift the fixed Riemannian metric on Eρ ,
obtaining a Riemannian metric ‖·‖∗ on Ẽ preserved by the action of 0. On the other
hand, since the vector bundle Ẽ is trivial, we can also endow it with the Euclidean metric
‖·‖ on the fibers. Let K ⊂ Ũ0 be a compact set intersecting every 0-orbit. Then there
exists CK > 1 such that, for every v ∈ Ẽ that projects on K ,

C−1
K ‖v‖ ≤ ‖v‖∗ ≤ CK‖v‖.

By Lemma A.2, a bounded change of inner product has a bounded effect on the singular
values. It follows that for all z̃ ∈ K , t ∈ R, and γ ∈ 0 such that φ̃t (z̃) ∈ γ (K), if z is the
projection of z̃ in U0, inequality (4.2) holds for C = C2

K .
The rest of part (i) follows directly from Lemma 4.2.
Now let us prove part (ii). Consider the action of 0 on the compact metric space ∂0.

Fix a positive δ < 1
4 diam ∂0.

Claim. For every γ ∈ 0 there exist x, y ∈ ∂0 such that d(x, y) ≥ δ and d(γ−1x, γ−1y)

≥ δ.

Proof of Claim. Fix x1, x2 ∈ ∂0 such that d(x1, x2) > 3δ. We can assume that
d(γ−1x1, γ

−1x2) < δ, because otherwise we would take (x, y) := (x1, x2). It follows
that there exists i ∈ {1, 2} such that d(xi, γ−1x1), d(xi, γ

−1x2) > δ. Analogously,
we can assume that d(γ x1, γ x2) < δ, because otherwise we would take (x, y) :=
(γ x1, γ x2). It follows that there exists j ∈ {1, 2} such that d(xj , γ x1), d(xj , γ x2) > δ.
Therefore the pair (x, y) := (xj , γ xi) has the desired properties. ut

LetK := {(x, y, 0) : x, y ∈ ∂0, d(x, y) ≥ δ}; this is a compact subset of Ũ0. Therefore,
letting z̃ := (x, y, 0) and t := c(x, y, γ ), we conclude as above. ut

Now let us prove the equivalence between being p-dominated and p-Anosov. We first
show:

Proposition 4.5. Let ρ : 0 → GL(d,R) be a p-Anosov representation. Then ρ is
p-dominated.

Proof. Since ρ is p-Anosov, Theorem 2.2 implies that there exist C, λ > 0 such that for
every z ∈ U0 and t > 0 we have

σp+1(ψ
t
z)

σp(ψ tz)
< Ce−λt .

Using Lemma 4.4(i), we can find constants C′, λ′ > 0 such that for every γ ∈ 0,

σp+1(ρ(γ ))

σp(ρ(γ ))
< C′e−λ

′
|γ |.

This means that ρ is p-dominated. ut

Note that the proof above only uses the fact that the linear flow ψ t has a dominated
splitting, so we obtain:
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Proposition 4.6. If the linear flow ψ t on Eρ has a dominated splitting with dominating
bundle of dimension p then ρ is p-dominated.

To prove that p-domination implies being p-Anosov, we shall first show the existence
of the equivariant maps ξ , θ . This is a relatively easy consequence of what is done in
Section 3 (see Remark 3.8). The equivariant maps exist under an even weaker hypothesis,
as shown in [GGKW, Theorem 5.2]. We provide a proof here for completeness.

Recall that an (a, b)-quasi-geodesic in 0 is a sequence {γn} such that

a−1
|n−m| − b < d(γn, γm) < a|n−m| + b.

We denote by Qid
(a,b) the set of (a, b)-quasi-geodesics such that γ0 = id.

Lemma 4.7. Let ρ : 0→ GL(d,R) be a representation such that for some a, b > 0,

sup
γn∈Q

id
(a,b)

∑
n≥n0

σp+1(ρ(γn))

σp(ρ(γn))
−−−−→
n0→∞

0. (4.3)

Then there exists an equivariant continuous map ξ : ∂0→ Gp(Rd) defined by

ξ(x) := lim
n
Up(ρ(γn)),

where {γn} is any (a, b)-quasi-geodesic ray representing x ∈ ∂0.

Proof. For each x ∈ ∂0, choose {γ xn } ∈ Qid
(a,b) representing x. We define

ξ(x) := lim
n
Up(ρ(γ

x
n )).

To see that this limit exists, let C0 be an upper bound of ‖ρ(g)‖ ‖ρ(g−1)‖ for g ∈ S
a finite generating set of 0 and use Lemma A.4 to see that

d
(
Up(ρ(γ

x
n )), Up(ρ(γ

x
n−1))

)
≤ C

d(γn,γn−1)
0

σp+1(ρ(γ
x
n−1))

σp(ρ(γ
x
n−1))

.

This implies that Up(ρ(γ xn )) is a Cauchy sequence and therefore has a limit. The fact
that the limit does not depend on the chosen (a, b)-quasi-geodesic follows directly from
a similar estimate using Lemma A.4.

Since the estimates are uniform, this becomes a uniform limit as one changes x ∈ ∂0,
providing continuity of the maps (recall the topology in ∂0 introduced in Remark 3.8).
Equivariance follows from Lemma A.5. ut

Remark 4.8. If ρ is p-dominated then it satisfies the hypothesis of Lemma 4.7, since the
terms in the sum of (4.3) are uniformly exponentially small.

Proposition 4.9. Let ρ : 0 → GL(d,R) be a p-dominated representation. Then ρ is
p-Anosov.

Proof. If a representation is p-dominated, then it is also (d − p)-dominated (see Re-
mark 3.1). Lemma 4.7 then provides two equivariant continuous maps ξ : ∂0→ Gp(Rd)
and θ : ∂0→ Gd−p(Rd).
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The fact that ξ(x) ⊕ θ(y) = Rd for x 6= y ∈ ∂0 is a direct consequence of
Lemma 3.10 and the definition of the maps ξ and θ given by Lemma 4.7.

Using Lemma 4.4(ii), we obtain an exponential gap in the singular values of ψ t , and
by Theorem 2.2, the splitting ξ ⊕ θ is dominated. Therefore ρ is p-Anosov. ut

4.4. Some questions

Given a matrix A ∈ GL(d,R), let

χ1(A) ≥ · · · ≥ χd(A)

denote the absolute values of its eigenvalues, repeated according to multiplicity.
Given a finitely generated group, let

`(η) := inf
η
|η−1γ η| = inf

η
d(γ η, η)

(i.e., the translation length). If 0 is word-hyperbolic then there exists a constant a > 0
such that

`(γ )− a ≤ lim
n→∞

|γ n|

n
≤ `(γ ) for every γ ∈ 0 (4.4)

(see [CDP, p. 119]).
Note that if ρ : 0 → GL(d,R) is a p-dominated representation then there exist con-

stants C′, λ > 0 such that

χp+1(ρ(γ ))

χp(ρ(γ ))
< C′e−λ

′`(γ ) for all γ ∈ 0. (4.5)

Indeed, if the domination condition (3.2) holds then the group 0 is word-hyperbolic by
Theorem 3.2, and using (4.4) we obtain

χp+1(ρ(γ ))

χp(ρ(γ ))
= lim
n→∞

(
σp+1(ρ(γ

n))

σp(ρ(γ n))

)1/n

≤ lim
n→∞

(Ce−λ|γ
n
|)1/n ≤ C′e−λ`(γ )

for C′ := eaλ.
Condition (4.5) is invariant under conjugacies, while (3.2) is not.
It is natural to pose the following question:

Question 4.10. Let ρ : 0 → GL(d,R) be a representation of a finitely generated
group 0. Suppose that there exist constants p ∈ {1, . . . , d − 1} and C′, λ > 0 such
that (4.5) holds. Does it follow that ρ is p-dominated?

Guéritaud, Guichard, Kassel, and Wienhard [GGKW, Theorem 1.6] have shown that for
p-convex representations, the question has a positive answer, even with (4.5) relaxed.8

8 Kassel has informed us that techniques similar to those in [GGKW] allow one to give a positive
answer to Question 4.10 for certain word-hyperbolic groups, including free groups and surface
groups.
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In terms of the linear flow {ψ t }, condition (4.5) means that for every periodic orbit O
of {φt }, say of period `(O), there exists a gap between the p-th and p+1-th moduli of the
eigenvalues of ψ`(O) which is exponentially large with respect to `(O). Question 4.10 can
be reformulated in the general context of linear flows over hyperbolic dynamics; however,
that question has a negative answer: see for example [Go]. Therefore a positive answer
to Question 4.10 would require a finer use of the fact that the linear flow comes from a
representation.

The following important result was obtained by Bonatti, Dı́az, and Pujals [BDP]: if
a diffeomorphism f of a compact manifold has the property that all sufficiently small
C1-perturbations have dense orbits, then the derivative cocycle Df admits a dominated
splitting. This is an example of a general principle in differentiable dynamics, going back
to the Palis–Smale Stability Conjecture: robust dynamical properties often imply some
uniform property for the derivative. Coming back to the context of linear representations,
one can try to apply the same principle. For example, if a representation ρ of a hyperbolic
group is robustly faithful and discrete (or robustly quasi-isometric), does it follow that ρ
is p-dominated for some p?

5. Characterizing dominated representations in terms of multicones

The main result of this section is Theorem 5.9, which gives another characterization of
dominated representations. Related results have been obtained in [ABY, BG]. In dimen-
sion two, such results have been used to study how domination can break along a defor-
mation: see [ABY, §4].

As a consequence of Theorem 5.9, domination obeys a “local-to-global” principle, a
fact that was first shown in [KLP1] by different methods.

5.1. Sofic linear cocycles and a general multicone theorem

In this subsection we introduce a special class of linear cocycles called sofic. Then we
state a necessary and sufficient condition for the existence of a dominated splitting for
these cocycles, generalizing the “multicone theorems” of [ABY, BG].

Let G be a graph, or more precisely, a finite directed multigraph. This means that we
are given finite sets V and E whose elements are called vertices and edges respectively,
and that each edge has two (not necessarily different) associated vertices, called its tail
and its head. A bi-infinite walk on G is a two-sided sequence (en)n∈Z of edges such that
for each n ∈ Z, the head of en equals the tail of en+1.

The graph G is called labeled if in addition each edge has an associated label, taking
values in some finite set L. Let (en)n∈Z be a bi-infinite walk on G; then its label sequence
is defined as (`n)n∈Z where each `n is the label of the edge en. Let 3 be the set of all
label sequences; this is a closed, shift-invariant subset of LZ. Let T : 3 → 3 denote
the restriction of the shift map. Then T is called a sofic shift, and the labeled graph from
which it originates is called a presentation of T . We refer the reader to [LM] for examples,
properties, and alternative characterizations of sofic shifts. Let us just remark that every
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subshift of finite type is a sofic shift, and every sofic shift is a factor of a subshift of finite
type.

Let us say that a graph is recurrent if it is a union of directed cycles. Given a (labeled)
graph G, let G∗ denote the maximal recurrent (labeled) subgraph, or equivalently the sub-
graph containing all the bi-infinite walks on G. As the sofic shifts presented by G and G∗

are exactly the same, we may always assume that G is recurrent if necessary.
Fix a sofic shift T and a presentation G as above. Let d ≥ 2 be an integer. Given a

family (A`)`∈L of matrices in GL(d,R), consider the map A : 3 → GL(d,R) defined
by A((`n)n∈Z) := A`0 . We call the pair (T ,A) a sofic linear cocycle. We are interested in
the existence of dominated splitting for such cocycles.

A multicone of index p is an open subset of the projective space P(Rd) = G1(Rd) that
contains the projectivization of some p-plane and does not intersect the projectivization
of some (d − p)-plane. Such a multicone is called tame if it has finitely many connected
components, and the components have disjoint closures.

Suppose that for each vertex v of the graph G there is given a multicone Mv ⊂ P(Rd)
of index p; then we say that (Mv)v∈V is a family of multicones of index p. We say that
this family is strictly invariant (with respect to the sofic linear cocycle) if9

A`(Mv0) b Mv1 for each edge e ∈ E,

where ` is the label of e, v0 is the tail of e, and v1 is the head of e.

Theorem 5.1. Let T be a sofic shift with a fixed presentation. Consider a sofic linear
cocycle (T ,A). The following statements are equivalent:

(a) the cocycle (T ,A) has a dominated splitting Ecu
⊕ Ecs where the dominating

bundle Ecu has dimension p;
(b) there exists a strictly invariant family of multicones of index p.

Moreover, in (b) we can always choose a family composed of tame multicones.

Remark 5.2. It is not always possible to choose connected multicones in (b). Let us
sketch the simplest example, referring the reader to [ABY] for more information. Let T
be the full shift on two symbols 1, 2, presented by the graph •1 2 . Let A1, A2

be matrices in SL(2,R) whose unstable and stable directions in P(R2) can be cyclically
ordered as

Eu(A1) < Es(A1) < Eu(A2) < Es(A2).

If the eigenvalues are sufficiently away from 1 then the sofic cocycle (T ,A) has a dom-
inated splitting. A strictly invariant family of multicones consists of a single element,
since the graph has a single vertex. It is possible to chose a multicone M ⊂ P(R2) with
two connected components. But M cannot be chosen connected, since it must contain
{Eu(A1), E

u(A2)} and it cannot intersect {Es(A1), E
s(A2)}.

9 X b Y denotes that the closure of X is contained in the interior of Y .
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Theorem 5.1 implies, for example, [ABY, Theorem 2.2]; to see this, note that the full shift
on N symbols can be presented by the graph with a single vertex and self-loops labeled
1, . . . , N . Theorem 5.1 also extends [ABY, Theorem 2.3] and [BG, Theorem B] (in the
case of finite sets of matrices).

One can prove Theorem 5.1 by a minor adaptation of the proof of [BG, Theorem B];
for the convenience of the reader we provide details in Subsection 5.2.

As a complement to Theorem 5.1, let us explain how to obtain the dominating
bundle Ecu in terms of the multicones:

Proposition 5.3. Let (T ,A) be a sofic linear cocycle with a dominated splittingEcu
⊕Ecs

where the dominating bundle Ecu has dimension p. Let {Mv}v be a strictly invariant
family of multicones. Let x = (`n)n∈Z ∈ 3, the label sequence of a bi-infinite walk
(en)n∈Z. Let vn be the tail of the edge en. Let (Pn)n∈Z be a sequence in Gp(Rd) such that
for each n, the projectivization of Pn is contained in the multicone Mvn . Then

Ecu(x) = lim
n→+∞

A`−1A`−2 · · ·A`−n(P−n).

Moreover, the speed of convergence is exponential and can be estimated independently
of x, (en), and (Pn), and is the same for all nearby sofic linear cocycles (T , Ã).

5.2. How to prove Theorem 5.1 and Proposition 5.3

The implication (b)⇒(a) in Theorem 5.1 and Proposition 5.3 actually hold in much
greater generality:

Proposition 5.4. If a linear cocycle10 (T ,A) admits a strictly invariant continuous
field C of multicones of index p, then the cocycle admits a dominated splitting Ecu

⊕Ecs

where the dominating bundle Ecu has dimension p. Moreover,

Ecu(x) ∈ C(x) and inf
P∈C(x)

](P,Ecs(x)) > 0 for every x. (5.1)

The proposition can be shown by a straightforward adaptation of the proof of [CP, Theo-
rem 2.6], and we skip the details.

Proposition 5.3 follows from the angle bound in (5.1) combined with Lemma A.10.
We now prove the implication (a)⇒(b) in Theorem 5.1. Suppose that the sofic cocycle

(T ,A) admits a dominated splitting Ecu
⊕ Ecs. For each vertex v of the graph G, let 3v

be the (compact) set of label sequences x = (`n) in 3 for which the tail of `0 is v. The
space Ecu(x) depends only on the past of the sequence (i.e. on (`n)n<0) while Ecs(x)

depends only on its future (i.e. on (`n)n≥0); this follows from the characterizations (2.3)
and (2.4).

For each vertex v, the set Kcu
v consisting of the spaces Ecu(x) with x ∈ 3v is

a compact subset of the Grassmannian Gp(Rd). Analogously we define a compact set
Kcs
v ⊂ Gd−p(Rd). We claim that these two sets are transverse in the sense that anyEcu(x)

10 Or, more generally, a linear flow in the context of Subsection 2.1
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in Kcu
v is transverse to any Ecu(y) in Kcs

v . Indeed, consider the sequence z formed by con-
catenating the past of x with the future of y. Note that this is indeed the label sequence
of a bi-infinite path (i.e. an admissible sequence of edges) in the graph, also obtained by
concatenation. By a previous remark, Ecu(z) = Ecu(x) and Ecu(z) = Ecu(y), and so
these two spaces are transverse.

Let Ktcs
v be the open subset of Gp(Rd) formed by the p-planes that are transverse

to Kcs
v . Define a metric dv on Ktcs

v as follows:

dv(P,Q) :=

∞∑
N=0

sup
(`n)∈3v

d
(
A`N−1 · · ·A`0(P ),A`N−1 · · ·A`0(Q)

)
;

the convergence is exponential as a consequence of Lemma A.10. This family of metrics
is adapted in the sense that they are contracted by a single iteration of the cocycle. More
precisely, if an edge e ∈ E has tail v, head w, and label ` then

dw(A`(P ),A`(Q)) < dv(P,Q) for all P,Q ∈ Ktcs
v .

So, fixing ε > 0 and letting M∗v denote the ε-neighborhood of Kcu
v with respect to the

metric dv , we have the invariance propertyA`(M∗v ) ⊂ M
∗
w. LetMv ⊂ P(Rd) be the union

of all lines contained in elements ofM∗v ; then {Mv}v is an invariant family of multicones.
Moreover, by the same argument as in [BG, p. 288], for an appropriate choice of ε the
multicones are tame and strictly invariant.

5.3. Cone types for word-hyperbolic groups

Cone types were originally introduced by Cannon [Ca] for groups of hyperbolic isome-
tries.

Let 0 be a finitely generated group with a fixed finite symmetric generating set S. Let
|·| and d(·, ·) denote the word-length and the word-metric respectively.

The cone type of an element γ ∈ 0 is defined as

C+(γ ) := {η ∈ 0 : |ηγ | = |η| + |γ |}.

For example, C+(γ ) = 0 if and only if γ = id.

Remark 5.5. Actually the usual definition is different:

C−(γ ) := {η ∈ 0 : |γ η| = |η| + |γ |}.

But working with one definition is essentially equivalent to working with the other, be-
cause C−(γ ) = [C+(γ−1)]−1. If we need to distinguish between the two, we shall call
them positive and negative cone types.

A fundamental fact is that word-hyperbolic groups have only finitely many cone types:
see [BH, p. 455] or [CDP, p. 145]. In fact, there is a constant k (depending only on the
hyperbolicity constant of the group) such that for any γ ∈ 0, the cone type C+(γ ) is
uniquely determined by the k-prefix11 of a shortest word representation of γ .

11 Or k-suffix in the case of negative cone types.
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Given a cone type C and a ∈ S ∩ C, we can define a cone type

aC := C+(aγ ),

where γ ∈ 0 is such that C+(γ ) = C.

Lemma 5.6. aC is well-defined.

Though the lemma is contained in [CDP, p. 147, Lemme 4.3], let us provide a proof for
the reader’s convenience:

Proof of Lemma. Suppose that C+(γ ) = C+(γ ′) = C and a ∈ S ∩ C; we need to prove
that C+(aγ ) ⊂ C+(aγ ′). Take η ∈ C+(aγ ), so |ηaγ | = |η| + |aγ | = |η| + 1 + |γ |.
In follows that |ηa| = |η| + 1 and so |ηaγ | = |ηa| + |γ |, that is, ηa ∈ C. In particular
|ηaγ ′| = |ηa| + |γ ′| = |η| + |aγ |, proving that η ∈ C+(aγ ′). ut

We associate to (0, S) a labeled graph G (in the sense of §5.1) called the geodesic au-
tomaton and defined as follows:

• the vertices are the cone types of 0;
• there is an edge C1

a
−→ C2 from vertex C1 to vertex C2, labeled by a generator a ∈ S,

iff a ∈ C1 and C2 = aC1.

Remark 5.7. Replacing each vertex C by C−1 (a negative cone type) and each edge

C1
a
−→ C2 by C−1

1
a−1
−−→ C−1

2 , we obtain the graph described in [BH, p. 456].

Let us explain the relation to geodesics. Consider a geodesic segment (γ0, γ1, . . . , γ`) that
is, a sequence of elements of 0 such that d(γn, γm) = |n−m|, and assume that γ0 = id.
Then there are a0, . . . , a`−1 in the generating set S such that γn = a0a1 · · · an−1. Note
that for each n, the following is an edge of the geodesic automaton graph G:

C+(γ−1
n )

a−1
n
−−→ C+(γ−1

n+1).

Thus we obtain a (finite) walk on G starting from the vertex C+(id). Conversely, to each
such walk we may associate a geodesic segment starting at the identity.

Let us also define the recurrent geodesic automaton as the maximal recurrent sub-
graph G∗ of G; its vertices are called recurrent cone types. Similarly to what was ex-
plained above, to each two-sided geodesic on 0 passing through the identity element we
can associate a bi-infinite walk on G∗, and vice versa.

Using the fact that the geodesic automaton is a finite graph, it is easy to obtain the
following property:12

Lemma 5.8. Let 0 be an infinite word-hyperbolic group, with a fixed set of generators.
Let 0∗ be the union of all two-sided geodesics passing through the identity element. Then
for some finite c, the set 0∗ is c-dense on 0, that is, for every γ ∈ 0 there exists η ∈ 0∗

such that d(η, γ ) ≤ c.

12 Alternatively, one can deduce the lemma from the “bounded dead-end depth” property [Bog].
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5.4. Multicones for dominated representations

Let 0 be a word-hyperbolic group (with a fixed finite symmetric generating set), and let
ρ : 0→ GL(d,R) be a representation.

Recall from §5.1 that a multicone of index p is an open subset of P(Rd) that contains
the projectivization of some p-plane and does not intersect the projectivization of some
(d − p)-plane.

If for each recurrent cone type C, a multicone M(C) of index p is given, then we say
that {M(C)}C is a family of multicones for 0. We say that this family is strictly invariant
with respect to ρ if for each edge C1

g
−→ C2 of the geodesic automaton graph, we have

ρ(g)(M(C1)) b M(C2).

Theorem 5.9. A representation of a word-hyperbolic group is p-dominated if and only
if it has a strictly invariant family of multicones of index p. Moreover, we can always
choose a family composed of tame multicones.

Proof. Fix a word-hyperbolic group 0. We can assume that 0 is infinite, otherwise the
theorem is vacuously true. Fix a finite symmetric generating set S. Consider the associated
recurrent geodesic automaton G∗ and the sofic shift T : 3→ 3 presented by this labeled
graph. Then a sequence (an) in SZ belongs to 3 if and only if the sequence (γn)n∈Z
defined by

γn :=


a−1

0 a−1
1 · · · a

−1
n−1 if n > 0,

id if n = 0,
a−1a−2 · · · an if n < 0,

is a geodesic on 0. The union of (the traces of) all such geodesics is a set 0∗ ⊂ 0 which
by Lemma 5.8 is c-dense in 0 for some finite c.

Let ρ : 0 → GL(d,R) be a representation. Consider the family (ρ(a))a∈S of matri-
ces, and let (T ,A) be the induced sofic linear cocyle. Then, for each x = (an) ∈ X, if (γn)
is the geodesic defined above then A(T n−1x) · · ·A(x) = ρ(γ−1

n ) for every positive n.
By Remark 3.1, ρ is p-dominated iff it is (d − p)-dominated. Since the set 0∗ is

c-dense, ρ is (d − p)-dominated iff

∃C > 0 ∃λ > 0 ∀γ ∈ 0∗,
σp+1

σp
(ρ(γ−1)) ≤ Ce−λ|γ |.

Note that this condition holds iff the sofic linear cocycle (T ,A) has a dominated splitting
with a dominating bundle of dimension p; this follows from Theorem 2.2 and the previous
observations. Also note that a strictly invariant family of multicones for the sofic linear
cocycle (T ,A) is exactly the same as a strictly invariant family of multicones for the
representation ρ. Therefore Theorem 5.1 allows us to conclude. ut

Theorem 5.9 also has the following well-known consequence (see [GW, Lab]).

Corollary 5.10. Among representations 0 → GL(d,R), the p-dominated ones form an
open set.

Proof. Given a p-dominated representation, take a strictly invariant family of multicones.
Then the same family is also strictly invariant under all nearby representations. ut
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As a complement to Theorem 5.9, let us explain how to determine the equivariant map
ξ : ∂0→ Gp(Rd) (defined in Section 4) in terms of multicones.

Proposition 5.11. Consider a p-dominated representation ρ : 0 → GL(d,R), and let
{M(C)}C be a strictly invariant family of multicones. Consider any geodesic ray (γn)n∈N
with γ0 = id, and let x ∈ ∂0 be the associated boundary point. Let (Pn)n≥1 be a sequence
in Gp(Rd) such that for each n, the projectivization of Pn is contained in the multicone
M(C+(γn)). Then

ξ(x) = lim
n→∞

ρ(γ−1
n )Pn. (5.2)

Moreover, the speed of convergence can be estimated independently of x, (γn), and (Pn),
and is the same for all nearby representations.

Proof. It suffices to translate Proposition 5.3 to the context of representations. ut

Remark 5.12. Recall from Remark 3.4 that it also makes sense to define p-dominated
representations in PGL(d,R). All that was said in this subsection applies verbatim to that
case, since PGL(d,R) also acts on P(Rd).

5.5. An example

Consider the free product 0 := (Z/3Z) ∗ (Z/2Z) (which is isomorphic to PGL(2,Z))
with a presentation

0 = 〈a, b | a3
= b2

= id〉.

Then there are only two recurrent cone types, namelyC+(a) andC+(b), and the recurrent
geodesic automaton is

C`paq C`pbq
b

a

a´1

Fix λ > 1. Consider the following pair of matrices in SL(2,R):

A := D−1Rπ/3D and B := Rπ/2,

where

D :=

(
λ 0
0 λ−1

)
and Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
.

Since A3
= B2

= −id, we can define a representation ρ : 0 → PSL(2,R) by setting
ρ(a) := A and ρ(b) := B. We claim that if λ is sufficiently large (namely, λ > 4√2) then
this representation is dominated. Indeed, it is possible to find a strictly invariant family of
multicones as in Fig. 5.
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I

B(J )

J

A(I)A−1(I )

Fig. 5. A strictly invariant multicone for the representation ρ : (Z/3Z) ∗ (Z/2Z) → PSL(2,R).
We have A(I) b J , A−1(I ) b J , B(J ) b I .

6. Analytic variation of limit maps

The purpose of this section is to give another proof of a theorem from [BCLS], which
establishes that the equivariant limit maps ξ , η (defined in Section 4) depend analytically
on the representation. This fact is useful to show that some quantities such as entropy vary
analytically with respect to the representation, which in turn is important to obtain certain
rigidity results (see [BCLS, PS]).

While the original approach of [BCLS] used the formalism of [HPS], we present here
a more direct proof, based on the tools discussed in the previous section. We remark that
an alternative approach using the implicit function theorem and avoiding complexification
can be found in [Ru], though the context is different and the results are not exactly the
same.

A family {ρu}u∈D of representations of a word-hyperbolic group 0 in GL(d,R) is
called real analytic if the parameter space is a real analytic manifold, and for each γ ∈ 0,
the map D 3 u 7→ ρu(γ ) ∈ GL(d,R) is real analytic. (Of course, it suffices to check the
latter condition for a set of generators.)

The boundary ∂0 of the group 0 admits a distance function within a “canonical”
Hölder class [CDP, Chapitre 11]. For a fixed metric in this class, the geodesic flow defined
previously is Lipschitz. The limit maps ξρ : ∂0→ Gp(Rd) and θρ : ∂0→ Gd−p(Rd) of a
p-dominated representation are well-known to be Hölder continuous (see Theorem A.15).
One can endow the space Cα(∂0,Gp(Rd)) of α-Hölder maps with a Banach manifold
structure, so analyticity of a map from an analytic manifold to Cα(∂0,Gp(Rd)) makes
sense.

Theorem 6.1 ([BCLS, Theorem 6.1]). Let {ρu : 0 → GL(d,R)}u∈D be a real analytic
family of representations. Suppose that 0 ∈ D and ρ0 is p-dominated. Then there ex-
ists a neighborhood D′ ⊂ D of 0 such that for every u ∈ D′, the representation
ρu is p-dominated, and moreover u 7→ ξρu defines a real analytic map from D′ to
Cα(∂0,Gp(Rd)) for some α > 0.



Anosov representations and dominated splittings 3375

Let us provide a proof. Corollary 5.10 ensures that for every u sufficiently close to 0, the
representation ρu is also p-dominated.

As in [BCLS] (see also [Hub, Proposition A.5.9]), it is enough to show transverse
real analyticity. More precisely, we need to show that the map F : D′ × ∂0 → Gp(Rd)
given by F(u, x) := ξρu(x) has the following properties:

(i) it is α-Hölder continuous;
(ii) for every x ∈ ∂0, the map F(·, x) : D′→ Gp(Rd) is real analytic.

Hölder continuity is a standard property of dominated splittings (see for example [CP,
Section 4.4]), and is independent of the analyticity of the family. For completeness, and
since we could not find the specific statement in the literature, we include a sketch of the
proof in the appendix: see Corollary A.16. In the case at hand, it follows that property (i)
above is satisfied, for some neighborhood D′ 3 0 and some uniform Hölder exponent
α > 0.

So it remains to prove the analyticity property (ii). To proceed further, we consider
the complexification of the representations. We can assume without loss of generality
that D′ is a neighborhood of 0 in some Rk . Let {g1, . . . , gm} be a finite generating set
of 0. For each i, the Taylor expansion of u 7→ ρu(gi) around 0 converges on a polydisk
D̂i in Ck centered at 0; we keep the same symbol for the extended map. Take a smaller
polydisk D ⊂

⋂
i D̂i also centered at 0 such that for u ∈ D, the complex matrix ρu(gi)

is invertible. Since these maps are analytic, and every relation of 0 is obeyed when u is
real, the same happens for all u ∈ D̂. So we have constructed a complex analytic family
of representations ρu : 0 → GL(d,C), where u takes values in a neighborhood D̂ of 0
in Ck .

Recall from Remark 2.3 that dominated splittings make sense in the complex case; so
do dominated representations, with the exact same definition (3.2). Actually, if ι denotes
the usual homomorphism that embeds GL(d,C) into GL(2d,R), then a representation
ρ : 0 → GL(d,C) is p-dominated in the complex sense iff ι ◦ ρ is 2p-dominated in the
real sense. In particular, the openness property of Corollary 5.10 also holds in the complex
case. So, reducing D̂ if necessary, we assume that each ρu is p-dominated.

Proposition 6.2. For each x ∈ ∂0, the map u 7→ ξu(x) from D̂ to Gp(Cd) is complex
analytic.

Proof. It suffices to check analyticity around u = 0. For each x ∈ ∂0, choose a geodesic
ray (γ xn )n∈N in 0 starting at the identity element and converging to x. We consider the
sequence of maps from D̂ to Gp(Cd) defined as follows:

ϕxn(u) := ρu(γ
x
n )
−1(ξ0(γ

x
n (x))).

Each of these maps is complex analytic, since so is u 7→ ρu(γ
x
n ).

We claim that for each x ∈ ∂0, the convergence ϕxn(u) → ξu(x) holds uniformly in
a neighborhood of 0. Since Gp(Cd) may be considered as a closed subset of G2p(R2d), it
is sufficient to check convergence in the latter set. This convergence follows from Propo-
sition 5.11 and the fact that for u in a small neighborhood V of 0, the representations are
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still dominated, and with the same multicones (see Corollary 5.10). Note that ξ0 always
belongs to the corresponding multicone because the multicones remain unchanged.

Being a uniform limit of complex analytic maps, the map u 7→ ξu(x) is complex
analytic on V (see for example [Hö, Corollary 2.2.4]). ut

Restricting to the real parameters, the proposition yields the property (ii) that we were to
check. So the proof of Theorem 6.1 is complete.

7. Geometric consequences of Theorem 2.2: A Morse Lemma for PSL(d,R)’s
symmetric space

In this section we explain why Theorem 2.2 (and more precisely Proposition 2.4) has a
deep geometric meaning for the symmetric space of PSL(d,R). This is a version of the
Morse Lemma recently proved by [KLP2]. Because of this application, one is tempted to
call Theorem 2.2 a twisted Morse Lemma.13

The exposition is purposely pedestrian for two reasons: (1) it is intended for the reader
unfamiliar with symmetric spaces; (2) it mimics, in the case of PSL(d,R), the general
structure theory of semisimple Lie groups, in order to ease the way to Section 8.

The reader familiar with semisimple Lie groups should jump to Subsection 7.12, or
even Section 8, for a proof of the Morse Lemma due to [KLP2], for symmetric spaces
of noncompact type, using dominated splittings. Specific references for Subsections 7.1–
7.11 are, for example, [Ebe], [GJT], [Hel], [Lang].

This section is independent of Sections 3–6.

7.1. A Cartan subalgebra

Fix an inner product 〈·, ·〉 on Rd and denote by o its homothety class, i.e. 〈·, ·〉 up to
positive scalars. One then has the adjoint involution T 7→ T t defined by 〈T v,w〉 =
〈v, T tw〉 (note that t only depends on o). This involution splits the vector space sl(d,R)
of traceless d × d matrices as

sl(d,R) = po ⊕ ko

where

po = {T ∈ sl(d,R) : T t
= T } and ko = {T ∈ sl(d,R) : T t

= −T }.

The subspace ko is a Lie algebra so we can consider its associated Lie group
Ko
= exp ko, consisting of (the projectivizations of) determinant 1 matrices preserv-

ing the class o. The subspace po, of traceless matrices diagonalizable for an o-orthogonal
basis, is not a Lie algebra.

Fix then an o-orthogonal set of d lines E and denote by a ⊂ po those matrices di-
agonalizable in the chosen set E. This is an abelian algebra, called a Cartan subalgebra

13 Lenz [Len], who previously obtained a weaker version of Theorem 2.2 for SL(2,R), had al-
ready noted that his result was related to the classical Morse Lemma for the hyperbolic plane.
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of sl(d,R); its associated Lie group exp a consists of (the projectivizations of) determi-
nant 1 matrices diagonalizable on E with positive eigenvalues. For a ∈ a and u ∈ E, we
will denote by λu(a) the eigenvalue for a associated to the eigenline u. Note that λu is
linear in a and hence an element of the dual space a∗ of a.

7.2. The action of a on sl(d,R)

The action of a on sl(d,R) given by (a, T ) 7→ [a, T ] = aT − T a is also diagonalizable.
Indeed, the set of (projective) traceless transformations {εuv, φuv : u 6= v ∈ E} defined
by

εuv(v) = u, εuv|E− {v} = 0,

and
φuv|u = t id, φuv|v = −t id, φuv|E− {u, v} = 0,

contains a linearly independent set14 of eigenlines of [a, ·], specifically [a, φuv] = 0 and

[a, εuv] = αuv(a)εuv = (λu(a)− λv(a))εuv.

The set of functionals
6 = {αuv ∈ a∗ : u 6= v ∈ E}

is called a root system (or simply the roots) of a. For α ∈ 6 ∪ {0}, one usually denotes by
sl(d,R)α the eigenspace associated to α, that is,

sl(d,R)α = {T ∈ sl(d,R) : [a, T ] = α(a)T , ∀a ∈ a},

and one has15

sl(d,R) =
⊕

α∈6∪{0}

sl(d,R)α = a⊕
⊕
α∈6

sl(d,R)α. (7.1)

7.3. Expansion/contraction

The closure of a connected component of

a−
⋃
α∈6

kerα

is called a closed Weyl chamber. Fix a closed Weyl chamber and denote it by a+; this is
not a canonical choice: it is equivalent to choosing an order on the set E. Indeed, consider
the subset of positive roots defined by a+:

6+ = {α ∈ 6 : α|a+ ≥ 0};

then one can set u > v if αuv ∈ 6+.16

14 Redundancy only appears in the set {φuv : u 6= v ∈ E}.
15 The fact that sl(d,R)0 = a is particular of split real algebras, such as sl(d,R).
16 In the case of PSL(d,R) one usually applies the inverse procedure: let {e1, . . . , ed } be the

canonical basis of Rd and let a+ be the set of (determinant one) diagonal matrices with decreasing
eigenvalues.



3378 Jairo Bochi et al.

Let n+ be the Lie algebra defined by

n+ =
⊕
α∈6+

sl(d,R)α =
⊕
u>v

εuv.

By definition, a ⊕ n+ is the subspace of sl(d,R) which is nonexpanded by Ad exp a for
a ∈ a+.

7.4. Simple roots

Observe that the order on E defined in Subsection 7.3 is a total order; indeed, the kernel
of every α ∈ 6 has empty intersection with the interior of a+, so given distinct u, v ∈ E,
either αuv ∈ 6+ or αvu = −αuv ∈ 6+.

Consider pairwise distinct u, v,w ∈ E such that u > v > w. Note that if a ∈
a+ ∩ kerαuw then necessarily

a ∈ kerαuv ∩ kerαvw.

A positive root α such that kerα ∩ a+ has maximal codimension is called a simple root
associated to a+. This corresponds to choosing two successive elements of E. The set of
simple roots is denoted 5. Note that this is a basis of a∗.

From now on we will denote E = {u1, . . . , ud} with up > up+1. Then n+ can be
interpreted as the space of upper triangular matrices on E (with 0’s on the diagonal), and
denoting ai = λui (a) one has

a+ = {a ∈ a : a1 ≥ · · · ≥ ad}.

We will use λui to introduce coordinates in a: if (a1, . . . , ad) ∈ Rd are such that a1 +

· · · + ad = 0 then (a1, . . . , ad) will denote the element a ∈ a such that λui (a) = ai .
Finally, given p ∈ {1, . . . , d − 1} we will denote by αp the simple root

αp(a) = αupup+1(a) = ap − ap+1.

7.5. Flags

Denote N = exp n+ and letM be the centralizer of exp a inKo. The groupM consists of
(the projectivizations of) diagonal matrices with respect to E with eigenvalues 1 and −1.

The group P = M exp aN is called a Borel subgroup of PSL(d,R) and N is called
its unipotent radical.

Recall that a complete flag on Rd is a collection E = {Ep}d−1
p=1 of subspaces such that

Ep ⊂ Ep+1 and dimEp = p. The space of complete flags is denoted by F . Observe that
PSL(d,R) acts transitively on F and the group P is the stabilizer of

{u1 ⊕ · · · ⊕ up}
d−1
p=1;

thus we obtain an equivariant identification F = PSL(d,R)/P .
Two complete flags E and F are in general position if

Ep ∩ Fd−p = {0} for all p = 1, . . . , d − 1.

Denote by F (2) the space of pairs of flags in general position.
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The same procedure applied to the Weyl chamber −a+ provides the group P̌ that
stabilizes the complete flag

{ud ⊕ · · · ⊕ ud−p+1}
d−1
p=1.

Observe that the flags {u1 ⊕ · · · ⊕ up}
d−1
p=1 and {ud ⊕ · · · ⊕ ud−p+1}

d−1
p=1 are in general

position and the stabilizer in PSL(d,R) of the pair is the group M exp a = P ∩ P̌ .

7.6. Flags and singular value decomposition

If 〈·, ·〉 ∈ o is an inner product with induced norm ‖·‖ on Rd , note that the operator norm
of g ∈ GL(d,R),

σ o1 (g) = ‖g‖o = sup
{
‖gv‖/‖v‖ : v ∈ Rd − {0}

}
,

only depends on the homothety class o. The same holds for the other singular values,
defined in Subsection 2.2. Throughout this section, the choice of the class o is important,
so we will stress the fact that the singular values depend on o by denoting them as σ oi (g).

The singular value decomposition provides a map a : PSL(d,R) → a+, called the
Cartan projection, such that for every g ∈ PSL(d,R) there exist kg, lg ∈ Ko such that

g = kg exp(a(g))lg.

More precisely,
a(g) = (log σ o1 (g), . . . , log σ od (g)).

Recall from Section 2.2 that g has a gap of index p if σ op (g) > σ op+1(g). In that case

Uop (g) = kg(u1 ⊕ · · · ⊕ up) (7.2)

(note again the dependence on o).
Given αp ∈ 5 denote by Ko({αp}) the stabilizer in Ko of the vector space u1 ⊕

· · · ⊕ up. Moreover, given a subset θ ⊂ 5, denote

Ko(θ) =
⋂
αp∈θ

Ko({αp}).

If for some p ∈ {1, . . . , d} and g ∈ PSL(d,R) one has a1(g) = ap(g) > ap+1(g),
then any element of kgKo({αp}) can be chosen in a Cartan decomposition of g. If all the
gaps of g are indexed by a subset θ ⊂ 5, then kg is only defined modulo Ko(θ) and one
has the partial flag

Uo(g) = {Uop (g) : αp ∈ θ}.

Note that the Cartan projection of g−1 is simply a(g−1) = (−ad(g), . . . ,−a1(g)).
The linear transformation i : a→ a defined by

i(a1, . . . , ad) = (−ad , . . . ,−a1)

is called the opposition involution. If g has gaps indexed by θ then g−1 has gaps indexed
by i θ = {α ◦ i : α ∈ θ}. Denote So(g) = Uo(g−1).
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7.7. The symmetric space

Recall that fixing a class o defines a splitting

sl(d,R) = po ⊕ ko.

This splitting is orthogonal with respect to the Killing form, the symmetric bilinear form κ

on sl(d,R) defined by
κ(A,B) = 2d Trace(AB).

This linear form is related to the adjoint involution t: the linear form κ(·, ·t) is positive
definite.

Since po consists of fixed points for t, the restriction of κ to po, denoted by (·, ·)o :
po × po → R, is positive definite. Explicitly, if v ∈ po then v is diagonalizable and

|v|2o := (v, v)o

equals the sum of the squared eigenvalues of v.
The space

Xd = {inner products on Rd}/R+
is a contractible PSL(d,R)-homogeneous space, the action being given by

g · 〈·, ·〉 = 〈·, ·〉′ where 〈v, v〉′ = 〈g−1v, g−1w〉.

The stabilizer of o is the group Ko and thus the orbit map (g, o) 7→ g · o identifies
the tangent space ToXd with the vector space po. A direct computation shows that the
Riemannian metric o 7→ (·, ·)o is PSL(d,R)-invariant.

The space (Xd , (·, ·)o) is, by definition, the symmetric space of PSL(d,R).

7.8. Maximal flats

A direct computation shows that the orbit exp a · o ⊂ Xd is isometric to (a, (·, ·)o).
Moreover, one can show that exp a · o is a maximal totally geodesic flat (flat meaning
“isometric to a Euclidean space”, maximal with respect to dimension; see for example
[Lang, Section XII.3]). For every g ∈ PSL(d,R) one has

dXd (o, g · o) = dXd (o, exp a(g) · o) = |a(g)|o =
√∑

i

(log σ oi (g))
2, (7.3)

where dXd is the distance on Xd induced by the Riemannian metric (·, ·)o.
The translated orbit g exp a · o is again a maximal totally geodesic flat (through g · o),

and hence all geodesics of Xd are of the form

t 7→ g exp(ta) · o

for a given g ∈ PSL(d,R) and a ∈ a+.
In other words, a maximal flat in Xd is obtained by fixing a set L of d lines that

span Rd and considering the space of inner products, up to homothety, that make L an
orthogonal set.
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The following lemma is simple but extremely useful for estimations:

Lemma 7.1. Let ϕ ∈ a∗ with ϕ|a+ − {0} > 0. Then there exists c > 1 such that

1
c
ϕ(a(g)) ≤ dXd (o, g · o) ≤ cϕ(a(g)) for all g ∈ PSL(d,R).

Proof. Since a+ is closed and kerϕ ∩ a+ = {0}, the function a 7→ |a|o/ϕ(a) is invariant
under multiplication by scalars and bounded on a+ − {0}. Equation (7.3) completes the
proof. ut

For example, log σ o1 (g) and − log σ od (g) are comparable to dXd (o, g · o).

7.9. The Furstenberg boundary and parallel sets

A parametrized flat is a function f : a→ Xd of the form

f(a) = g exp a · o for some g ∈ PSL(d,R).

A maximal flat is thus a subset of the form f(a) ⊂ Xd for some parametrized flat f.
Observe that PSL(d,R) acts transitively on the set of parametrized flats and that the

stabilizer of f0 : a 7→ exp a · o is the group M . We will hence identify the space of
parametrized flats with PSL(d,R)/M .

Two parametrized flats f, g are equivalent if the function

a 3 a 7→ dXd (f(a), g(a)) ∈ R

is bounded on a+.
The Furstenberg boundary of Xd is the space of equivalence classes of parametrized

flats. Note that by definition of N = exp n+ the distance function

a 7→ dXd (n exp a · o, exp a · o)

is bounded on a+ only if n ∈ M exp aN = P .17 Thus, the equivalence class of the flat f0
is P · f0. Hence, the Furstenberg boundary is PSL(d,R)-equivariantly identified with the
space F = PSL(d,R)/P of complete flags.

Given a parametrized flat f denote by Z(f) ∈ F its equivalence class in the Fursten-
berg boundary. Also, denote by Ž(f) ∈ F the class of the parametrized flat18

a 7→ f(−a).

This last identification can be seen directly: a parametrized flat f consists in fixing
an ordered19 set {`1, . . . , `d} of d lines that span Rd and considering all inner products
(up to homothety) that make this set an orthogonal set, and the choice of one of these

17 The ij entry of E of exp(−ta)n exp(ta) is exp(t (aj − ai))nij . In order to have this entry
bounded for all t > 0 one must have nij = 0 for all j < i.
18 This is still a parametrized flat.
19 Recall a+ is fixed beforehand.



3382 Jairo Bochi et al.

inner products. The associated point “at infinity” in the Furstenberg boundary of this
parametrized flat is the complete flag

Z(f)p = `1 ⊕ · · · ⊕ `p.

Moreover, Ž(f)p = `d ⊕ · · · ⊕ `d−p+1.
One easily deduces the following properties:

• Given x ∈ Xd and a complete flag F there exists a unique maximal flat f(a) containing
x such that Z(f) = F : apply the Gram–Schmidt process to flag F and any inner product
in the class x.
• Given two flags in general position, (E, F ) ∈ F (2), there exists a unique maximal

flat f(a) such that Z(f) = E and Ž(f) = F : it suffices to consider the ordered set
`p = Ep ∩ Fd−p+1.

Recalling thatM exp a = P ∩ P̌ , observe that the maps Ž and Z are exactly the canonical
quotient projections

(Ž,Z) : PSL(d,R)/M → F (2)
= PSL(d,R)/M exp a.

Given subsets θ ′ ⊂ θ ⊂ 5, denote by Fθ the space of partial flags of type θ and given
E ∈ Fθ denote byEθ

′

∈ Fθ ′ the partial flag of type θ ′ defined by forgetting the irrelevant
subspaces of E. Denote by Zθ (f) = Z(f)θ and by Žθ = Zi θ .

Given a pair of partial flags in general position, E ∈ Fθ and F ∈ Fi θ , and a point
x ∈ Xd , we define:
• The Weyl cone V (x,E) determined by x and E is⋃

f

f(a+),

where the union is over all parametrized flats f with f(0) = x and Zθ (f) = E.
• The parallel set P(F,E) determined by F and E is⋃

f

f(a),

where the union is over all parametrized flats f with Žθ (f) = F and Zθ (f) = E.

7.10. Parametrized flats through o and g · o

Consider g ∈ PSL(d,R) and let g = kg exp a(g)lg be a Cartan decomposition of g.
Observe that the set of d lines

kgE = {kgu1, . . . , kgud}

is simultaneously o-orthogonal and g · o-orthogonal. The set of classes of inner products
that make this set orthogonal is hence a maximal flat through o and g · o.

If g has gaps of certain indices, indexed by θ ⊂ 5, then every element of kgKo(θ)
can be chosen in a Cartan decomposition of g. Thus, the set of maximal flats through o
and g · o is the translated Ko(θ)-orbit kgKo(θ)E.

All parametrized flats f with f(0) = o and g ·o ∈ f(a+) haveUo(g) as a partial subflag
of their corresponding flag Z(f) at infinity (recall (7.2); see Fig. 6).
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o ∈ Xd

g · o

Uo(g)

Fθ

Fig. 6. All flats through o and g · o have Uo(g) as a partial flag at infinity.

7.11. a+-valued distance

Recall that Xd is PSL(d,R)-homogeneous and consider the map a : Xd × Xd → a+

defined by
a(g · o, h · o) = a(g−1h).

Note that a is PSL(d,R)-invariant for the diagonal action of PSL(d,R) on Xd ×Xd , that

dXd (x, y) = |a(x, y)|o (7.4)

(due to (7.3)) and that i(a(x, y)) = a(y, x).
Consider the subset of simple roots defined by

θ(x, y) = {α ∈ 5 : α(a(x, y)) 6= 0}

and consider the partial flag

U(x, y) = {gUoα (g
−1h)}α∈θ(x,y),

where (x, y) = (g · o, h · o). Given θ ⊂ θ(x, y), let the Weyl cone of type θ from x to y be

Vθ (x, y) =
⋃
f

f(a+),

where the union is over all parametrized flats f with f(0) = x and Zθ (f) = U(x, y)θ .
Finally, the diamond of type θ between x and y is the subset

♦θ (x, y) = Vθ (x, y) ∩ Vi θ (y, x).

This diamond is contained in the parallel set

P(U(x, y)θ , S(x, y)i θ ),

where S(x, y) = hSo(g−1h).
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For example, consider x = o. Any y ∈ Xd can be written as y = g exp a · o with
a = a(o, y) ∈ a+ and g · o = o. If a ∈ int a+ then θ(o, y) = 5 and

V5(o, y) = {g exp v · o : v ∈ a+},

♦5(o, y) = {g exp v · o : v ∈ a+ ∩ (a − a+)}.

7.12. Angles and distances to parallel sets

The purpose of this subsection and the next one is to relate the distance from a given point
o to a parallel set P(E, F ), for two partial flags in general position, to the angle between
E and F for an inner product in the class o (Proposition 7.2).

Fix an inner product 〈·, ·〉 ∈ o and denote by ‖·‖ the induced norm on Rd . The o-angle
between nonzero vectors v, w ∈ Rd is defined as the unique number ]o(v,w) in [0, π]
whose cosine is 〈v,w〉/(‖v‖ ‖w‖). If E, F ⊂ Rd are nonzero subspaces then we define
their o-angle as

]o(E, F ) := min
v∈E×

min
w∈F×

]o(v,w), (7.5)

where E× := E − {0}. We also write ]o(v, F ) instead of ]o(Rv, F ) if v is a nonzero
vector. Observe that ]o(·, ·) is independent of 〈·, ·〉 ∈ o.

We have not found a precise reference for the following proposition, we will hence
provide a proof. See Fig. 7.

o

E ∈ Fθ

F ∈ Fi θ

dXd (o, P (F,E)) � − log min
αp∈θ

sin]o(Ep, Fd−p)

P (F,E)

Fig. 7. The statement of Proposition 7.2.

Proposition 7.2. Given θ ⊂ 5 there exist c > 1 and c′ > 0, only depending on θ and
the group PSL(d,R), such that if (E, F ) ∈ F (2)

θ , then

−1
c

log sin min
αp∈θ

]o(Ep, Fd−p) ≤ dXd (o, P (F,E)) ≤ c
′
− c log sin min

αp∈θ
]o(Ep, Fd−p).

Proof. Without loss of generality, we may assume that for all αp ∈ θ one has

Fd−p = ud−p ⊕ · · · ⊕ ud .
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Denote by GE(E, F ) the set of elements g ∈ PSL(d,R) such that for all αp ∈ θ one has
g(u1 ⊕ · · · ⊕ up) = Ep and g(Fd−p) = Fd−p. Then the parallel set equals

P(F,E) = {g · o : g ∈ GE(E, F )}.

Let us prove the first inequality. Consider an arbitrary p with αp ∈ θ and arbitrary
nonzero vectors v ∈ Ep and w ∈ Fd−p. Let w̃ be the orthogonal projection of v on
the line spanned by w. Let g ∈ GE(E, F ). Then g−1v and g−1w are orthogonal, which
allows us to estimate

1
sin]o(v,w)

=
‖w̃‖

‖v − w̃‖
≤

σ o1 (g)‖g
−1w̃‖

σ od (g)‖g
−1v − g−1w̃‖

≤
σ o1 (g)

σ od (g)
.

By Lemma 7.1, the logarithm of the right-hand side is comparable to dXd (o, g · o). So we
obtain the first inequality in the proposition.

Next, let us turn to the second inequality. Write the set {p : αp ∈ θ} ∪ {0, d} as
{0 = p0 < p1 < · · · < pk = d}. Denote

H 0
i = upi−1 ⊕ · · · ⊕ upi , Hi = Epi ∩ Fd−pi+1 .

For all i ∈ {1, . . . , k} one has

dimH 0
1 ⊕ · · · ⊕H

0
i = dimH1 ⊕ · · · ⊕Hi .

If for g ∈ PSL(d,R) one has g(H 0
i ) = Hi then g ∈ GE(E, F ) and hence g · o ∈

P(F,E). We will define a suitable such g and estimate its operator norm for the class o.
Consider g as the unique element of PSL(d,R) such that, for each i = 1, . . . , k, the

restriction of g−1 to Hi coincides with the orthogonal projection on H 0
i .

We proceed to estimate ‖g‖. Given v ∈ Rd , write it as v1 + · · · + vk with vi ∈ H 0
i .

Then

‖gv‖ ≤

k∑
i=1

‖gvi‖ =

k∑
i=1

‖vi‖

sin]o(g(vi),H 0
1 ⊕ · · · ⊕H

0
i−1)

.

For each i, orthogonality yields ‖vi‖ ≤ ‖v‖; moreover,

]o(g(vi),H
0
1 ⊕ · · · ⊕H

0
i−1)

≥ ]o(Hi ⊕ · · · ⊕Hd , H
0
1 ⊕ · · · ⊕H

0
i−1) = ]o(Epi , Fd−pi ) ≥ min

αp∈θ
]o(Ep, Fd−p).

Therefore

‖g‖ ≤
d

sin minαp∈θ ]o(Ep, Fd−p)
.

Taking log and using Lemma 7.1 yields the second inequality. ut
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7.13. Regular quasi-geodesics and the Morse Lemma of Kapovich–Leeb–Porti

Let I ⊂ Z be an interval and let µ, c be positive numbers. A (µ, c)-quasi-geodesic is a
map x : I → Xd (also denoted by {xn}n∈I ) such that

1
µ
|n−m| − c ≤ dXd (xn, xm) ≤ µ|n−m| + c for all n,m ∈ I .

Let C ⊂ a+ be a closed cone. Following [KLP2] we will say that a quasi-geodesic
segment {xn} is C -regular if a(xn, xm) ∈ C for all n < m ∈ I . Denote

θC =
{
α ∈ 5 : kerα ∩ C = {0}

}
.

We state the following version of the Morse Lemma [KLP2, Theorem 1.3], specialized to
the symmetric space of PSL(d,R):

Theorem 7.3 (Kapovich–Leeb–Porti [KLP2]). Let µ, c > 0 and C ⊂ a+ a closed cone.
Then there exists C > 0 such that if {xn}n∈I is a C -regular (µ, c)-quasi-geodesic seg-
ment, then:

• If I is finite then {xn} is at distance at most C from the diamond ♦θC (xmin I , xmax I ).

• If I = N then there exists F ∈ FθC such that {xn} is contained in the C-neighborhood
of the Weyl cone V (xmin I , F ).
• If I = Z then there exists (E, F ) ∈ F (2)

θC
such that {xn} is contained in the C-neigh-

borhood of V (z,E) ∪ V (z, F ) for some z ∈ P(E, F ) at uniform distance from {xn}.

Proof. We can assume that 0 ∈ I and x0 = o. Consider {hn}n∈I ⊂ PSL(d,R) such that
hn · o = xn. Since {xn} is a quasi-geodesic, equation (7.4) implies

|a(h−1
n+1hn)|o = |a(hn · o, hn+1 · o)|o = dXd (xn, xn+1) ≤ µ+ c.

If we set gn = h−1
n+1hn, then the above implies that {gn} lies in a compact subset of

PGL(d,R). Moreover, if m ≥ n then

a(gm · · · gn) = a(h
−1
m+1hn) = a(xm+1, xn) ∈ i C .

One has the following:

1. The sequence {gn}n∈I is iα-dominated for all α ∈ θC : indeed, since C is closed and
does not intersect kerα− {0}, one has i C ∩ ker iα = {0} and hence there exists δ > 0
such that for all a ∈ i C − {0} and α ∈ θC one has

iα(a) > δ|a|o.

Thus,

α(a(gm · · · gn)) = α(a(xm+1, xn)) > δ|a(xm+1, xn)|o > (δ/µ)|n−m| − δc.

That is, the sequence {gn}n∈I belongs to the space

D(µ+ c, d − p, δ/µ, e−cδ, I )

for all p such that αp ∈ θC , if we use the operator norm ‖ ‖o associated to o.



Anosov representations and dominated splittings 3387

2. Subsection 7.10 implies that the (partial) flag at infinity associated to the Weyl cone
VθC (o, xm+1) is

U(o, xm+1)
θC = {Uoα (hm+1)}α∈θC

= {Uoα (g
−1
0 · · · g

−1
m )}α∈θC = {S

o
iα(gm . . . g0)}α∈θC for m ≥ 0,

U(o, x−m)
i θC = {Uoiα(h−m)}α∈θC = {U

o
iα(g0 · · · g−m)}α∈θC for m ≥ 0.

Consider `1 given simultaneously by Lemmas 2.5 and A.12 for all p such that αp∈θC
and for constants µ + c, δ/µ, and e−cδ . Assume [−`1, `1] ⊂ I (i.e. I is long enough).
Item 2 above and Lemma 2.5 imply the existence of δ0 such that for all m and −n in I
with m, n ≥ `1 one has

]o(U(o, xm)
θC , U(o, x−n)

i θC ) > δ0.

Moreover, by Lemma A.12 one has ]o(U(o, x`1)
θC , U(o, xm)

θC ) < ε and the same
holds for U(o, x−`1)

i θC and U(o, x−n)i θC .
Proposition 7.2 implies that for all m,−n ∈ I with n,m ≥ `1 the distance between

o and the parallel set P(U(o, xm)θC , U(o, x−n)i θC ) is bounded above by a number C
depending on µ, c, the cone C and a priori the point o, but independent of the quasi-
geodesic through o.

Since Xd is PSL(d,R)-homogeneous and this action is by isometries, for any k such
that [k − `1, k + `1] ⊂ I one has

dXd
(
xk, P (U(xk, xm)

θC , U(xk, x−n)
i θC )

)
< C (7.6)

provided m ≥ k + `1 and −n ≤ k − `1.

x0 = o

U(o, xm) = S
o(gm−1 · · · g0)

xm
xm−1

U(o, x−n) = U
o(g0 · · · g−n)

x−n

≤ c′ − c log min sin]o(Uo(g0 · · · g−n), S
o(gm−1 · · · g0))

Fig. 8. The flag at infinity associated to the Weyl cone VθC (o, xm) (resp. Vi θC (o, xm)) corresponds
to the So flag of a dominated sequence for m ≥ 0, resp. to the Uo flag when m ≤ 0.

We now consider the three cases of the statement in turn, in increasing difficulty.
If I = Z, denote

F = Ecu({gi}) = lim
n→∞

U(o, x−n)
i θC , E = Ecs({gi}) = lim

m→∞
U(o, xm)

θC .
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Recall that Ecu
⊕ Ecs is a dominated splitting for the cocycle ϑ (Subsection 2.3), in

particular it is equivariant. Hence, if k > 0 then

h−1
k F = gk · · · g0E

cu({gi}i∈Z) = E
cu({gi−k}i∈Z)

and h−1
k E = gk · · · g0E

cs({gi}i∈Z) = Ecs({gi−k}i∈Z). Consequently,

]o(h
−1
k F, h−1

k E) > δ.

Thus
d(hk · o, P (E, F )) = d(o, P (h

−1
k F, h−1

k E)) < C.

The same argument works for k < 0 and so {xi}i∈Z is at Hausdorff distance at most C
from the parallel set P(F,E).

If I = N, assume for simplicity that I = [−`1,∞) ∩ Z. The flag U(o, xm)θC con-
verges as m→∞ to a flag E ∈ FθC . We have to show that for all k > 0 the xk angle

]xk (U(xk, o)
i θC , E)

is bounded below by a constant independent of k.
As before, we know that if k ≥ `1 and m ≥ k + `1 then

]xk
(
U(xk, o)

i θC , U(xk, xm)
θC
)
> δ.

For a homothety class x ∈ Xd denote by dx the distance on FθC induced by an inner
product in x. We will show that dxk (U(xk, xm)

θC , U(o, xm)
θC ) goes to zero as m→∞,

and thus the angle ]xk (U(xk, o)
i θC , E) will be uniformly bounded below.

Recall that by definition U(xk, xm)θC = hkUo(h−1
k hm)

θC , hence

dxk
(
U(xk, xm)

θC , U(o, xm)
θC
)
= dhk ·o

(
hkU

o(h−1
k hm)

θC , Uo(hm)
θC
)

= do
(
Uo(h−1

k hm)
θC , h−1

k Uo(hm)
θC
)
.

Since k is fixed, Lemma A.5 implies do(Uo(h−1
k hm)

θC , h−1
k Uo(hm)

θC )→ 0 asm→∞.
Let us now show that given ε > 0 there existsL ∈ N (depending on the quasi-geodesic

constants and C ) such that if k ≥ L then

dxk
(
U(xk, x−`1)

i θC , U(o, x−`1)
i θC
)
< ε;

this will conclude the proof in this case since every {xi}i∈N will be at bounded distance
from a Weyl cone pointing to E in the parallel set P(U(o, x−`1)

i θC , E).

One has

dxk
(
U(xk, x−`1)

i θC , U(o, x−`1)
i θC
)
= dhk ·o

(
hkU

o(h−1
k h−`1)

i θC , Uo(h−`1)
i θC
)

= do
(
Uo(h−1

k h−`1)
i θC , h−1

k Uo(h−`1)
i θC
)
.

Since

]o
(
Uo(h−`1)

i θC , So(h−1
k )i θC

)
= ]o

(
Uo(h−`1)

i θC , Uo(hk)
θC
)
> δ,

Lemmas A.6 and A.9 imply the desired conclusion.
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If I is finite, notice that in the last paragraph we have proved the following: given
ε > 0 there exists L ∈ N such that for all k ∈ I with k − L ≥ min I one has

dxk
(
U(xk, xmin I )

i θC , U(xmin I+L, xmin I )
i θC
)
< ε.

Analogously, for every k ∈ I with k + L ≤ max I one has

dxk
(
U(xk, xmax I )

θC , U(xmax I−L, xmax I )
θC
)
< ε.

Hence, for every k with min I + L < k < max I − L one has

]xk
(
U(xmin I+L, xmin I )

i θC , U(xmax I−L, xmax I )
θC
)

≥ ]xk
(
U(xk, xmin I )

i θC , U(xk, xmax I )
θC
)
− 2ε > δ − 2ε.

Choosing ε such that δ − 2ε > 0 completes the proof. ut

8. When the target group is a semisimple Lie group

The purpose of this section is to extend the main results of the previous sections to the
situation where the target group is a real-algebraic semisimple Lie group without compact
factors.

We will begin by recalling the general structure theory of such groups, needed to
define concepts such as domination, Anosov representation, regular quasi-geodesic, etc.
This basic structure theory can be found in [Hum1], [Ebe], [Hel].

We will then explain how the representation theory of these groups is used to re-
duce the general case to the PSL(d,R) case, for a well chosen d . Section 7 mimics, for
PSL(d,R), the general structure presented here.

The first main goal is Subsection 8.5, where Theorem 3.2 and Proposition 4.9 are
extended to the general setting. This general case is reduced to the actual statement of 3.2
and 4.9 using Tits representations.

The remainder of the section is devoted to a new proof of the Morse Lemma of [KLP2]
for symmetric spaces of noncompact type. In contrast with Subsection 8.5, a simple reduc-
tion to the PSL(d,R) case is not sufficient: one needs to have a finer control of distances
to parallel sets when embedding symmetric spaces. This is achieved in Corollary 8.8.

If G is a Lie group with Lie algebra g, the Killing form of g is the symmetric bilinear
form defined by

κ(v,w) = Trace(adv adw).

The group G is semisimple if κ is nondegenerate.
We will assume from now on that G is a semisimple, real-algebraic (i.e. defined by

polynomial equations with real coefficients) Lie group, without compact factors (i.e. there
is no normal subgroup H of G such that G/H is compact).
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8.1. Root system

A Cartan involution of g is a Lie algebra morphism o : g→ g with o2
= 1 and such that

the bilinear form (v,w) 7→ −κ(v, o(w)) is positive definite. The fixed point set

ko = {v ∈ g : ov = v}

is the Lie algebra of a maximal compact subgroup Ko. Let po = {v ∈ g : ov = −v} and
note that

g = ko ⊕ po.

A computation shows that [po, po] ⊂ ko and hence any subalgebra of po is necessarily
abelian. Let a ⊂ po be a maximal abelian subalgebra.

Denote by 6 the set of restricted roots of a on g. By definition,

6 =
{
α ∈ a∗ − {0} : gα 6= 0

}
where

gα = {w ∈ g : [a,w] = α(a)w ∀a ∈ a}.

The closure of a connected component of

a−
⋃
α∈6

kerα

is called a closed Weyl chamber. Fix a closed Weyl chamber a+ and let 6+ = {α ∈ 6 :
α|a+ ≥ 0} be the set of positive roots associated to a+. The set 6+ contains a subset 5
such that

• 5 is a basis of a as a vector space,
• every element of 6+ has nonnegative coefficients in the basis 5.

The set 5 is called the set of simple (restricted) roots determined by 6+, and the sets
kerα ∩ a+ for α ∈ 5 are the walls of the chamber a+.

The Weyl groupW of6 is defined as the group generated by the orthogonal reflections
in the subspaces {kerα : α ∈ 6}.

The reflections associated to elements of 5 span W . With respect to the word-length
on this generating set, there exists a unique longest element inW , denoted by u0 : a→ a.
This is the unique element inW that sends a+ to−a+. The opposition involution i : a→ a
is defined by i = −u0. Denote by (·, ·) the bilinear form on a∗ dual to the Killing form,
define

〈χ,ψ〉 =
2(χ, ψ)
(ψ,ψ)

for χ,ψ ∈ a∗,

and let {ωα}α∈5 be the dual basis of 5, i.e. 〈ωα, β〉 = δαβ . The linear form ωα is the
fundamental weight associated to α. Note that

χ =
∑
α∈5

〈χ, α〉ωα for every χ ∈ a∗. (8.1)

Denote by a = aG : G → a+ the Cartan projection of G. By definition, for every
g ∈ G one has g ∈ Ko exp a(g)Ko and a(g−1) = i a(g).
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8.2. Parabolic subgroups

Denote by M the centralizer of exp a in K and let N = exp n+ where n+ =
⊕

α∈6+ gα .
The group P5 = M exp aN is called a minimal parabolic subgroup and its Lie algebra is
p5 = g0⊕n+. A parabolic subgroup ofG is a subgroup that contains a conjugate of P5.
Two parabolic subgroups are opposite if their intersection is a reductive group.20

To each subset θ of 5 one associates two opposite parabolic subgroups of G, Pθ
and P̌θ , whose Lie algebras are, by definition,

pθ = g0 ⊕
⊕
α∈6+

gα ⊕
⊕

α∈〈5−θ〉

g−α, p̌θ = g0 ⊕
⊕
α∈6+

g−α ⊕
⊕

α∈〈5−θ〉

gα,

where 〈θ〉 is the set of positive roots generated by θ . Every pair of opposite parabolic
subgroups of G is conjugate to (Pθ , P̌θ ) for a unique θ , and every opposite parabolic
subgroup of Pθ is conjugate to Pi θ , the parabolic group associated to

i θ = {α ◦ i : α ∈ θ}.

The quotient space F = F5 = G/P5 is called the flag space of G and if θ ⊂ 5

then Fθ = G/Pθ is called a partial flag space of G. Note that if θ ⊂ θ ′ ⊂ 5 one has
Pθ ′ ⊂ Pθ and there is hence a canonical projection Fθ ′ → Fθ , denoted by x 7→ xθ .

Finally, denote by F (2)
θ ⊂ Fθ × Fi θ the space of pairs of opposite parabolic sub-

groups (of type θ ); this is the unique open G-orbit on Fθ ×Fi θ .

8.3. Representations of G

Let 3 : G → PSL(V ) be a finite-dimensional rational21 irreducible representation and
denote by φ3 : g→ sl(V ) the Lie algebra homomorphism associated to 3. Then χ ∈ a∗

is a restricted weight of 3 if the vector space

Vχ = {v ∈ V : φ3(a)v = χ(a)v ∀a ∈ a}

is nonzero. Theorem 7.2 of Tits [Ti] states that the set of weights has a unique maximal
element with respect to the order χ ≥ ψ if χ − ψ is positive on a+. This is called the
highest weight of 3 and denoted by χ3.

Note that if χ is a restricted weight and v ∈ Vχ then, for n ∈ gα with α ∈ 6, φ3(n)v
is an eigenvector of φ3(a) of eigenvalue22 χ+α unless φ3(n)v = 0. Since for all β ∈ 6+

one has χ3+ β ≥ χ3 and χ3 is maximal, one concludes that χ3+ β is not a weight, i.e.
for all n ∈ gβ and v ∈ Vχ3 one has φ3(n)v = 0.

Let θ3 ⊂ 5 be the set of simple roots α such that χ3 − α is still a weight of 3.

20 Recall that a Lie group is reductive if its Lie algebra splits into a semisimple algebra and an
abelian algebra.
21 That is, a rational map between algebraic varieties.
22 Indeed, this follows from φ3([a, n])v = α(a)φ3(n)v.
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Remark 8.1. The subset θ3 is the smallest subset of simple roots such that the following
holds. Consider α ∈ 6+, n ∈ g−α and v ∈ Vχ3 . Then φ3(n)v = 0 if and only if
α ∈ 〈5− θ3〉. Equivalently, the smallest parabolic subgroup P ofG stabilizing Vχ3 is of
type θ3.

Remark 8.2. Since V is irreducible, the φ3(a)-eigenspaces(∏
α∈5

φ3(n
iα
α )
)
Vχ3

span V and thus any other weight of 3 is of the form

χ3 −
∑
α∈5

kαα, (8.2)

where kα ≥ 0 and
∑
α∈θ3

kα 6= 0 (i.e. the numbers kα for α ∈ θ3 do not simultaneously
vanish).

Consider an inner product on V invariant under 3Ko such that 3 exp a is symmetric,
and denote by 3o its homothety class. For the Euclidean norm ‖ ‖ induced by this scalar
product, one has

log ‖3g‖ = χ3(a(g)). (8.3)

If g = k(exp a(g))l with k, l ∈ Ko, then for all v ∈ l−1Vχ3 one has

‖3g(v)‖ = ‖3g‖ ‖v‖.

If we denote ` = dimVχ3 then Remark 8.2 implies that

α`(a(3g)) = a`(3g)− a`+1(3g) = β(a(g)) for all g ∈ G (8.4)

for some β ∈ θ3 (depending on g).
Denote by Wχ3 the 3(exp a)-invariant complement of Vχ3 . The space Wχ3 is 3o-

orthogonal to Vχ3 . Its stabilizer (in G) is opposite to P , and hence conjugate to Pi θ3 .
Thus, one has a map of flag spaces

(ξ3, ξ
∗
3) : F

(2)
θ3
→ F (2)

{αp}
. (8.5)

This is a proper embedding which is a homeomorphism onto its image.

8.4. A set of representations defined by Tits

One has the following proposition by Tits (see also Humphreys [Hum2, Chapter XI]).

Proposition 8.3 (Tits [Ti]). For each α ∈ 5 there exists a finite-dimensional rational
irreducible representation3α : G→ PSL(Vα) such that χ3α is an integer multiple of the
fundamental weight ωα and dimVχ3α = 1.

Such a set of representations is not necessarily unique but will be fixed from now on, and
we will say that 3α is the Tits representation of G associated to α. Observe that (8.4)
implies that

a1(3αg)− a2(3αg) = α(a(g)) for all g ∈ G. (8.6)
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8.5. Dominated representations: reduction to the GL(d,R) case

A representation ρ : 0→ G is θ -dominated if there exist positive constants µ and c such
that

α(a(ργ )) ≥ µ|γ | − c for all α ∈ θ and γ ∈ 0.

Assume that ρ is a θ -dominated representation. Then for all α ∈ θ , the representation
3αρ : 0→ PSL(Vα) is 1-dominated in the sense of Subsection 3.1. Indeed, (8.6) implies
that

log σ1(3αρ(γ ))− log σ2(3αρ(γ )) = α(a(ργ )) ≥ µ|γ | − c,

or equivalently
σ2(3αρ(γ ))

σ1(3αρ(γ ))
≤ ece−µ|γ |.

Thus, Theorem 3.2 implies that 0 is word-hyperbolic. Moreover, Proposition 4.9 together
with [GW, Proposition 4.3] implies that ρ is Pθ -Anosov.23

Thus, Theorem 3.2, Proposition 4.9 together with [GW, Proposition 4.3] and Tits
representations 8.3 prove the following.

Theorem 8.4. Let ρ : 0 → G be a θ -dominated representation. Then 0 is word-hyper-
bolic and ρ is Pθ -Anosov.

8.6. A Plücker representation

Given θ ⊂ 5 one can construct a rational irreducible representation of G such that Pθ
is the stabilizer of a line, and hence P̌θ will be the stabilizer of a hyperplane.24 More
precisely, one has the following result from representation theory (see [GW, §4]).

Proposition 8.5. Given θ ⊂ 5, there exists a finite-dimensional rational irreducible rep-
resentation 3 : G→ PSL(V ) and ` ∈ P(V ) such that

Pθ = {g ∈ G : 3g(`) = `}.

Such a representation can be defined as follows: if we denote k = dim pθ then the com-
position 3k Ad : G → PSL(3kg) satisfies the desired conditions, except (maybe) irre-
ducibility; this is fixed by considering the vector space V spanned by the G-orbit of the
line ` = 3kpθ ,

V = 〈3k AdG · `〉,

and considering the restriction of 3k AdG to V .
A representation as in the statement of Proposition 8.5 will be called a Plücker repre-

sentation ofG associated to θ . For such a representation one has a continuous equivariant
map (ξ, ξ∗) : F (2)

θ → P(2)(V ) which is a homeomorphism onto its image.

23 See [Lab] or [GW] for a precise definition.
24 There are actually infinitely many such representations.
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8.7. The symmetric space

The symmetric space of G is the space of Cartan involutions on g, and is denoted by X.
This aG-homogeneous space, and the stabilizer of o ∈ X is the compact groupKo, whose
Lie algebra is ko. The tangent space ToX is hence identified with po. The G-invariant
Riemannian metric on X is the restriction of the Killing form κ to po × po.

If dX is the distance onX induced by κ|po×po, then the Euclidean norm ‖ ‖o induced
on a is invariant under the Weyl group, and for all a ∈ a one has dX(o, (exp a)·o) = ‖a‖o.
Hence the Cartan decomposition of G implies that

dX(o, g · o) = ‖a(g)‖o for all g ∈ G.

Consider the map a : X ×X→ a+ defined by a(g · o, h · o) = a(g−1h). Note that a
is G-invariant for the diagonal action of G on X ×X, that

dX(p, q) = ‖a(p, q)‖o (8.7)

and that i(a(p, q)) = a(q, p).

8.8. Flats

A parametrized flat is a map f : a → X of the form f(v) = g exp(v) · o for some
g ∈ G. Observe that G acts transitively on the set of parametrized flats and the stabilizer
of f0 : v 7→ exp(v) · o is the group M of elements in K commuting with exp(a). We will
hence identify the space of parametrized flats with G/M .

Two parametrized flats f, g are equivalent if the function

a 3 v 7→ dX(f(v), g(v)) ∈ R

is bounded on a+. The Furstenberg boundary of X is the space of equivalence classes of
parametrized flats. It is a standard fact that this space is G-equivariantly identified with
F = G/P5, thus the Furstenberg boundary will also be denoted by F . Denote by

Z : {parametrized flats} → F

the canonical projection, and set Ž(f) = Z(f ◦ i). The pair (Ž(f),Z(f)) belongs to F (2).
The following proposition is standard.

Proposition 8.6 (see [GJT, Chapter III]). (i) A pair (p, x) ∈ X × F determines a
unique parametrized flat f such that f(0) = p and Z(f) = x.

(ii) A point (x, y) ∈ F (2) determines a unique maximal flat fxy(a) such that Ž(fxy) = x
and Z(fxy) = y.

Given a subset θ ⊂ 5 of simple roots and a pair (x, y) ∈ F (2)
θ of partial flags in general

position, the parallel set P(x, y) from x to y is⋃
f

f(a),

where the union is over all parametrized flats f with Ž(f)θ = x and Z(f)i θ = y.
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8.9. Representations and distances to parallel sets

The purpose of this subsection is to deduce the following proposition and corollary. Only
the statement of Corollary 8.8 will be needed in what follows. If 3 : G → PSL(V ) is
a finite-dimensional rational irreducible representation, denote by 3 : X → XV the in-
duced map between symmetric spaces and byD3 : TX→ TXV its differential mapping.
The map Dp3 is φ3|pp : pp → p3p.

Proposition 8.7. Let 3 : G → PSL(V ) be a finite-dimensional rational irreducible
representation. Then there exists a constant δ > 0 such that if (x, y) ∈ F (2)

θ3
and p ∈

P(x, y) then
]
(
Dp3(TpP(x, y)

⊥),T3pP(ξ3x, ξ
∗
3y)

)
> δ,

where ] denotes the angle on T3pXV .

Corollary 8.8. Let 3 : G → PSL(V ) be an injective finite-dimensional irreducible
representation. Then there exists c > 0 such that if o ∈ X and (x, y) ∈ F (2)

θ3
, then

1
c
dXV (3o, P (ξ3x, ξ

∗
3y)) ≤ dX(o, P (x, y)) ≤ cdXV (3o, P (ξ3x, ξ

∗
3y)).

Let us show how Proposition 8.7 implies the corollary.

Proof of Corollary 8.8. Since G has no compact factors, X is non-positively-curved.
Hence, since P(x, y) is totally geodesic, the distance from o to P(x, y) is attained at a
unique point p ∈ P(x, y). Moreover, the geodesic segment σ : I → X from p to o is
orthogonal to P(x, y) at p, i.e. σ̇ (0) ∈ TpP(x, y)

⊥. Similarly, the distance from 3o to
P(ξ3x, ξ

∗
3y) is also attained at a unique point q and the geodesic segment from q to 3o

is perpendicular to P(ξ3x, ξ∗3y).
Since3X is totally geodesic in XV , we can estimate the angle at the vertex3p of the

geodesic triangle {3o,3p, q}. Indeed, Proposition 8.7 implies that this angle is bounded
below by δ > 0, independently of o and (x, y). Since the angle at the vertex q is π/2, a
CAT(0) argument completes the proof. ut

The remainder of this subsection is devoted to the proof of Proposition 8.7.

Proof of Proposition 8.7. Let L(x, y) be the stabilizer in G of (x, y) ∈ F (2)
θ3

and let l
be its Lie algebra. Moreover, let L(ξ3x, ξ∗3y) be the stabilizer in PSL(V ) of (ξ3x, ξ∗3y),
and l′ ⊂ sl(V ) its Lie algebra.

If l⊥ denotes the orthogonal of l with respect to the Killing form κ , then we will show
that

φ3(l
⊥) ∩ l′ = {0}. (8.8)

This will imply the proposition since if p ∈ P(x, y) then TpP(x, y) = pp ∩ l, so its
orthogonal in TpX is pp ∩ l⊥ and given q ∈ P(x, y) there exists g ∈ L(x, y) such that
gp = q; thus the angle

](p3p ∩ φ3(l
⊥), p3p ∩ l′) ≥ ](φ3(p

p
∩ l⊥), p3p ∩ l′)

is independent of p in P(x, y).
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Now we turn to showing that (8.8) holds. By homogeneity, we can assume that the
stabilizer of x is Pθ3 and the stabilizer of y is P̌θ3 . The parallel set P(x, y) is then the
orbit Lθ3 · o, where Lθ3 is the Levi group Pθ ∩ P̌θ .

An explicit computation shows that for α, β ∈ 6, the eigenspaces gα and gβ (recall
Subsection 7.1) are orthogonal with respect to the Killing form κ whenever α 6= −β. If
we denote g{α,−α} = gα ⊕ g−α then the decomposition

g = g0 ⊕
⊕
α∈6+

g{α,−α}

is orthogonal with respect to κ .
Note that the Cartan involution o sends gα to g−α and hence g{α,−α} is o-invariant.

Since−κ(·, o(·)) is positive definite and κ|gα = 0 one concludes that po ∩ g{α,−α} 6= {0}.
One then finds an orthogonal decomposition

ToX = po = a⊕
⊕
α∈6+

po ∩ g{α,−α}. (8.9)

The Lie algebra of Lθ3 is

lθ3 = g0 ⊕
⊕

α∈〈5−θ3〉

g{α,−α}

and hence the decomposition

g = lθ3 ⊕
⊕

α∈6+−〈5−θ3〉

g{α,−α}

is orthogonal with respect to κ , that is,

l⊥θ3 =
⊕

α∈6+−〈5−θ3〉

g{α,−α}. (8.10)

Set ` = dimVχ3 and note that l′ is the Lie algebra of the stabilizer of (Vχ3 ,Wχ3)

∈ F (2)
{α`}

. Choose a Cartan algebra aE of sl(V ) and a Weyl chamber a+E such that25 (recall
Section 8.2):

• p{α`} is the Lie algebra of the parabolic group stabilizing Vχ3 ,
• p̌{α`} is the Lie algebra of the parabolic group stabilizing Wχ3 .

The Lie algebra l′ is thus p{α`} ∩ p̌{α`}. In order to show that φ3(l⊥θ3) ∩ l′ = {0} the
following lemma is sufficient.

Lemma 8.9. The subspace φ3(
⊕

α∈6+−〈5−θ3〉
g−α) has trivial intersection with p{α`}.

25 It suffices to choose a 3o-orthogonal set of dimV lines E such that E ⊂ Vχ3 ∪Wχ3 .
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Proof. Recall that

p{αp} = aE ⊕
⊕
β∈6+V

sl(V )β ⊕
⊕

β∈〈5V−{αl}〉

sl(V )−β ,

where 6+V and 5V are the sets of positive, resp. simple, roots associated to the choice
of a+E.

Consider then α ∈ 6+ − 〈5− θ3〉 and n ∈ g−α . Remark 8.1 implies that if v ∈ Vχ3
then φ3(n)v 6= 0. Hence,

φ3(n) /∈ aE ⊕
⊕
β∈6+V

sl(V )β ⊕
⊕

β∈〈5V−{αl}〉

sl(V )−β .

Let {γi}ki=1 ⊂ 6+ − 〈5 − θ3〉 be pairwise distinct and consider nγi ∈ g−γi − {0}.
Then φ3(nγi )v is a nonzero eigenvector of a of eigenvalue χ − γi , hence

φ3(nγ1 + · · · + nγk )v = φ3(nγ1)v + · · · + φ3(nγk )v 6= 0.

This proves the lemma. ut

As an example, consider the irreducible representation (unique up to conjugation) 3 :
PSL(2,R)→ PSL(3,R). Explicitly3 is the action of PSL(2,R) on the symmetric power
S2(R2), which is a 3-dimensional space spanned by

{e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e2},

where e1 = (1, 0) and e2 = (0, 1).
The group L(〈e1〉, 〈e2〉) has Lie algebra l = a =

〈( 1 0
0 −1

)〉
, its orthogonal with respect

to the Killing form of PSL(2,R) is

a⊥ =
〈(

0 1
0 0

)
,
(

0 0
1 0

)〉
.

The group L(〈e1 ⊗ e1〉, 〈e1 ⊗ e2, e2 ⊗ e2〉) has Lie algebra

l′ =
〈( 1 0 0

0 −1 0
0 0 0

)
,
( 1 0 0

0 0 0
0 0 −1

)
,
( 0 0 0

0 1 0
0 0 −1

)
,
( 0 0 0

0 0 1
0 0 0

)
,
( 0 0 0

0 0 0
0 1 0

)〉
.

The orthogonal complement of l′ with respect to the Killing form of PSL(3,R) is

l′⊥ =
〈( 0 1 0

0 0 0
0 0 0

)
,
( 0 0 1

0 0 0
0 0 0

)
,
( 0 0 0

1 0 0
0 0 0

)
,
( 0 0 0

0 0 0
1 0 0

)〉
.

An explicit computation shows that 3
(

1 t
0 1

)
=

( 1 t t2
0 1 t
0 0 1

)
, hence

φ3
(

0 1
0 0

)
=

( 0 1 0
0 0 1
0 0 0

)
,

which does not belong to l′⊥. However, it does not belong to l′ either, which gives the
definite angle of Proposition 8.7. ut
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8.10. Gromov product and representations

Consider θ ⊂ 5 and denote by

aθ =
⋂

α∈5−θ

kerα

the Lie algebra of the center of the reductive group Lθ = Pθ ∩ P̌θ . Recall from [Sa] that
the Gromov product26 based on o ∈ X is the map

(·|·)o : F
(2)
θ → aθ

defined by the unique vector (x|y)o ∈ aθ such that

ωα((x|y)o) = − log sin]3αo(ξ3αx, ξ
∗
3α
y) = − log

|ϕ(v)|

‖ϕ‖3αo‖v‖3αo
for all α ∈ θ ,

where ωα is the fundamental weight of 3α , v ∈ ξ3αx − {0} and kerϕ = ξ∗3αy.

Remark 8.10. Note that

max
α∈θ

ωα((x|y)o) = − log min
α∈θ

sin]3αo(ξ3αx, ξ
∗
3α
y). (8.11)

Note also that since {ωα|aθ }α∈θ is a basis of aθ , the right-hand side of (8.11) is comparable
to the norm ‖(x|y)o‖o.

As suggested by the notation, the Gromov product is independent of the choice of Tits’s
representations of G, moreover, it keeps track of Gromov products for all irreducible
representations of G. Indeed, one has the following consequence of (8.3).

Remark 8.11. Let 3 : G→ PSL(V ) be a finite-dimensional rational irreducible repre-
sentation with dimVχ3 = 1. If (x, y) ∈ F (2)

θ3
then27

(ξ3x|ξ
∗
3y)3o = χ3((x|y)o) =

∑
α∈θ3

〈χ3, α〉ωα((x|y)o).

Note that, by definition of θ3 (recall Subsection 8.3), the coefficients in the last equation
are all strictly positive.

8.11. Gromov product and distances to parallel sets

The aim of this subsection is to prove the following.

Proposition 8.12. Given θ ⊂ 5 there exist c > 1 and c′ > 0 only depending on G such
that

1
c
‖(x|y)o‖o ≤ dX(o, P (x, y)) ≤ c‖(x|y)o‖o + c

′ for all (x, y) ∈ F (2)
θ .

26 This is the negative of the one defined in [Sa].
27 We have identified a{α1} with R via ωα1 .
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Proof. As for PSL(d,R), the first inequality follows easily. Let us show the second one.
Let 3 : G → PSL(V ) be a Plücker representation of G associated to the set θ (recall
Subsection 8.6). Corollary 8.8 implies that there exists c0 such that for all o ∈ X and
(x, y) ∈ F (2)

θ3
one has

dX(o, P (x, y)) ≤ c0dXV (3o, P (ξ3x, ξ
∗
3y)).

Note that ξ3x ∈ P(V ) and that ξ∗3y ∈ P(V ∗) Proposition 7.2 applied to the set {α1} ⊂

5V implies that

dXV (3o, P (ξ3x, ξ
∗
3y)) ≤ c(ξ3x|ξ

∗
3y)3o + c

′.

Finally, Remark 8.11 states that

(ξ3x|ξ
∗
3y)3o =

∑
α∈θ

〈χ3, α〉ωα((x|y)o),

where 〈χ3, α〉 > 0 for all α ∈ θ , so the last quantity is comparable to ‖(x|y)o‖. ut

8.12. The Morse Lemma of Kapovich–Leeb–Porti

Let us begin with some definitions. Consider p, q ∈ X, θ ⊂ 5 and (x, y) ∈ F (2)
θ .

• The Weyl cone V (p, x) through p and x is
⋃

f f(a
+), where the union is over all

parametrized flats f with f(0) = p and Z(f)θ = x.
• Let

θ(p, q) = {α ∈ 5 : α(a(p, q)) 6= 0}

and let U(p, q) ∈ Fθ(p,q) be the flag determined by Z(f)θ(p,q) = U(p, q) for every
parametrized flat with f(0) = p and q ∈ f(a+).
• If θ ⊂ θ(p,q) the Weyl cone Vθ (p, q) through p and q (in that order) is⋃

f

f(a+),

where the union is over all parametrized flats f with f(0) = p, and Z(f)θ = U(p, q)θ .
• Finally, if θ ⊂ θ(p,q) the θ -diamond between p and q is the subset

♦θ (p, q) = Vθ (p, q) ∩ Vi θ (q, p).

If C ⊂ a+ is a closed cone, consider the subset

θC =
{
α ∈ 5 : kerα ∩ C = {0}

}
.

Let I ⊂ Z be an interval. Following [KLP2] we will say that a quasi-geodesic segment
{pn}n∈I ⊂ X is C -regular if

a(pn, pm) ∈ C for all n < m.

One has the following version of the Morse Lemma.
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Theorem 8.13 ([KLP2, Theorem 1.3]). Let µ, c > 0 and C ⊂ a+ a closed cone. Then
there exists C > 0 such that if {pn}n∈I is a C -regular (µ, c)-quasi-geodesic segment,
then:

• If I is finite then {pn} is at distance at most C from ♦θC (pmin I , pmax I ).
• If I = N then there exists x ∈ FθC such that {pn} is contained in the C-neighborhood

of the Weyl cone VθC (pmin I , x).
• If I = Z then there exist two partial flags (x, y) ∈ F (2)

θC
in general position such that

{pn} is contained in the C-neighborhood of the union VθC (z, x) ∪ Vi θC (z, y) for some
z ∈ P(x, y) at uniform distance from {pn}.

Proof. Let 3 : G → PSL(V ) be a Plücker representation associated to θC . If {pn} is
a C -regular quasi-geodesic then {3pn} is a 3C -regular quasi-geodesic. Moreover, (8.4)
implies that the cone 3C does not intersect the wall kerα1.

The proof now follows the lines of the proof of Theorem 7.3, with the use of Proposi-
tion 8.12. ut

Appendix. Auxiliary technical results

In this appendix we collect a number of lemmas that are used elsewhere in the paper.
These lemmas are either quantitative linear-algebraic facts or properties of dominated
splittings. Certainly many of these results are known, but they do not necessarily appear
in the literature in the exact form or setting that we need; therefore we include proofs for
the reader’s convenience.

A.1. Angles, Grassmannians

The angle between nonzero vectors v, w ∈ Rd is defined as the unique number ](v,w)
in [0, π] whose cosine is 〈v,w〉/(‖v‖ ‖w‖). If P , Q ⊂ Rd are nonzero subspaces then
we define their angle as

](P,Q) := min
v∈P×

min
w∈Q×

](v,w), (A.1)

where P× := P − {0}. We also write ](v,Q) instead of ](Rv,Q) if v is a nonzero
vector.

Given integers 1 ≤ p < d , we let Gp(Rd) be the Grassmannian formed by the p-
dimensional subspaces of Rd . Let us metrize Gp(Rd) in a convenient way. If p = 1, the
sine of the angle defines a distance. (We leave it to the reader to check the triangle inequal-
ity.) In general, we may regard each element of Gp(Rd) as a compact subset of G1(Rd),
and then use the Hausdorff metric induced by the distance on G1(Rd). In other words, we
define, for P , Q ∈ Gp(Rd),

d(P,Q) := max
{

max
v∈P×

min
w∈Q×

sin](v,w), max
w∈Q×

min
v∈P×

sin](v,w)
}
. (A.2)
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Note the trivial bound
d(P,Q) ≥ sin](P,Q). (A.3)

In fact, the following stronger fact holds: for any subspace Q̃ ⊂ Rd (not necessarily of
dimension p),

Q̃ ∩Q 6= {0} =⇒ d(P,Q) ≥ sin](P, Q̃). (A.4)

Actually the two quantities between curly brackets in (A.2) coincide, that is,

d(P,Q) = max
w∈Q×

min
v∈P×

sin](v,w) = max
w∈Q×

sin](w, P ). (A.5)

This follows from the existence of an isometry of Rd that interchanges P andQ (see [Wo,
Theorem 2]).

As the reader can easily check, relation (A.5) can be rewritten in the following ways:

d(P,Q) = max
w∈Q×

max
u∈(P⊥)×

cos](u,w) (A.6)

= max
w∈Q×

min
v∈P

‖v − w‖

‖w‖
, (A.7)

where P⊥ denotes the orthogonal complement of P . As a consequence of (A.1) and (A.6),

d(P,Q) = cos](P⊥,Q). (A.8)

Another expression for the distance d(P,Q) is given in (A.26) below.
A finer description of the relative position of a pair of elements in the Grassmannian

is given by the next proposition:

Proposition A.1 (Canonical angles between a pair of spaces). Let P,Q ∈ Gp(Rd). Then
there exist

• numbers β1 ≥ · · · ≥ βp ∈ [0, π/2], called canonical angles, and
• orthonormal bases {v1, . . . , vp} and {w1, . . . , wp} of P and Q respectively

such that, for all i, j ∈ {1, . . . , p},

](vi, wj ) =

{
βi if i = j ,
π/2 if i 6= j ,

and moreover

• if p > d/2 then βd−p+1 = βd−p+2 = · · · = βp = 0;
• d(P,Q) = sinβ1.

The proof is a simple application of the singular value decomposition [Ste, p. 73].
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A.2. More about singular values

If A : E → F is a linear map between inner product vector spaces then we define its
norm and its conorm (or mininorm) by

‖A‖ := max
v∈E×

‖Av‖

‖v‖
, m(A) := min

v∈E×

‖Av‖

‖v‖
.

The following properties hold whenever they make sense:

‖AB‖ ≤ ‖A‖ ‖B‖, m(AB) ≥ m(A)m(B), m(A) = ‖A−1
‖
−1.

In terms of singular values, we have ‖A‖ = σ1(A) and m(A) = σd(A), where d = dimE.
For convenience, let us assume that A is a linear map from Rd to Rd . We have the

following useful “minimax” characterization of the singular values:

σp(A) = max
P∈Gp(Rd )

m(A|P ), (A.9)

σp+1(A) = min
Q∈Gd−p(Rd )

‖A|Q‖; (A.10)

see [Ste, Cor. 4.30]. Moreover, if A has a gap of index p (that is, σp(A) > σp+1(A)) then
the maximum and the minimum above are respectively attained (uniquely) at the spaces
P = Sd−p(A)

⊥ and Q = Sd−p(A) (defined in §2.2).

A.3. Linear-algebraic lemmas

In this subsection we collect a number of estimates that will be useful later. Fix integers
1 ≤ p ≤ d .

Lemma A.2. Let A,B ∈ GL(d,R). Then

max{m(A)σp(B), σp(A)m(B)} ≤ σp(AB) ≤ min{‖A‖σp(B), σp(A)‖B‖}.

Proof. The two inequalities follow from (A.9) and (A.10) respectively. ut

Lemma A.3. Let A ∈ GL(d,R) have a gap of index p. Then, for all unit vectors
v,w ∈ Rd ,

‖Av‖ ≥ σp(A) sin](v, Sd−p(A)), (A.11)

‖A−1w‖ ≥ σp+1(A)
−1 sin](w,Up(A)). (A.12)

Also, for all Q ∈ Gd−p(Rd) and P ∈ Gp(Rd),

‖A|Q‖ ≥ σp(A)d(Q, Sd−p(A)), (A.13)

‖A−1
|P ‖ ≥ σp+1(A)

−1d(P,Up(A)). (A.14)
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Proof. Given a unit vector v ∈ Rd , decompose it as v = s+uwhere s ∈ Sd−p(A) and u ∈
Sd−p(A)

⊥. Then ‖u‖ = sin](v, Sd−p(A)). Moroever, since As and Au are orthogonal,
we have ‖Av‖ ≥ ‖Au‖ ≥ σp(A)‖u‖. This proves (A.11), from which (A.13) follows.
Inequalities (A.12) and (A.14) follow from the previous ones applied to the matrix A−1,
which has a gap of index d − p. ut

The next three lemmas should be thought of as follows: if A has a strong gap of index p
and ‖B±1

‖ are not too large, then Up(AB) is close to Up(A), and Up(BA) is close to
B(Up(A)); moreover, A(P ) is close to Up(A) for any P ∈ Gp(Rd) whose angle with
Sd−p(A) is not too small.28

Lemma A.4. Let A,B ∈ GL(d,R). If A and AB have gaps of index p then

d(Up(A), Up(AB)) ≤ ‖B‖ ‖B
−1
‖
σp+1(A)

σp(A)
.

For another way to estimate the distance of Up(A) and Up(AB) that does not rely on
“smallness” of B, see Lemma A.9 below.

Proof of Lemma A.4. We have

d(Up(AB),Up(A)) ≤ σp+1(A)‖A
−1
|Up(AB)‖ (by (A.14))

≤ σp+1(A)‖B‖ ‖B
−1A−1

|Up(AB)‖

= σp+1(A)‖B‖σp(AB)
−1

≤ σp+1(A)‖B‖ ‖B
−1
‖σp(A)

−1 (by Lemma A.2). ut

Lemma A.5. Let A,B ∈ GL(d,R). If A and BA have gaps of index p then

d
(
B(Up(A)), Up(BA)

)
≤ ‖B‖ ‖B−1

‖
σp+1(A)

σp(A)
.

Proof. We have

d
(
B(Up(A)), Up(BA)

)
≤ σp+1(BA)‖A

−1B−1
|B(Up(A))‖ (by (A.14))

≤ ‖B‖σp+1(A)‖A
−1
|Up(A)‖ ‖B

−1
‖ (by Lemma A.2)

= ‖B‖σp+1(A)σp(A)
−1
‖B−1

‖. ut

Lemma A.6. Let A ∈ GL(d,R) have a gap of index p. Then, for all P ∈ Gp(Rd)
transverse to Sd−p(A),

d(A(P ), Up(A)) ≤
σp+1(A)

σp(A)

1
sin](P, Sd−p(A))

.

28 We remark that angle estimates of this flavor appear in the usual proofs of the Oseledets theo-
rem: see e.g. [Sim, pp. 141–142]. We also note that [GGKW, Lemma 5.8] contains a generalization
of Lemmas A.4 and A.6 to more general Lie groups.
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Proof. By (A.14),

d(A(P ), Up(A)) ≤ σp+1(A)‖A
−1
|A(P )‖ =

σp+1(A)

m(A|P )
.

By (A.11), m(A|P ) ≥ σp(A) sin](P, Sd−p(A)), so the lemma is proved. ut

The next lemma implies that the singular values of a product of matrices are approxi-
mately the products of the singular values, provided that certain angles are not too small:

Lemma A.7. Let A,B ∈ GL(d,R). Suppose that A and AB have gaps of index p. Let
α := ](Up(B), Sd−p(A)). Then

σp(AB) ≥ (sinα)σp(A)σp(B),

σp+1(AB) ≤ (sinα)−1σp+1(A)σp+1(B).

Proof. By (A.9) we have

σp(AB) ≥ m(AB|B−1(Up(B))
) ≥ m(A|Up(B))m(B|B−1(Up(B))

) = m(A|Up(B))σp(B).

On the other hand, inequality (A.11) yields m(A|Up(B)) ≥ (sinα)σp(A), and so we obtain
the first inequality in the lemma. The second inequality follows from the first one and the
fact that σp+1(A

−1) = 1/σd−p(A). ut

A.4. A sketch of the proof of Theorem 2.2

Note that due to the uniqueness property of dominated splittings (Proposition 2.1), it is
sufficient to prove the theorem for T = Z, which is done in [BG]. For the convenience of
the reader, let us include here a summary of that proof, using some lemmas that we have
already proved in §A.3.

As the “only if” part is not difficult, let us consider the “if” part. So assume that the
gap between the p-th and the (p + 1)-th singular values of ψnx increases uniformly ex-
ponentially with time n. Fix any x ∈ X. Using Lemma A.4, we see that the distance
between consecutive elements of the sequence Up(ψnφ−n(x)) in Gp(Ex) decreases expo-
nentially fast, and in particular the sequence has a limitEcu

x . Uniform control on the speed
of convergence shows that Ecu is a continuous subbundle of E. Lemma A.5 implies that
this subbundle is invariant.29 Analogously we obtain the subbundle Ecs.

To conclude the proof, we need to show that the bundles Ecu and Ecs are transverse,
and that the resulting splitting is indeed dominated. Here, [BG] uses an ergodic-theoretical
argument: The gap between singular values implies that for any Lyapunov regular point x,
the difference λp(x)− λp+1(x) between the p-th and the (p+ 1)-th Lyapunov exponents
is bigger than some constant 2ε > 0. Moreover, the Oseledets theorem implies that Ecu

x

and Ecs
x are sums of the Oseledets spaces corresponding to Lyapunov exponents ≥ λp(x)

and ≤ λp+1(x) respectively. Bearing these facts in mind, assume for a contradiction that

29 This step is missing in [BG].
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Ecu does not dominate Ecs. Then there exist points xi ∈ X, unit vectors vi ∈ Ecs
xi

and
wi ∈ E

cu
xi

, and times ni →∞ such that

‖ψni (vi)‖

‖ψni (wi)‖
> e−εni .

It follows from a Krylov–Bogolyubov argument30 (making use of the continuity of the
subbundles; see [BG] for details) that there exists a Lyapunov regular point x such that
λp(x)− λp+1(x) ≤ ε. This contradiction establishes domination.

A.5. Exterior powers and applications

We recall quantitative facts about exterior powers; all the necessary information can be
found in [Ar, §3.2.3].

The space 3pRd is endowed with the inner product defined on decomposable p-
vectors as

〈v1 ∧ · · · ∧ vp, w1 ∧ · · · ∧ wp〉 := det(〈vi, wj 〉)i,j=1,...,p. (A.15)

Geometrically (see [Ga, §IX.5]), ‖v1 ∧ · · · ∧ vp‖ is the p-volume of the parallelepiped
with edges v1, . . . , vp. Therefore, if those vectors span a p-dimensional space P ⊂ Rd
then, for any A ∈ GL(d,R),

‖(3pA)(v1 ∧ · · · ∧ vp)‖

‖v1 ∧ · · · ∧ vp‖
= jac(A|P ), (A.16)

where jac(·) denotes the jacobian of a linear map, i.e., the product of its singular values.
The Plücker embedding is the map ι : Gp(Rd)→ G1(3

pRd) such that if P is spanned
by v1, . . . , vp ∈ Rd then ι(P ) is spanned by v1∧· · ·∧vp ∈ 3

pRd . We metrize G1(3
pRd)

as described in Subsection A.1.

Lemma A.8. For all P , Q ∈ Gp(Rd) we have

d(ι(P ), ι(Q)) ≥ d(P,Q), (A.17)

sin](ι(P ), ι(Q)⊥) ≥ [sin](P,Q⊥)]min{p,d−p}. (A.18)

Proof. Let β, β̂ ∈ [0, π/2] be such that

sinβ = d(P,Q) and sin β̂ = d(ι(P ), ι(Q)) = ](ι(P ), ι(Q)).

Recalling (A.8), we have

cosβ = ](P,Q⊥) and cos β̂ = ](ι(P ), ι(Q)⊥).

30 That is, convergence (in the weak star topology) of measures supported in long segments of
orbits to an invariant measure.
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Associated to P , Q, Proposition A.1 provides canonical angles β1 ≥ · · · ≥ βp, where
β1 = β, and canonical orthonormal bases {v1, . . . , vp} and {w1, . . . , wp} for P and Q
respectively. Using (A.15) we compute

cos β̂ = cos](ι(P ), ι(Q)) = 〈v1 ∧ · · · ∧ vp, w1 ∧ · · · ∧ wp〉 =

p∏
i=1

cosβi .

Then, on the one hand, cos β̂ ≤ cosβ, that is, sin β̂ ≥ sinβ, which is estimate (A.17). On
the other hand, since at most n := min{p, d − p} canonical angles are nonzero, we have
cos β̂ ≥ (cosβ)n, which is estimate (A.18). ut

Given A ∈ GL(d,R), the singular values of 3pA are the numbers σi1(A) · · · σip (A),
where 1 ≤ i1 < · · · < ip ≤ d; in particular,

σ1(3
pA) = σ1(A) · · · σp−1(A)σp(A), (A.19)

σ2(3
pA) = σ1(A) · · · σp−1(A)σp+1(A). (A.20)

So A has a gap of index p if and only if3pA has a gap of index 1. In this case, the corre-
sponding singular spaces are related via the Plücker embedding ι : Gp(Rd)→ G1(3

pRd)
as follows:

U1(3
pA) = ι(Up(A)), (A.21)

S(dp)−1(3
pA) = ι(Sd−p(A)

⊥)⊥. (A.22)

The following result is used at the end of Section 7; it should be compared with
Lemma A.4.

Lemma A.9. Suppose that A,B,AB ∈ GL(d,R) have gaps of index p, and that the
spaces Sd−p(A) and Up(B) are transverse. Then

d(Up(AB),Up(A)) ≤
σp+1(A)

σp(A)
[sin](Up(B), Sd−p(A))]−min{p,d−p}.

Proof. First we consider the case p = 1. Let v and w be unit vectors spanning the spaces
B−1A−1U1(AB) and B−1U1(B) respectively. By inequality (A.11),

‖ABw‖

‖Bw‖
≥ σ1(A) sin](Bw, Sd−1(A)),

while by inequality (A.12),

‖Bv‖

‖ABv‖
=
‖A−1ABv‖

‖ABv‖
≥ σ2(A)

−1 sin](ABv,U1(B)).

Multiplying the two inequalities, we obtain

σ1(A)

σ2(A)
d(U1(AB),U1(B)) sin](U1(B), Sd−1(A)) ≤

‖ABw‖

‖ABv‖
×
‖Bv‖

‖Bw‖
≤ 1× 1 = 1,

which is the desired inequality in the case p = 1.
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Now consider arbitrary p. If A, B, and AB have gaps of index p then the correspond-
ing exterior powers have gaps of index 1, and by the previous case we have

d
(
U1(3

p(AB)), Up(3
pA)

)
≤
σ2(3

pA)

σ1(3pA)

[
sin]

(
U1(3

pB), S(dp)−1(3
pA)

)]−1

By (A.19) and (A.20), we have

σ2(3
pA)

σ1(3pA)
=
σp+1(A)

σp(A)
.

By (A.21) and (A.17),

d
(
U1(3

p(AB)), Up(3
pA)

)
= d

(
ι(Up(AB)), ι(Up(A))

)
≥ d(Up(AB),Up(A)).

On the other hand, by (A.21), (A.22), and (A.18),

sin]
(
U1(3

pB), S(dp)−1(3
pA)

)
= sin]

(
ι(Up(B)), ι(Sd−p(A)

⊥)⊥
)

≥ [sin](Up(B), Sd−p(A))]min{p,d−p}.

Combining the facts above we obtain the lemma. ut

A.6. Expansion on the Grassmannian

The aim of this subsection is to prove the following lemma, which is used in Subsec-
tion 3.6.

Lemma A.10. Given α > 0, there exists b > 0 with the following properties. Let A ∈
GL(d,R). Suppose that P ∈ Gp(Rd) and Q ∈ Gd−p(Rd) satisfy

min{](P,Q),](AP,AQ)} ≥ α. (A.23)

Then there exists δ > 0 such that if P1, P2 ∈ Gp(Rd) are δ-close to P then

d(AP1, AP2) ≥ b
m(A|Q)
‖A|P ‖

d(P1, P2). (A.24)

Before proving this lemma, we need still another characterization of the distance (A.5)
on the Grassmannian. Suppose that P , Q ∈ Gp(Rd) satisfy d(P,Q) < 1. Then Q ∩ P⊥

= {0}, and so there exists a unique linear map

LQ,P : P → P⊥ such that Q = {v + LQ,P (v) : v ∈ P }. (A.25)

We have
‖LQ,P ‖ =

d(P,Q)√
1− d(P,Q)2

; (A.26)

indeed, letting θ ∈ [0, π/2) be such that sin θ = d(P,Q), using (A.7) we conclude that
‖LQ,P ‖ = tan θ .
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Lemma A.11. Let P, P1, P2 ∈ Gp(Rd). For each i = 1, 2, assume that d(Pi, P ) <
1/
√

2, and let Li = LPi ,P . Then

d(P1, P2) ≤ ‖L1 − L2‖ ≤ 4d(P1, P2).

Proof. Write any u1 ∈ P×1 as u1 = v + L1v for some v ∈ P×. By orthogonality,
‖u1‖ ≥ ‖v‖. Letting u2 := v + L2v, we have

‖u1 − u2‖

‖u1‖
≤
‖L1v − L2v‖

‖v‖
≤ ‖L1 − L2‖.

Using (A.7) we conclude that d(P1, P2) ≤ ‖L1 − L2‖.
For each i = 1, 2, we have ‖Li‖ ≤ 1, as a consequence of (A.26) and the hypothesis

d(Pi, P ) < 1/
√

2. Consider an arbitrary unit vector v1 ∈ P . Let w1 := v1 + L1v1, so
‖w1‖ ≤ 2. By (A.7), there exists w2 ∈ P

×

2 such that

‖w2 − w1‖

‖w1‖
≤ d(P1, P2).

Let v2 ∈ P be such that w2 = v2 + L2v2. By orthogonality,

‖w1 − w2‖ ≥ max{‖v1 − v2‖, ‖L1v1 − L2v2‖},

so

‖L1v1 − L2v1‖ ≤ ‖L1v1 − L2v2‖ + ‖L2v2 − L2v1‖ ≤ ‖L1v1 − L2v2‖ + ‖v2 − v1‖

≤ 2‖w1 − w2‖ ≤ 2‖w1‖d(P1, P2) ≤ 4d(P1, P2).

Taking sup over unit vectors v1 ∈ P1 we obtain ‖L1 − L2‖ ≤ 4d(P1, P2). ut

Proof of Lemma A.10. First consider the case α = π/2, so (A.23) means that Q = P⊥

and AQ = (AP )⊥. Assume that P1, P2 are δ-close to P , for some small δ > 0 to be
chosen later. Recall notation (A.25) and, for each i = 1, 2, consider the linear maps
Li := LPi ,P and Mi := LAPi ,AP , which are well-defined since δ < 1 guarantees that
Pi∩Q = {0}. These maps are related by Li = (A−1

|AQ)◦Mi ◦(A|P ). As a consequence,

‖L1 − L2‖ = ‖(A
−1
|AQ) ◦ (M1 −M2) ◦ (A|P )‖ ≤

‖A|P ‖

m(A|Q)
‖M1 −M2‖.

Lemma A.11 entails
‖L1 − L2‖ ≥ d(P1, P2).

On the other hand, by (A.26) we have ‖Li‖ ≤ d(Pi, P ) < δ, and therefore ‖Mi‖ ≤

‖A−1
‖ ‖Li‖ ‖A‖ < 1 provided δ is chosen sufficiently small (depending on A). Using

(A.26) again we guarantee that d(APi, AP ) < 1/
√

2. This allows us to apply Lem-
ma A.11 and obtain

‖M1 −M2‖ ≥
1
4d(AP1, AP2).

Putting these three estimates together, we conclude that the lemma holds with b = 1/4
provided α = π/2. The general case can be reduced to the previous one by changes of
inner products, whose effect on all the quantities involved can be bounded by a factor
depending only on α. ut
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A.7. Additional lemmas about dominated splittings

A.7.1. More about domination of sequences of matrices. Recall from §2.3 the definition
of the sets D(K, p,µ, c, I ).

Lemma A.12. Given K > 1 and µ, c > 0, there exist ` ∈ N and c̃ > c such that if
I ⊂ Z is an interval and (Ai)i∈I is an element of D(K, p,µ, c, I ), then:

(i) If n′ < n < k all belong to I and k − n ≥ ` then

d
(
Up(Ak−1 · · ·An+1An), Up(Ak−1 · · ·An′+1An′)

)
< c̃e−µ(k−n).

(ii) If k < m < m′ all belong to I and m− k ≥ ` then

d
(
Sd−p(Am−1 · · ·Ak+1Ak), Sd−p(Am′−1 · · ·Ak+1Ak)

)
< c̃e−µ(m−k).

Proof. GivenK ,µ, and c, let `∈N be such that ce−µ`<1. Fix (An)n∈I ∈D(K, p,µ, c, I )
and k ∈ I . If n ∈ I satisfies n ≤ k − ` then the space Pn := Up(Ak−1 · · ·An+1An) is
well-defined. If n− 1 ∈ I then it follows from Lemma A.4 that

d(Pn, Pn−1) ≤ K
2ce−µ(k−n).

Therefore, if n′ < n belongs to I then

d(Pn, Pn′) ≤ d(Pn, Pn−1)+ d(Pn−1, Pn−2)+ · · · + d(Pn′+1, Pn′) ≤ c̃e
−µ(k−n)

where c̃ := K2c/(1− e−µ). This proves (i). The argument applied to A−1 yields (ii). ut

The following “extension lemma” is useful to deduce one-sided results from two-sided
ones.

Lemma A.13. Given K > 1 and µ, c > 0, there exists c′ ≥ c such that every one-sided
sequence (An)n∈N in D(K, p,µ, c,N) can be extended to a two-sided sequence (An)n∈Z
in D(K, p,µ, c′,Z).

Proof. Fix (An)n∈N in D(K, p,µ, c,N). Let Qn := Sd−p(An−1An−2 · · ·A0), which is
defined for sufficiently large n. By Lemma A.12, the spaces Qn converge to some Q ∈
Gp(Rd); moreover, we can find some n0 depending only on the constants K , µ, c (and
not on the sequence of matrices) such that for all n ≥ n0 we have d(Qn,Q) < 1/

√
2 or

equivalently, by (A.8), ](Qn,Q
⊥) < π/4.

Let B be a matrix satisfying the following conditions:

‖B±1
‖ ≤ K,

σp+1

σp
(B) < e−µ, B(Q) = Q = Sd−p(B), B(Q⊥) = Q⊥ = Up(B).

In particular, for allm ≥ 0 we have σp+1
σp
(Bm) < e−µm. Then, for all n ≥ n0, Lemma A.7

yields
σp+1

σp
(An−1 · · ·A0B

m) ≤ 2ce−µ(n+m).
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As a consequence of Lemma A.2, a similar estimate holds for 0 ≤ n < n0 with another
constant replacing 2c. So if we set An = B for all n < 0 then the extended sequence
(An)n∈Z belongs to D(K, p,µ, c′,Z) for a suitable c′ depending only onµ, c, and n0. ut

Combining the previous lemma with Proposition 2.4, we obtain:

Corollary A.14. Given K > 1 and µ, c > 0, there exist c̃, µ̃, α > 0 with the following
properties. For every one-sided sequence (An)n∈N in D(K, p,µ, c,N), the limit

Q = lim
n→∞

Sd−p(An−1 · · ·A0)

exist, and there exists Q̃ ∈ Gp(Rd) such that for every n ≥ 0,

]
(
An−1 · · ·A0(Q̃), An−1 · · ·A0(Q)

)
≥ α,

‖An−1 · · ·A0|Q‖

m(An−1 · · ·A0|Q̃)
< c̃e−µ̃n.

A.7.2. Hölder continuity of the bundles

Theorem A.15. Let φt : X → X a Lipschitz flow on a compact metric space X with
t ∈ T, and E a vector bundle over X. Let ψ t be a β-Hölder linear flow over φt which
admits a dominated splitting with constants C, λ > 0. If α < β and e−λKα < 1 where
K is a Lipschitz constant for φ1 and φ−1, then the maps x 7→ Ecu(x) and x 7→ Ecs(x)

are α-Hölder.

Sketch of the proof. Choose Lipschitz approximations Êcs and Êcu of Ecs and Ecu re-
spectively. One can define the bundle E over X corresponding to the linear maps from
Êcu(x) to Êcs(x), that is, E(x) = Hom(Êcu(x), Êcs(x)) . Let T ⊂ E be given as T =

{(x, L) ∈ E : ‖L‖ ≤ 1}. We consider the standard graph transform H : T→ E given by

H(x,L) = (φ1(x),Hx(L))

defined so that if (w, v) ∈ Êcs(x) ⊕ Êcu(x) is in the graph of L (i.e. w = Lv) then
(ψ1w,ψ1v) is in the graph of Hx(L). It follows that the map H is β-Hölder and a stan-
dard computation shows that some iterate leaves the set T invariant.

Given two sections σ0 and σ1 of E such that σi(x) ∈ T for every x ∈ X, one shows
that the α-Hölder distance betweenH ◦σ0 andH ◦σ1 is uniformly contracted31 if α < β

and e−λk−α < 1 where k := min
x 6=y

d(φ1(x),φ1(y))
d(x,y)

. Indeed, the graphs are getting contracted

at a rate similar to λ while points cannot approach faster than k, which shows that the
α-Hölder distance contracts.32

31 To show that this metric is contracted, one needs to assume that the constant C appearing in the
dominated splitting is 1. Otherwise, one can argue for an iterate and the same will hold.
32 The need for α < β is evident, since the section cannot be more regular than the cocycle. In

the computation this appears because an error term of the form d(x, y)β−α appears which will then
be negligible as d(x, y) → 0 and gives the desired statement. See [CP, Section 4.4] for a similar
computation.
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As a consequence, there is a unique H -invariant section σ of this bundle, which is
moreover α-Hölder.

It is direct to show that this section corresponds to the bundle Ecu. A symmetric
argument shows that Ecs is α-Hölder, proving the result. ut

Corollary A.16. If u 7→ ψ tu is a β-Hölder family of linear flows over a Lipschitz flow φt

and ψ t0 admits a dominated splitting, then there exists a neighborhood D of 0 such that
the maps (u, x) 7→ Ecs

u (x) and (u, x) 7→ Ecu
u (x) are α-Hölder.

Proof. Fix α as in the previous theorem. There exists a neighborhood D of 0 for which
λKα < 1 (here λ denotes the strength of the domination for ψ tu with u ∈ D).

Now one applies the previous theorem to the linear flow ψ̂ t over φt × id : X ×D→
X×D. Note that the Lipschitz constants of φ1

× id and φ−1
× id are the same as the ones

of φ1 and φ−1. The result follows. ut
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